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Robustness

» Many complex systems are prone to cascading
catastrophic failure: exciting!!!
» Blackouts
» Disease outbreaks
» Wildfires
» Earthquakes
» But complex systems also show persistent
robustness (not as exciting but important...)

» Robustness and Failure may be a power-law story...
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Robustness

» System robustness may result from

1. Evolutionary processes
2. Engineering/Design

» Idea: Explore systems optimized to perform under
uncertain conditions.

» The handle:
‘Highly Optimized Tolerance’ (HOT)[* 5 6.9

» The catchphrase: Robust yet Fragile
» The people: Jean Carlson and John Doyle (H)

Robustness

Features of HOT systems: 5 !
» High performance and robustness

» Designed/evolved to handle known stochastic
environmental variability

» Fragile in the face of unpredicted environmental
signals

» Highly specialized, low entropy configurations
» Power-law distributions appear (of course...)

Robustness

HOT combines things we’ve seen:
» Variable transformation
» Constrained optimization

» Need power law transformation between variables:

(Y=X"9)

Recall PLIPLO is bad...

MIWOQO is good: Mild In, Wild Out

X has a characteristic size but Y does not
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Robustness

Forest fire example: !

» Square N x N grid

» Sites contain a tree with probability p = density

» Sites are empty with probability 1 — p

» Fires start at location (/, j) according to some
distribution P;

» Fires spread from tree to tree (nearest neighbor only)

» Connected clusters of trees burn completely

» Empty sites block fire

» Best case scenario:
Build firebreaks to maximize average # trees left
intact given one spark

Robustness

Forest fire example: !

v

>
>
>
>
>

Build a forest by adding one tree at a time
Test D ways of adding one tree

D = design parameter

Average over P = spark probability

D = 1: random addition

D = NZ2: test all possibilities

Measure average area of forest left untouched

» f(c) = distribution of fire sizes ¢ (= cost)
» Yield=Y =p—(c)
Robustness
Specifics:
>
P’/ = PI';ax,bx 'D]'?a}/vby
where
P, p oc g l(i+a)/bF
» In the original work, b, > by
» Distribution has more width in y direction.
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» Optimized forests do well on average (robustness)

» But rare extreme events occur (fragility)

HOT Forests

A (b)

s >
log(p/(1-p) 02
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Density Density
FIG. 2. Yield vs density Y(p): (a) for design parameters D =
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N (solid)
with N = 64, and (b) for D =2 and N =2,2%,...,27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L = log[{f)/(1 — (f))], on a scale which more
clearly differentiates between the curves.

HOT Forests:

Gaussian decay

5]

» Y = ‘the average density of trees left unburned in a

configuration after a single spark hits. [°!
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FIG. 3. Cumulative distributions of events F(c): (a) at peak

yield for D =1, 2, N, and N? with N = 64, and (b) for D =
N2, and N = 64 at equal density increments of 0.1, ranging at
p = 0.1 (bottom curve) to p = 0.9 (top curve).
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Random Forests

D = 1: Random forests = Percolation ['%)
» Randomly add trees
» Below critical density p¢, no fires take off

» Above critical density p¢, percolating cluster of trees
burns
» Only at p¢, the critical density, is there a power-law
distribution of tree cluster sizes

» Forest is random and featureless

HOT forests

HOT forests nutshell:
» Highly structured

>

vV vVv.v vy

Power law distribution of tree cluster sizes for p > p.
No specialness of p¢

Forest states are tolerant

Uncertainty is okay if well characterized
If Pj is characterized poorly, failure becomes highly

HOT forests—Real data:

6

log (1)

Fig. 1. Log-log (base 10) comparison of DC, WWW, CF, and FF data (symbols)
with PLR models (solid lines) (for = 0,0.9, 0.9, 1.85, or a = 1/ ==, 1.1,1.1,0.054,
respectively) and the SOC FF model (« = 0.15, dashed). Reference lines of a = 0.5,
1 (dashed) are included. The cumulative distributions of frequencies #( = ) vs. |
describe the areas burned in the largest 4,284 fires from 1986 to 1995 on all of the
US. Fish and Wildlife Service Lands (FF) (17), the >10,000 largest California
brushfires from 1878 to 1999 (CF) (18), 130,000 web file transfers at Boston
University during 1994 and 1995 (WWW) (19), and code words from DC. The size
units (1,000 km? (FF and CF), megabytes (WWW), and bytes (DQ)] and the loga-
rithmic decimation of the data are chosen for visualization.

» PLR = probability-loss-resource.
» Minimize cost subject to resource (barrier)

constraints: {J = _; pililli = f(r;),>_r < R}
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HOT theory

The abstract story:
> Given y; = x7% i =1,..., Nijes

» Design system to minimize (y)
subject to a constraint on the x;

» Minimize cost:

Nites

C=Y Pr(y)yi
i=1

Subject to "M x; = constant

» Drag out the Lagrange Multipliers, battle away and

find:
Pi yi—“r

HOT Theory—Two costs:

1. Expected size of fire:

Nites Niites

Cire < > _(pjai)ai = > _ piaf
i=1

i=1

> a; = area of jth site’s region

» p; = avg. prob. of fire at site in ith site’s region

> Njies = total number of sites

2. Cost of building and maintaining firewalls

Nites

1/2 -1
Chirewalls 0 Z a,'/ a;

i=1

» We are assuming isometry.

> In d dimensions, 1/2 is replaced by (d —1)/d

HOT theory

Extra constraint:
» Total area is constrained:

Nites

21 = N2,
i=1

Niites 1

= Nre ions
aj €

i=1
where Nigions = Number of cells.
» Can ignore in calculation...
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HOT theory

» Minimize Ci. given Ciewais = constant.
>

7]
0= % (Cﬁre - )\Cﬁrewalls)
/
0 N (d—1)/d
a2 / - —1
O(c’)iaj ;p,a,- - XNag a;
| 4
pioca = a7 @1/
1 1
>
Ford=2,v=5/2
HOT theory

Summary of designed tolerance [°!
» Build more firewalls in areas where sparks are likely
» Small connected regions in high-danger areas
Large connected regions in low-danger areas
» Routinely see many small outbreaks (robust)
» Rarely see large outbreaks (fragile)
» Sensitive to changes in the environment (Pj)

v

Avalanches of Sand and Rice...
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SOC theory

SOC = Self-Organized Criticality

» Idea: natural dissipative systems exist at ‘critical

states’

» Analogy: Ising model with temperature somehow

self-tuning

» Power-law distributions of sizes and frequencies

arise ‘for free’

» Introduced in 1987 by Bak, Tang, and

Weisenfeld [® 2 71

“Self-organized criticality - an explanation of 1/f
noise” (PRL, 1987).

» Problem: Critical state is a very specific point
» Self-tuning not always possible
» Much criticism and arguing...

Robustness

HOT versus SOC

» Both produce power laws
» Optimization versus self-tuning
» HOT systems viable over a wide range of high

densities

» SOC systems have one special density
» HOT systems produce specialized structures
» SOC systems produce generic structures

HOT theory—Summary of designed

tolerance ©

Table 1. Characteristics of SOC, HOT, and data

Property socC HOT and Data
1 Internal Generic, Structured,
configuration homogeneous, heterogeneous,
self-similar self-dissimilar
2 Robustness Generic Robust, yet
fragile
3 Density and yield Low High
4 Max event size Infinitesimal Large
5 Large event shape Fractal Compact
6 Mechanism for Critical internal Robust
power laws fluctuations performance
7 Exponent « Small Large
8 a vs. dimension d a=(d-1)/10 a=1/d
9 DDOFs Small (1) Large ()
10 Increase model No change New structures,
resolution new sensitivities
1 Response to Homogeneous Variable
forcing
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COLD forests A beamess References | P benmess

Robustness [1] R. Albert, H. Jeong, and A.-L. Barabasi.

HOT theory

Error and attack tolerance of complex networks.
Nature, 406:378-382, 2000. pdf (H)

References

Avoidance of large-scale failures [2] P Bak.
» Constrained Optimizati o T How Nature Works: the Science of Self-Organized
ptimization with Limited Deviations Criticality.
» Weight cost of larges losses more strongly Springer-Verlag, New York, 1996. pdf (&)
» Increases average cluster size of burned trees... [3] P.Bak, C.Tang, and K. Wiesenfeld.
> ... but reduces chances of catastrophe Self-organized criticality - an explanation of 1/f noise.
» Power law distribution of fire sizes is truncated :

Phys. Rev. Lett., 59(4):381-384, 1987. pdf (H)

[4] J. M. Carlson and J. Doyle.
Highly optimized tolerance: A mechanism for power

| laws in design systems. | [
YERMONT Phys. Rev. E, 60(2):1412-1427, 1999. pdf (&) VERVONT |8
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Robustness [5] J. M. Carlson and J. Doyle. Robustness
o ey Highly optimized tolerance: Robustness and design
Aside: e in complex systems.
o _ References Phys. Rev. Lett., 84(11):2529-2532, 2000. pdf (H)
» Power law distributions often have an exponential -
cutoff [6] J. M. Carlson and J. Doyle.
P(x) ~ xTg X/% Complexity and robustness.

Proc. Natl. Acad. Sci., 99:2538-2545, 2002. pdf (H)

where x; is the approximate cutoff scale.
» May be Weibull distributions: (7] H.J. Jensen.
Self-Organized Criticality: Emergent Complex
Behavior in Physical and Biological Systems.
Cambridge Lecture Notes in Physics. Cambridge
University Press, Cambridge, UK, 1998.

[8] M. E. J. Newman, M. Girvan, and J. D. Farmer.

P(x) ~ x e "

.mem 8 Optimal design, robustness, and risk aversion. .m 8

P vt Phys. Rev. Lett., 89:028301, 2002. VERMONT
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We'll return to this later on: [9] D. Sornette.
» network robustness. Critical Phenomena in Natural Sciences.
» Albert et al., Nature, 2000: Springer-Verlag, Berlin, 2nd edition, 2003.

“Error and attack tolerance of complex networks” ] [10] D. Stauffer and A. Aharony.
» Similar robust-yet-fragile story... Introduction to Percolation Theory.
Taylor & Francis, Washington, D.C., Second edition,

> See Networks Overview, Frame 67ish ()
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