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Optimal supply networks

What'’s the best way to distribute stuff?

» Stuff = medical services, energy, people,
» Some fundamental network problems:

1. Distribute stuff from a single source to many sinks

2. Distribute stuff from many sources to many sinks

3. Redistribute stuff between nodes that are both
sources and sinks

» Supply and Collection are equivalent problems
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Single source optimal supply

Basic Q for distribution/supply networks:

» How does flow behave given cost:
c=3"1z
j

where
l; = current on link j
and
Z; = link j's impedance?
» Example: v = 2 for electrical networks.
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Single source optimal supply

(b) ©)

(@) v > 1: Braided (bulk) flow
(b) v < 1: Local minimum: Branching flow
(c) v < 1: Global minimum: Branching flow

From Bohn and Magnasco \°!
See also Banavar et al. !
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Single source optimal supply

Optimal paths related to transport (Monge) problems:

alpha=0.5 totalvalue=2.0178
alpha=0.95 totalvalue=1.1351

Xia (2003) 128!
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Growing networks: Supply Networks
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Growing networks: ol twors

FIGURE 3. A maple leaf
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Single source optimal supply

An immensely controversial issue...

» The form of river networks and blood networks:
optimal or not? % 2 5. 4]

Two observations:
» Self-similar networks appear everywhere in nature
for single source supply/single sink collection.

» Real networks differ in details of scaling but
reasonably agree in scaling relations.
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River network models

Optimality:
» Optimal channel networks ']
» Thermodynamic analogy '’
Versus...
Randomness:

» Scheidegger’s directed random networks
» Undirected random networks
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Optlmlzatlon approaches Supply Networks
Cardiovascular networks:

» Murray’s law (1926) connects branch radii at
forks: Murray's law

3
Io

Diaiaikes
e el

where ry = radius of main branch
and ry and r» are radii of sub-branches.

See D’Arcy Thompson’s “On Growth and Form” for
background inspiration

Calculation assumes ;

Holds up well for outer branchings of blood networks.
Also found to hold for trees

Use hydraulic equivalent of Ohm’s law:

v

YV  VaY

Ap—0Z VIR P 9
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Optimization approaches

Cardiovascular networks:

» Fluid mechanics: Poiseuille impedance (/) for

smooth flow in a tube of radius r and length ¢:
8nl
s il
mré
where 1 = dynamic viscosity () (units: ML=1T—1).

» Power required to overcome impedance:
P = QAT S G2 2

» Also have rate of energy expenditure in maintaining
blood:
P, metabolic = CI 26

where ¢ is a metabolic constant.
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Optimization approaches

ASide on P,

A\ SEE M [/

Work done = F - d = energy transferred by force F
Power = P = rate work is done = F - v
Ap = Force per unit area

¢ = Volume per unit time
= cross-sectional area - velocity

So ®Ap = Force - velocity
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Optimization approaches

Murray’s law:

» Total power (cost):

8n/

= Pdrag - Pmetabohc e ¢2T + cr ﬁ

» Observe power increases linearly with ¢
» But r’s effect is nonlinear:
» increasing r makes flow easier but increases
metabolic cost (as r?)
» decreasing r decrease metabolic cost but impedance
goes up (as r=*%)
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Optimization

Murray’s law:

» Minimize P with respect to r:

1 <¢2877

ar " or Wr*‘”)

= —4¢2% e2nkl— 0

» Rearrange/cancel/slap:

where k = constant.
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Supply Networks

Optimization

Murray’s law:

» So we now have:
o = kr’

» Flow rates at each branching have to add up (else
our organism is in serious trouble...):
by = O + b5

where again 0 refers to the main branch and 1 and 2
refers to the offspring branches

» All of this means we have a groovy cube-law:

3
)

R e
=g
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Optimization

Murray meets Tokunaga:

» &, = volume rate of flow into an order w vessel
segment

» Tokunaga picture:

w—1

q)w S 2¢w71 - Z qu)wfk
k=1

» Using ¢, = kr3

w—1
SRS E : 3
%= 2rw—1 A Tkrw—k
k=1

» Find Horton ratio for vessel radius R, = r,,/r,_1...
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Optimization

Murray meets Tokunaga:

» Find R? satisfies same equation as R, and R,
(v is for volume):

R:=R,=R,

» |s there more we could do here to constrain the
Horton ratios and Tokunaga constants?

Supply Networks

Introduction

Optimal branching
Murray’s law
Murray meets Tokunaga

Single Source
Geom: ment

Bl

Distributed
Sources
Facility locatior

Cartograms

References

) B (o]
UNIVERSITY |§|
¥-8 vervont 18]

Q> 20 of 86


http://www.uvm.edu
http://www.uvm.edu/~pdodds

OptlmlzatIOﬂ Supply Networks

Introduction

Optimal branching
Murray’s law

Murray meets Tokunaga:

Single Source

> Isometry: V,, ej
» Gives

R

Distributed

R? = RV = Rn Sourcaﬁef :

Fac

» We need one more constraint...

» West et al (1997) “°! achieve similar results following
Horton’s laws.

References

» So does Turcotte et al. (1998) “°! using Tokunaga
(sort of).

) B (o]
UNIVERSITY |g|
¥-8 vervont 18]

o> 21 of 86


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Geometric argument

» Consider one source supplying many sinks in a

volume V d-dim. region in a D-dim. ambient space.

» Assume sinks are invariant.

» Assume p = p(V), i.e., p may vary with region’s
volume V.

» See network as a bundle of virtual vessels:

» Q: how does the number of sustainable sinks N,ks
scale with volume V for the most efficient network
design?

» Or: what is the highest o for Ngjpxs oc V*?
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Geometric argument supply Networks

» Allometrically growing regions: Introduction

Optimal branching
Murray’s law

Murray meets Tokunaga

Single Source

Gex ment.

Q)

R

Distributed
Sources

L,

» Have d length scales which scale as

References

LW where vy o+ ... +yg=1

» For isometric growth, v; = 1/d.

» For allometric growth, we must have at least two of
the {v;} being different P 9
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Geometric argument

» Best and worst configurations (Banavar et al.)

b i
o
(]
» Rather obviously:

min Vi o Y distances from source to sinks.
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Minimal network volume:

Real supply networks are close to optimal:

() (©) (d)

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c¢) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

(2006) Gastner and Newman '°!: “Shape and efficiency in
spatial distribution networks”
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Supply Networks

Minimal network volume:

Add one more element:
» Vessel cross-sectional area may vary with distance
from the source.

» Flow rate increases as cross-sectional area G
decreases.

» e.g., a collection network may have vessels tapering
as they approach the central sink.

» Find that vessel volume v must scale with vessel
length ¢ to affect overall system scalings.

» Consider vessel radius r o (¢ + 1)~¢, tapering from
r = I'max Where ¢ > 0.

» Gives v o £172%¢if e < 1/2

» Gives v x 1 — ¢~ _, 1 forlarge Life > 1/2

» Previously, we looked at e = 0 only. P B

¥ VERMONT 10!
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Minimal network volume:

For 0 < e < 1/2, approximate network volume by integral
over region:

min Vnetcx/ p||X|[1—2€dx
Qq,0(V)

Insert question 1, assignment 3 (H)

o< pV 1+ max(1-2€) where ymax = max ;.
]
For e > 1/2, find simply that

min Vi o< pV

» So if supply lines can taper fast enough and without
limit, minimum network volume can be made
negligible.
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Geometric argument

BOrfid e /28

> | min Ve oc pV/1Hmax(1—2€)

» If scaling is isometric, we have ymax = 1/d:
min Vnet/iso X pv1+(172€)/d

» If scaling is allometric, we have ymax = Yano > 1/d:
and
MiN Vet atto pVH“’QE)%“o

» Isometrically growing volumes require less network
volume than allometrically growing volumes:
min Vnet/iso

: —0asV -
min Vnet/allo
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Geometric argument

Fore> 17/2;

> ’min Vs o /)V‘

» Network volume scaling is now independent of
overall shape scaling.

Limits to scaling

» Can argue that e must effectively be 0 for real
networks over large enough scales.

» Limit to how fast material can move, and how small
material packages can be.

» e.g., blood velocity and blood cell size.

Supply Networks
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BIOOd n etWO rkS Supply Networks

» Velocity at capillaries and aorta approximately
constant across body size'=*': ¢ = 0.

» Material costly = expect lower optimal bound of
Vit < pV(@+1)/d 10 be followed closely. Wit

» For cardiovascular networks, d = D = 3.

» Blood volume scales linearly with blood volume ''°!,
Vnet X V

» Sink density must .. decrease as volume increases:
poclml S

» Density of suppliable sinks decreases with organism
size.
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B I OOd n etWO rkS Supply Networks

» Then P, the rate of overall energy use in 2, can at
most scale with volume as

PxpVxpMx M(@=1)/d

» For d = 3 dimensional organisms, we have

P o M2/3

» Including other constraints may raise scaling
exponent to a higher, less efficient value.

» Exciting bonus: Scaling obtained by the supply
network story and the surface-area law only maich
for isometrically growing shapes.
4 [EEReR
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Recap:

» The exponent a = 2/3 works for all birds and
mammals up to 10-30 kg

» For mammals > 10-30 kg, maybe we have a new
scaling regime
» Economos: limb length break in scaling around 20 kg

» White and Seymour, 2005: unhappy with large
herbivore measurements. Find o ~ 0.686 + 0.014

Supply Networks
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River networks

\ /B il B

View river networks as collection networks.
Many sources and one sink.

€?

Assume p is constant over time and ¢ = 0:

Vit o< pV{+1)/d = constant x V3/2

Network volume grows faster than basin ‘volume’
(really area).

It's all okay:

Landscapes are d=2 surfaces living in D=3
dimension.

» Streams can grow not just in width but in depth...

If e > 0, Vi Will grow more slowly but 3/2 appears to
be confirmed from real data.

Supply Networks
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Supply Networks

Many sources, many sinks

How do we distribute sources?
» Focus on 2-d (results generalize to higher
dimensions)
» Sources = hospitals, post offices, pubs, ...

» Key problem: How do we cope with uneven
population densities?

» Obvious: if density is uniform then sources are best
distributed uniformly

» Which lattice is optimal? The hexagonal lattice
Q1: How big should the hexagons be?

» Q2: Given population density is uneven, what do we

do?

» We'll follow work by Stephan , Gastner and
Newman (2006) '/, Um et al. and work cited by %
them. P 18
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Optimal source allocation

Solidifying the basic problem

» Given a region with some population distribution p,
most likely uneven.
» Given resources to build and maintain N facilities.

» Q: How do we locate these N facilities so as to
minimize the average distance between an
individual’s residence and the nearest facility?
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Optimal source allocation

From Gastner and Newman (2006) |’/

» Approximately optimal location of 5000 facilities.

» Based on 2000 Census data.

» Simulated annealing + Voronoi tessellation.

Supply Networks

Introduction

Optimal branching
Murray’s law

Murray meets Tokunaga

Single Source
Geometric argument
Blood networks

River networks

Distributed
Sources

Facilty location
Size-density law
Cartograms

A reasonable derivation

Global redistribution
networks

Public versus Private

References

UNIVLRbI'IY | I
o VERMONT

D Qv 40 of 86


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Optimal source allocation

0.1

0.01

facility density D (in km2)

0.1 1 10 100 1000 10000

population density p (in km2)

From Gastner and Newman (2006) "/
» Optimal facility density D vs. population density p.
» Fitis D oc p968 with r> = 0.94.
» Looking good for a 2/3 power...
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Optimal source allocation

Size-density law:

>

DO(p2/3

» Why?
» Again: Different story to branching networks where
there was either one source or one sink.

» Now sources & sinks are distributed throughout
region...
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Optimal source allocation

» We first examine Stephan’s treatment (1977) "% 20!

» “Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries”
(Science, 1977)

» Zipf-like approach: invokes principle of minimal effort.

» Also known as the Homer principle.
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Optimal source allocation

» Consider a region of area A and population P with a

>

single functional center that everyone needs to
access every day.

Build up a general cost function based on time
expended to access and maintain center.

Write average travel distance to center as d and
assume average speed of travel is v.

Assume isometry: average travel distance d will be
on the length scale of the region which is ~ A'/?

Average time expended per person in accessing
facility is therefore

d/v=CcA?/v

where c is an unimportant shape factor.

Supply Networks

Size-density law
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Optimal source allocation

» Next assume facility requires regular maintenance
(person-hours per day)

» Call this quantity 7

» If burden of mainenance is shared then average cost
per person is 7/P where P = population.

» Replace P by pA where p is density.
» Total average time cost per person:

T =d/v+7/(pA) = gAV2 /v + 7/(pA).

» Now Minimize with respect to A...

Supply Networks

Size-density law
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Optimal source allocation

» Differentiating...

Blrae i 2

- <CA1/2/V+7'/(pA)>
R T
" SUAYE A2

» Rearrange:

» # facilities per unit area «
A71 o<p2/3

» Groovy...
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Optimal source allocation

An issue:

» Maintenance (7) is assumed to be independent of
population and area (P and A)
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Optimal source allocation

Stephan’s online book
“The Division of Territory in Society” is here (H).
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Cartograms

Standard world map:
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Cartograms

Diffusion-based cartograms:

'S

Idea of cartograms is to distort areas to more
accurately represent some local density p (e.qg.
population).

Many methods put forward—typically involve some
kind of physical analogy to spreading or repulsion.

Algorithm due to Gastner and Newman (2004) °! is
based on standard diffusion:

0

2 P

- —=0.
N oarrr
Allow density to diffuse and trace the movement of

individual elements and boundaries.

Diffusion is constrained by boundary condition of
surrounding area having density p.

Supply Networks
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Cartograms

Child mortality:
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Cartograms

Energy consumption:
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Cartograms

Gross domestic product:
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Cartograms

Spending on healthcare:
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Cartograms

People living with HIV:
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Cal”[og rams Supply Networks

Introduction

Single Source

» The preceding sampling of Gastner & Newman’s
cartograms lives here (). e

» A larger collection can be found at S
worldmapper.org (E).
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Size-density law

» Left: population density-equalized cartogram.
» Right: (population density)2/3-equalized cartogram.
» Facility density is uniform for p?/3 cartogram.

From Gastner and Newman (2006) |’!
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Size-density law

- - I i | 3 " | 1
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2 | ___ random population- ] ]
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From Gastner and Newman (2006) |’!
» Cartogram’s Voronoi cells are somewhat hexagonal.
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Size-density law Suppy Networks

Deriving the optimal source distribution: Introduction
Optimal branching

» Basic idea: Minimize the average distance from a

Murray meets Tokunaga

random individual to the nearest facility. "’ Siteney

> Assume given a fixed population density p definedon ...
a spatial region €.

Distributed
Sources

» Formally, we want to find the locations of n sources
{Xy,...,Xn} that minimizes the cost function S

Ed e / p(R) min ||% — %||d%.
Q ! Rofcroncos’

» Also known as the p-median problem.
» Not easy... in fact this one is an NP-hard problem. !

» Approximate solution originally due to
Gusein-Zade (9] U '('f\u\'hmrv |g|
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Supply Networks

Size-density law

Approximations:

» For a given set of source placements {Xi, ..., Xn},

the region 2 is divided up into , one
per source.
» Define A(X) as the area of the Voronoi cell containing
X.
» As per Stephan’s calculation, estimate typical Areasonabledervaton

distance from X to the nearest source (say /) as
GA(X)!/?

where c¢; is a shape factor for the ith Voronoi cell.
» Approximate ¢; as a constant c.
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Size-density law

Carrying on:

» The cost function is now
F = c/ p(X)A(X)"/2d% .

Q

» We also have that the constraint that Voronoi cells
divide up the overall area of Q: Y7, A(X)) = Aq.
» Sneakily turn this into an integral constraint:
dx fed -
a AR

» Within each cell, A(X) is constant.
» So... integral over each of the n cells equals 1.
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Size-density law
Now a Lagrange multiplier story:

» By varying {Xi, ..., X, }, minimize
G(A)=c¢ / p(X)AX)'/2d% —x <n— / [AGR)] d)?)
Q Q

the functional G(A).
» This gives

/ [Ep()?)A()?)—V? S [A()?)]‘ﬂ a0
Ql2
» Setting the integrand to be zilch, we have:

p(X) = 2xc7TA(X)~%/2,
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Size-density law
Now a Lagrange multiplier story:
» Rearranging, we have
A(X) = (2xc1)3/3p72/3,

» Finally, we indentify 1/A(X) as D(X), an
approximation of the local source density.
» Substituting D = 1/A, we have

o0 = (£

» Normalizing (or solving for \):

D()—(*) 258 [p(X)]2/3 x [p()‘(’)]2/3

" Tl (DR
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Supply Networks

Global redistribution networks
One more thing:

» How do we supply these facilities?
» How do we best redistribute mail? People?
» How do we get beer to the pubs?

» Gaster and Newman model: cost is a function of
basic maintenance and travel time:

Cmaint aF 'YCtravel-

Gilobal redistribution network:

» Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance /; and number of legs to journey:

(1 = 9)¢ji + 6(#hops).

» When 6 = 1, only number of hops matters. ; et
Q> 70 of 86
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Global redistribution networks

§=0.8
© Kansas City, MO @

Chicago,
!

”_Philadelphia,
PA

i\
Los Angeles.

From Gastner and Newman (2006) "/
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Public versus private facilities

Beyond minimizing distances:

» “Scaling laws between population and facility
densities” by Um et al., Proc. Natl. Acad. Sci.,
2009. [#4

» Um et al. find empirically and argue theoretically that
the connection between facility and population
density

D x p®
does not universally hold with o = 2/3.

» Two idealized limiting classes:

1. For-profit, commercial facilities: « = 1;
2. Pro-social, public facilities: « = 2/3.

» Um et al. investigate facility locations in the United

States and South Korea.
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Public versus private facilities: evidence

>
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» Left plot: ambulatory hospitals in the U.S.
» Right plot: public schools in the U.S.

» Note: break in scaling for public schools. Transition
from o~ 2/3to o = 1 around p ~ 100.
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Public versus private facilities: evidence

Us facility o (SE) R?
Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89
Accommodation 0.89(1) 0.70
Bank 0.88(1) 0.89
Gas station 0.86(1) 0.94
Death care 0.79(1) 0.80
* Fire station 0.78(3) 0.93
* Police station 0.71(6) 0.75
Public school 0.69(1) 0.87

SK facility a (SE) R?
Bank 1.18(2) 0.96
Parking place 1.13(2) 0.91
* Primary clinic 1.09(2) 1.00
* Hospital 0.96(5) 0.97
* University/college 0.93(9) 0.89
Market place 0.87(2) 0.90
* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93
* Public health center 0.09(5) 0.19

Rough transition

between public
and private at
a~0.8.

Note: * indicates

analysis is at
state/province

level; otherwise

county level.
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Public versus private facilities: evidence

schools in the U.S.; A, B: data; C, D: Voronoi diagram
from model simulation.
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Supply Networks

Public versus private facilities: the story
So what’s going on?

Introduction

» Social institutions seek to minimize distance of travel.  Optimal branching

Murray's law

» Commercial institutions seek to maximize the
AL Single Source
number of visitors. syt

ument

» Defns: For the ith facility and its Voronoi cell V;, ot

defil’le Distributed
Sources

» n; = population of the ith cell;

» (r;) = the average travel distance to the ith facility.
» s; = area of ith cell.

» Objective function to maximize for a facility (highly Publcvrsus Priate
ConStrUCted): Rcfcrcncoﬂs

Vi = n,'<r,'>ﬁ with 0 < ﬂ < 1.

» Limits:
» (= 0: purely commercial.
» (B =1: purely social. -

(o]
2
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Public versus private facilities: the story

» Proceeding as per the

Gastner-Newman-Gusein-Zade calculation, Um et al.

obtain:

e g

i Jolp(R)2/(3+2)d% o [p(X)]?/(P+2),

» For 8 =0, a = 1: commercial scaling is linear.
» For 5 =1, a« = 2/3: social scaling is sublinear.

> You can try this too: Insert question 3, assignment
4 (H) .
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