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Scale-free networks

» Networks with power-law degree distributions have
become known as scale-free networks.
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» Networks with power-law degree distributions have
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» Networks with power-law degree distributions have
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» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Px ~ k=7 for ‘large’ k
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Scale-free networks

» Networks with power-law degree distributions have
become known as scale-free networks.

» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Px ~ k=7 for ‘large’ k

» One of the seminal works in complex networks:
Laszlo Barabasi and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” [?!
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Scale-free networks

» Networks with power-law degree distributions have
become known as scale-free networks.

» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Px ~ k=7 for ‘large’ k

» One of the seminal works in complex networks:
Laszlo Barabasi and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” [?!

» Somewhat misleading nomenclature...
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» Scale-free networks are not fractal in any sense.
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Scale-free networks

» Scale-free networks are not fractal in any sense.

» Usually talking about networks whose links are
abstract, relational, informational, . .. (non-physical)
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» Usually talking about networks whose links are
abstract, relational, informational, . .. (non-physical)

» Primary example: hyperlink network of the Web

Scale-Free
Networks

Robustness

Redner &
Krapivisky’s model

Generalized model

References

) B O]
UNIVERSITY |§|
¥-¥ vervont 18]

Qv 50f57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Scale-free networks

» Scale-free networks are not fractal in any sense.

» Usually talking about networks whose links are
abstract, relational, informational, . .. (non-physical)

» Primary example: hyperlink network of the Web

» Much arguing about whether or networks are
‘scale-free’ or not. ..
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Scale-free networks

The big deal:

» We move beyond describing of networks to finding
mechanisms for why certain networks are the way
they are.
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The big deal:

» We move beyond describing of networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?
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Scale-free networks

The big deal:

» We move beyond describing of networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?

» Do the mechanism details matter?
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Heritage

Work that presaged scale-free networks

» 1924: G. Udny Yule °!:
# Species per Genus
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Work that presaged scale-free networks

» 1924: G. Udny Yule °!:
# Species per Genus

» 1926: Lotka [“l:
# Scientific papers per author
» 1953: Mandelbrot [°]):
Zipf’s law for word frequency through optimization
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Work that presaged scale-free networks

» 1924: G. Udny Yule I°!;
# Species per Genus
» 1926: Lotka [“l:
# Scientific papers per author
» 1953: Mandelbrot [°)):
Zipf’s law for word frequency through optimization
» 1955: Herbert Simon [& 191
Zipf’s law, city size, income, publications, and
species per genus
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Work that presaged scale-free networks
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1924: G. Udny Yule ®!:

# Species per Genus

1926: Lotka [*!:

# Scientific papers per author

1953: Mandelbrot ]):

Zipf’s law for word frequency through optimization
1955: Herbert Simon [& 191

Zipf’s law, city size, income, publications, and
species per genus

1965/1976: Derek de Solla Price © 7!
Network of Scientific Citations
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BA model

» Barabasi-Albert model = BA model.
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BA model

» Barabasi-Albert model = BA model.

» Key ingredients:
Growth and Preferential Attachment (PA).
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BA model

» Barabasi-Albert model = BA model.

» Key ingredients:
Growth and Preferential Attachment (PA).

» Step 1: start with mg disconnected nodes.
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» Barabasi-Albert model = BA model.

» Key ingredients:
Growth and Preferential Attachment (PA).
» Step 1: start with mg disconnected nodes.
» Step 2:
1. Growth—a new node appears at each time step
fi= 0415 2
2. Each new node makes m links to nodes already
present.
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Step 1: start with my disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
fi— ORI 00
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present.
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BA model

» Definition: Ak is the attachment kernel for a node
with degree k.
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BA model

» Definition: Ak is the attachment kernel for a node

with degree k.
» For the original model:

Ax =k
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BA model

» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:
A=k

» Definition: Pyuach(k, ) is the attachment probability.
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BA model

» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:

A

» Definition: Pywen(K, t) is the attachment probability.

» For the original model:

ki(t)

N
> k(o)

Pattach(node i, t) -
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» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:

A

» Definition: Pyuach(k, ) is the attachment probability.

» For the original model:

ki(t)

N
> k(o)

Pattach(node i, t) -

where N(t) = mg + t is # nodes at time ¢
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BA model

» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:
Ap =k

» Definition: Pyuach(k, ) is the attachment probability.
» For the original model:

- ki(t kit
Patiacn(node i, t) = N(Itg ) _ kmax(;)( )
3 I ()

where N(t) = mg + t is # nodes at time ¢
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BA model N

Analysis

» Definition: Ay is the attachment kernel foranode 00
with degree k.

» For the original model:
Ap =k

» Definition: Pywen(K, t) is the attachment probability.
» For the original model:

- ki(t kit
Patiacn(node i, t) = N(Itg ) _ kmax(;)( )
3 I ()

where N(t) = mg + t is # nodes at time ¢
and N(t) is # degree k nodes at time t.
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Approximate analysis

» When (N + 1)th node is added, the expected
increase in the degree of node i is

Kin

E(k,'7N+1 b k,'7N) ol mN_
i Ra(D)
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Approximate analysis

» When (N + 1)th node is added, the expected
increase in the degree of node i is

Kin

E(k,'7N+1 b k,'7N) ol mNi.
i Ra(D)

» Assumes probability of being connected to is small.
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» When (N + 1)th node is added, the expected :
increase in the degree of node i is bl
Kin
e
i Ra(D)

» Assumes probability of being connected to is small.

» Dispense with Expectation by assuming (hoping) that
over longer time frames, degree growth will be
smooth and stable.

E(kiny1 — Kin) = m

1he (o]
é' UNIVERSITY |§|
¥ VERMONT 10!

o> 13 of 57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Scale-Free

Approximate analysis Networks

» When (N + 1)th node is added, the expected
increase in the degree of node i is

Analysis

Kin
—r—
i Ra(D)

» Assumes probability of being connected to is small.

» Dispense with Expectation by assuming (hoping) that
over longer time frames, degree growth will be
smooth and stable.

E(kiny1 — Kin) = m

» Approximate K; 41 — ki n With d%ki,ti
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Approximate analysis Rewan

» When (N + 1)th node is added, the expected
increase in the degree of node i is

Analysis

Kin
—r—
i Ra(D)

» Assumes probability of being connected to is small.

» Dispense with Expectation by assuming (hoping) that
over longer time frames, degree growth will be
smooth and stable.

E(kiny1 — Kin) = m

» Approximate ki n1 — ki n With d%ki,ti

= ﬂ?ﬂ)’hkm’l‘y |8|
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Approximate analysis Nokis
Original model

» Deal with denominator: each added node brings m
new edges.
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Z k (t 2tm Rzaladnet’é
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Approximate analysis

» Deal with denominator: each added node brings m

new edges.
N(t)

Zk(r 2tm

» The node degree equation now simplifies:
d K ki(t)
— kit = M———
dt S )
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Approximate analysis

» Deal with denominator: each added node brings m

new edges.
N(t)

Zk(r 2tm

» The node degree equation now simplifies:

d ki(t) ki(t)
Ek”’ = mZN(t) ki(t) e m2ml‘
e
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Approximate analysis Netiorts
» Deal with denominator: each added node brings m
new edges. e
N(t)

Z ki(t) = 2tm

» The node degree equation now simplifies:

dipe ki(t) _mki(t) el

7kl,l’ =m N r Tl 7kl(t)
dt Zj:(? k](t) 2mt 2t
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Approximate analysis Netiorts
» Deal with denominator: each added node brings m
new edges. e
N(t)

Z ki(t) = 2tm

» The node degree equation now simplifies:

dipe ki(t) _mki(t) el

7kl,l’ =m N r Tl 7kl(t)
dt Zj:(? k](t) 2mt 2t

» Rearrange and solve:

dki(t)  dt
k(t)y — 2t
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Approximate analysis

» Deal with denominator: each added node brings m

new edges.

» The node degree equation now simplifies:

K)o
N(t S
K

it =m
dt >

N(t)

Zk

» Rearrange and solve:

dk;(t)
ki(t)

_dt
el

= 2tm

ki(t)

ik 2

= = e
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Approximate analysis

» Deal with denominator: each added node brings m

new edges.

» The node degree equation now simplifies:

K)o
N(t S
K

aki,t = mz

N(t)

Zk

» Rearrange and solve:

dk;(t)
ki(t)

» Nextfindg; ...

_dt
el

= 2tm

ki(t)

ik 2

= = e
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Approximate analysis

» Know ith node appears at time

Pl i—mg fori> mg
TR0 for i < mg

» So for i > my (exclude initial nodes), we must have

1/2
k,(t) =m < ) fort > ti,start-

ti,start
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Approximate analysis

» Know ith node appears at time

Pl i—mg fori> mg
Ge T ) fori < mg

» So for i > my (exclude initial nodes), we must have

1/2
k,(t) =m < ) fort > ti,start-

ti,start

» All node degrees grow as t'/2
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Approximate analysis

» Know ith node appears at time

Pl i—mg fori> mg
TR0 for i < mg

» So for i > my (exclude initial nodes), we must have

1/2
k,(t) =m < ) fort > ti,start-

ti,start

» All node degrees grow as '/? but later nodes have
larger t; yare Which flattens out growth curve.
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Approximate analysis Netiorts

Analysis

» Know ith node appears at time

Pl i—mg fori> mg
Ge T ) fori < mg

» So for i > my (exclude initial nodes), we must have

1/2
k,(t) =m < ) fort > ti,start-

ti,start

» All node degrees grow as '/? but later nodes have
larger t; yare Which flattens out growth curve.

» Early nodes do best (First-mover advantage).
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Approximate analysis Networks

Analysis

» m=3

> ti,start —

1,2,5, and 10.
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Degree distribution

» So what'’s the degree distribution at time t?
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Degree distribution

» So what'’s the degree distribution at time t?
» Use fact that birth time for added nodes is distributed
uniformly:

dt;
P(ti,start)dti,start == ﬁ
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Degree distribution

» So what'’s the degree distribution at time t?
» Use fact that birth time for added nodes is distributed

uniformly:
P( . )dt' g dti,start
I,start I,start — t+ Mo
» Using
b mPt
ki(t) =m = = ——.
I( ) (thstart) /,start k,(t)z
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Degree distribution N

» So what'’s the degree distribution at time t?
» Use fact that birth time for added nodes is distributed

Analysis

uniformly:
P(t' )dt' g dti,start
I,start I,start — e mo
» Using
1/2 m2t
ki(t) =m = = ——.
I( ) (t,'ﬁtan) 1,start k,(t)z

and by understanding that later arriving nodes have
lower degrees, we can say this:

met

Pr(k < k) = Pr(%; s > ?)
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Degree distribution

» Using the uniformity of start times:

Pr(k,- < k) = Pr(ti,start >

2
mzt)N — Tt
JeSx iy, t+m0'
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Degree distribution

» Using the uniformity of start times:

m2t — o
Pr(k,- < k) = Pr(ti,start > K2 ) = i ;;70 ]

» Differentiate to find Pr(k):

Pr(k) — %Pr(k,- < k)
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Degree distribution

» Using the uniformity of start times:

m2t
m2t e

~

Pr(k=th)i— Pl

» Differentiate to find Pr(k):

d 2mAt

Pr(k) = JPr(k; il — e

kZ)_ t+m0'
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Degree distribution

» Using the uniformity of start times:

m2t
m2t e

~

Pr(k=th)i— Pl

» Differentiate to find Pr(k):

d 2mAt

Pr(k) = JPr(k; il — e

~2mPk=2 as m — oo.

kZ)_ t+m0'
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Degree distribution

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
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Degree distribution

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.
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Degree distribution

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.

» Range true more generally for events with size
distributions that have power-law tails.
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Degree distribution

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.

» Range true more generally for events with size
distributions that have power-law tails.

» 2 < ~ < 3: finite mean and ‘infinite’ variance
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Degree distribution Netiorts

Analysis

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.

» Range true more generally for events with size
distributions that have power-law tails.

» 2 < v < 3: finite mean and ‘infinite’ variance

» In practice, v < 3 means variance is governed by
upper cutoff.
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Degree distribution Netiorts

Analysis

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.

» Range true more generally for events with size
distributions that have power-law tails.

» 2 < v < 3: finite mean and ‘infinite’ variance

» In practice, v < 3 means variance is governed by
upper cutoff.

» ~ > 3: finite mean and variance
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Degree distribution N

Analysis

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.

» Range true more generally for events with size
distributions that have power-law tails.

» 2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

» In practice, v < 3 means variance is governed by
upper cutoff.

» ~ > 3: finite mean and variance
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Degree distribution N

Analysis

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.

» Range true more generally for events with size
distributions that have power-law tails.

» 2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

» In practice, v < 3 means variance is governed by
upper cutoff.

» ~ > 3: finite mean and variance (mild)

1he (o]
ﬁ' UNIVERSITY |§|
¥ VERMONT 10!

o> 19 of 57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Examples

WWW

WWW

Movie actors
Words (synonyms)

v =~ 2.1 for in-degree

~ ~ 2.45 for out-degree
~y~23

v ~2.8
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Scale-Free

Examples Networks

Analysis

WWW ~ ~ 2.1 for in-degree
WWW  ~ ~ 2.45 for out-degree
Movie actors v ~2.3
Words (synonyms) ~ ~2.8

The Internets is a different business...
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Scale-Free
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From Barabasi and Albert’s original paper
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

slopes (A) Yacror = 2.3, (B) Yyw = 2.1 and (C) Vs = b
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Things to do and questions

» Vary attachment kernel.
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Things to do and questions

» Vary attachment kernel.
» Vary mechanisms:

Scale-Free
Networks

Original model

Robus!

Redner &
Krapivisky’s model
Generalized model
Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

References

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

D Qv 220f57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Things to do and questions

» Vary attachment kernel.
» Vary mechanisms:
1. Add edge deletion
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Things to do and questions

» Vary attachment kernel.
» Vary mechanisms:

1. Add edge deletion
2. Add node deletion

Scale-Free
Networks

Original model

Introduction

inear attachment

References

) B O]
UNIVERSITY |gl
¥-¥ vervont 18]

D Qv 220f57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Things to do and questions

» Vary attachment kernel.
» Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Scale-Free
Networks

Original model

Introduction

Redner &
Krapivisky’s model

neralized model

References

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

D Qv 220f57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Things to do and questions

» Vary attachment kernel.
» Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

» Deal with directed versus undirected networks.
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Things to do and questions

» Vary attachment kernel.
» Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

» Deal with directed versus undirected networks.

» Important Q.: Are there distinct universality classes
for these networks?
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Things to do and questions Nokis

Analysis

v

Vary attachment kernel.
Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality classes
for these networks?

Q.: How does changing the model affect v?

v

v

v

v
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Things to do and questions Netiorts

Analysis

v

Vary attachment kernel.
Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

v

Deal with directed versus undirected networks.

v

v

Important Q.: Are there distinct universality classes
for these networks?

Q.: How does changing the model affect v?
Q.: Do we need preferential attachment and growth?

v

v
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Scale-Free

Things to do and questions N

Analysis

» Vary attachment kernel.
» Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

» Deal with directed versus undirected networks.

» Important Q.: Are there distinct universality classes
for these networks?

Q.: How does changing the model affect v?
Q.: Do we need preferential attachment and growth?
Q.: Do model details matter?

v

v

v
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Scale-Free

Things to do and questions N

Analysis

v

Vary attachment kernel.
Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

v

Deal with directed versus undirected networks.

v

v

Important Q.: Are there distinct universality classes
for these networks?

Q.: How does changing the model affect v?
Q.: Do we need preferential attachment and growth?
Q.: Do model details matter?

\ i S 0

The answer is (surprisingly) yes.
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Preferential attachment

» Let’s look at preferential attachment (PA) a little more
closely.
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Preferential attachment

» Let’s look at preferential attachment (PA) a little more
closely.

» PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.
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Preferential attachment

» Let’s look at preferential attachment (PA) a little more
closely.

» PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

» For example: If Py,ch(k) o< k, we need to determine
the constant of proportionality.
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Preferential attachment

» Let’s look at preferential attachment (PA) a little more
closely.

» PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

» For example: If Py,ch(k) o< k, we need to determine
the constant of proportionality.

» We need to know what everyone’s degree is...
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Scale-Free

Preferential attachment Moo

A more plausible mechanism

v

Let’s look at preferential attachment (PA) a little more
closely.

PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

For example: If Pycn(k) o< k, we need to determine
the constant of proportionality.

We need to know what everyone’s degree is...
PA is . an outrageous assumption of node capability.
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v
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Preferential attachment

» Let’s look at preferential attachment (PA) a little more
closely.

» PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

» For example: If Py,ch(k) o< k, we need to determine
the constant of proportionality.

» We need to know what everyone’s degree is...
» PAis .. an outrageous assumption of node capability.
» But a very simple mechanism saves the day. . .
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Preferential attachment through randomness

» Instead of attaching preferentially, allow new nodes
to attach randomly.
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Preferential attachment through randomness

» Instead of attaching preferentially, allow new nodes
to attach randomly.

» Now add an exira step: new nodes then connect to
some of their friends’ friends.
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Preferential attachment through randomness

» Instead of attaching preferentially, allow new nodes
to attach randomly.

» Now add an exira step: new nodes then connect to
some of their friends’ friends.

» Can also do this at random.
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Preferential attachment through randomness

» Instead of attaching preferentially, allow new nodes
to attach randomly.

» Now add an exira step: new nodes then connect to
some of their friends’ friends.

» Can also do this at random.
» We know that friends are weird...
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Scale-Free

Preferential attachment through randomness e

Original model

v

Instead of attaching preferentially, allow new nodes Lot
to attach randomly. Wl
Krapivisky’s model

Now add an extra step: new nodes then connect to
some of their friends’ friends.

Can also do this at random.
We know that friends are weird...

Assuming the existing network is random, we know
probability of a random friend having degree k is

v
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v
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Preferential attachment through randomness

v

Instead of attaching preferentially, allow new nodes
to attach randomly.

Now add an extra step: new nodes then connect to
some of their friends’ friends.

Can also do this at random.
We know that friends are weird...

Assuming the existing network is random, we know
probability of a random friend having degree k is

v

v

v

v

Qk 0.8 kPk

» So rich-gets-richer scheme can now be seen to work
in a natural way.
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Robustness

» We've looked at some aspects of contagion on
scale-free networks:
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Robustness

» We've looked at some aspects of contagion on
scale-free networks:
1. Facilitate disease-like spreading.
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Robustness

» We've looked at some aspects of contagion on
scale-free networks:
1. Facilitate disease-like spreading.
2. Inhibit threshold-like spreading.
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Robustness

» We've looked at some aspects of contagion on
scale-free networks:

1. Facilitate disease-like spreading.
2. Inhibit threshold-like spreading.

» Another simple story concerns system robustness.
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Robustness

» We've looked at some aspects of contagion on
scale-free networks:

1. Facilitate disease-like spreading.
2. Inhibit threshold-like spreading.

» Another simple story concerns system robustness.

» Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks” !
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Robustness
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Robustness

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.
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Robustness

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.
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Robustness

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.
» But: next issue is whether hubs are vulnerable or not.
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Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or not.

Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

Most connected nodes are either:
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All very reasonable: Hubs are a big deal.
But: next issue is whether hubs are vulnerable or not.

Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)
Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’

v

v

v

v

1he (o]
ﬁ' UNIVERSITY |§|
¥ VERMONT 10!

o> 300of 57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Robustness N
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Scale-free networks are thus robust to random g
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.
But: next issue is whether hubs are vulnerable or not.

Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.
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Robustness N

» Scale-free networks are thus robust to random Sk
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.

» But: next issue is whether hubs are vulnerable or not.

» Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

» Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

» Need to explore cost of various targeting schemes.
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Generalized model

Fooling with the mechanism:

» 2001: Redner & Krapivsky (RK) ! explored the
general attachment kernel:
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Generalized model

Fooling with the mechanism:

» 2001: Redner & Krapivsky (RK) ! explored the
general attachment kernel:

Pr(attach to node i) oc Ax = k/’

where Ak is the attachment kernel and v > 0.
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Generalized model

Fooling with the mechanism:

» 2001: Redner & Krapivsky (RK) ! explored the
general attachment kernel:

Pr(attach to node i) oc A = K/

where Ay is the attachment kernel and v > 0.

» RK also looked at changing the details of the
attachment kernel.
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Generalized model N

Original model

Introduction

Model details

Fooling with the mechanism:

» 2001: Redner & Krapivsky (RK) ! explored the
general attachment kernel:

Pr(attach to node i) oc A = K/

References

where Ay is the attachment kernel and v > 0.

» RK also looked at changing the details of the
attachment kernel.

» We'll follow RK’s approach using rate equations (H).
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Generalized model

» Here’s the set up:

dN

1
A [Ak—1Nik—1 — AxNi] + Ok

where Ny is the number of nodes of degree k.
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Generalized model

» Here’s the set up:

dNn, 1
(Ttk o [Ak—1Nk—1 — AxNi] + 91
where Ny is the number of nodes of degree k.

1. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.
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Generalized model

» Here’s the set up:

dN 1
(TtK i [Ak—1Nik—1 — AxNk] + k1

where Ny is the number of nodes of degree k.
1. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

2. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.
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Generalized model

» Here’s the set up:

dN 1
(TtK i [Ak—1Nik—1 — AxNk] + k1

where Ny is the number of nodes of degree k.
1. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.
2. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.
3. Detail: Ag =0
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Generalized model N

» Here’s the set up:

dNi

dt

1
= Z [Ak_1 Nk_1 ] Aka] G (5/(1 Generalized model

where Ny is the number of nodes of degree k.
1. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.
2. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.
3. Detail: Ap =0
4. One node is added per unit time.
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Generalized model N

» Here’s the set up:

dN 1
TtK == Z [Ak—1 Nk—1 = Aka] + (5/(1 Generalized model

where Ny is the number of nodes of degree k.

1. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

2. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.

3. Detail: Ap =0

4. One node is added per unit time.

5. Seed with some initial network
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Generalized model N

» Here’s the set up:

dN 1
TtK == Z [Ak—1 Nk—1 = Aka] + (5/(1 Generalized model

where Ny is the number of nodes of degree k.

1. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

2. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.

3. Detail: Ap =0

4. One node is added per unit time.

5. Seed with some initial network
(e.g., a connected pair)
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Generalized model

» In general, probability of attaching to a specific node
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Generalized model

» In general, probability of attaching to a specific node

of degree k at time t is

Pr(attach to node i) =

A(t)
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Generalized model

» In general, probability of attaching to a specific node
of degree k at time t is

: A
Pr(attach to node /) = m

where A(t) = > ¢ ANk (t).
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Generalized model

» In general, probability of attaching to a specific node
of degree k at time t is

: A
Pr(attach to node /) = m

where A(t) = > ¢ ANk (t).
» E.g., for BAmodel, A = k and A =37 ; kNk(1).
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Generalized model

» In general, probability of attaching to a specific node
of degree k at time t is

: A
Pr(attach to node /) = m

where A(t) = > ¢ ANk (t).
» E.g., for BAmodel, A = k and A =37 ; kNk(1).
» For Ax = k, we have

Scale-Free
Networks

Original model
Introductic

Model details

Redner &
Krapivisky’s model
seneralized model

References

) B (o]
UNIVERSITY |g|
F-¥ vervont 18]

va > 350f57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Generalized model

» In general, probability of attaching to a specific node
of degree k at time t is

; A
Pr(attach to node /) = A

where A(t) = > ¢ ANk (t).
» E.g., for BAmodel, A = k and A =37 ; kNk(1).
» For Ax = k, we have

At) =" K Ni(t)

k'=1
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Generalized model

» In general, probability of attaching to a specific node
of degree k at time t is

; A
Pr(attach to node /) = A

where A(t) = > ¢ ANk (t).
» E.g., for BAmodel, A = k and A =37 ; kNk(1).
» For Ax = k, we have

A(t) = i K'Ni (1) = 2t
k'=1
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Generalized model N

» In general, probability of attaching to a specific node
of degree k at time t is

; A
Pr(attach to node /) = A

where A(t) = > ¢ ANk (t).
» E.g., for BAmodel, A = k and A =37 ; kNk(1).
» For Ax = k, we have

At) = K'Ne(t) =2t
k=1
since one edge is being added per unit time.
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Generalized model N

» In general, probability of attaching to a specific node
of degree k at time t is

: A
Pr(attach to node /) = m

where A(t) = > ¢ ANk (t).
» E.g., for BAmodel, A = k and A =37 ; kNk(1).
» For Ax = k, we have

At) = K'Ne(t) =2t
K'=1
since one edge is being added per unit time.
» Detail: we are ignoring initial seed network’s edges.
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Generalized model

» So now
ﬂgﬁ = % [Ak—1Nk—1 — AxNk] + 6k
becomes
%lﬁ - 2lt [(k — 1)Nik—1 — kNk] + 0k
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Generalized model

» So now
ddl\;k = % [Ak—1Nk—1 — AxNk] + k1
becomes
e = 1k~ 1Nz — KN+ 8

» As for BA method, look for steady-state growing
solution:
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Generalized model

» So now
ddl\;k = % [Ak—1Nk—1 — AxNk] + k1
becomes
e = 1k~ 1Nz — KN+ 8

» As for BA method, look for steady-state growing
solution: Ny = nkt.
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Generalized model

» So now
ddl\;k = % [Ak—1Nk—1 — AxNk] + k1
becomes
e = 1k~ 1Nz — KN+ 8

» As for BA method, look for steady-state growing
solution: Ny = nkt.

» We replace dNi/dt with dnit/dt = ny.
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Generalized model N

» So now
ddl\;k = % [Ak—1Nk—1 — AxNk] + k1
becomes Anaysis
e = 1k~ 1Nz — KN+ 8

» As for BA method, look for steady-state growing
solution: Ny = nt.

» We replace dNi/dt with dnit/dt = ny.
» We arrive at a difference equation:

1
M = = [(k — 1)ng_1f — kngf] + 61
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Generalized model

» Rearrange and simply:

1 1
Nk = E(k - 1)nk_1 = §knk =+ 5k‘|
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Generalized model

» Rearrange and simply:

1 1
Nk = E(k - 1)nk_1 = §knk =+ 5k‘|

= (k+2)nk = (K — 1)Nk_1 + 201
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Generalized model

» Rearrange and simply:

1 1
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» Recall we used the normalization:
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A(t) = K'Ne(t) ~ 2t for large t.
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» We now have Universalty?

At) =" ApNp(t)
K'=1
where we only know the asymptotic behavior of Ay.
» We assume that A = ut

» We'll find u later and make sure that our assumption
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» Now we need to find p.

Scale-Free
Networks

Original model
Introduction

Model details
Analysis

A more plausible
mechanism

Robustness

Redner &
Krapivisky’s model
Generalized model
Analysis

Universalty?

Sublinear attachment
kernels

Superlinear attachment
kernels

References

) B3 0
L UNIVERSITY |g|
F-¥ vervont 18]

DA 45o0f 57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Universality?

» Now we need to find .
» Our assumption again: A = pt = Y2, Nk(t)Ak
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Universality?

» Now we need to find .
» Our assumption again: A = pt = Y2, Nk(t)Ak
» Since N = nkt, we have the simplification

= k=1 Ak
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» Now we need to find .
» Our assumption again: A = pt = Y2, Nk(t)Ak

» Since N = nkt, we have the simplification
= k=1 Ak
» Now subsitute in our expression for ny:
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» Now we need to find .
» Our assumption again: A = pt = Y2, Nk(t)Ak
» Since N = nkt, we have the simplification
= k=1 Ak
» Now subsitute in our expression for ny:
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» Now we need to find .
» Our assumption again: A = pt = Y2, Nk(t)Ak
» Since N = nkt, we have the simplification
= k=1 Ak
» Now subsitute in our expression for ny:
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» Now we need to find .
» Our assumption again: A = pt = Y2, Nk(t)Ak
» Since N = nkt, we have the simplification
= k=1 Ak
» Now subsitute in our expression for ny:

wE I

» Closed form expression for it

ﬁ
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Since Nk = nkt, we have the simplification
= k=1 Ak e
Now subsitute in our expression for ny:

() k
1= Z H

Closed form expression for it
We can solve for i in some cases.
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Universality? N

» Now we need to find .
» Our assumption again: A = pt = Y2, Nk(t)Ak
» Since N = nkt, we have the simplification
m = 22021 nkAk Universaliy?
» Now subsitute in our expression for ny:

() % k 1
=2 =4
k=1 %;’=1 L
» Closed form expression for .
» We can solve for 1 in some cases.

» Our assumption that A = ut is okay.
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» Amazingly, we can adjust A, and tune v to be
anywhere in [2, 00).
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» Amazingly, we can adjust A, and tune ~ to be
anywhere in [2, c0).
» ~ =2 is the lower limit since

o (0.0
p= ZAknk ~ ank
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must be finite.
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» Amazingly, we can adjust A, and tune ~ to be
anywhere in [2, c0).

» v = 2is the lower limit since

o (0.0
p= ZAknk ~ ank
k=1 k=1

must be finite.

» Let’s now look at a specific example of Ak to see this
range of ~ is possible.
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» Consider A1 = a and A, = k for k > 2.
» Find v = o + 1 by finding p.
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» Consider Ay = o and Ax = k for k > 2.

» Find v = p + 1 by finding .
» Expression for yu:
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» Consider A1 = o and Ax = k for k > 2.
» Find v = p + 1 by finding .
» Expression for yu:
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» Expression for yu:
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1++1+8a

plp—1)=2a=p= 5

» Since v = u+ 1, we have

<< co=2<5 < 6o
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plp—1)=2a=p= 5
» Since v = u+ 1, we have
<< co=2<5 < 6o

» Craziness...

1++1+8a
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Redner & Krapivisky’s model

Sublinear attachment kernels
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» Rich-get-somewhat-richer:

Ax ~ kK’ with0 < v < 1.
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» Rich-get-somewhat-richer:
Ak ~ k¥ with0 < v < 1.

» General finding by Krapivsky and Redner: °!

Ny ~ k—ue—c1k1*"+correction terms
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» Rich-get-somewhat-richer:
Ak ~ k¥ with0 < v < 1.
» General finding by Krapivsky and Redner: °!

My o k—ue—c1k1*”+correction terms

» Stretched exponentials (truncated power laws).
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Sublinear attachment kernels

» Rich-get-somewhat-richer:
Ac ~ kY with 0 < v < 1.
» General finding by Krapivsky and Redner: °!

My o k—Ve ¢ k1= 4correction terms

» Stretched exponentials (truncated power laws).
» aka Weibull distributions.
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Rich-get-somewhat-richer:
A~k with0 <v <1,

General finding by Krapivsky and Redner: °!
My o k—Ve ¢ k1= correction terms.
Stretched exponentials (truncated power laws).

aka Weibull distributions.
Universality: now details of kernel do not matter.
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v

Rich-get-somewhat-richer:

Al kewith s U= L

v

General finding by Krapivsky and Redner: Subinearatachment el
My o k—Ve ¢ k1= 4correction terms.
Stretched exponentials (truncated power laws).

aka Weibull distributions.
Universality: now details of kernel do not matter.
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Distribution of degree is universal providing v < 1.
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Details:
e FOrl 2 = dl
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Details:

e FOrl 2 = dl

i Kl—v_ol-v
ne~k7'e M( g )
»Fonkl /3 — Uil 2

1—v 2 ,1-2v
Ll T I ST
nk ~ k_l/e = E 2 1-2v

Scale-Free
Networks

Original model

Robus!

Redner &
Krapivisky’s model
Generalized model
Analysis

Universality?

Sublinear attachment kernels

kernels

References

) B O]
UNIVERSITY |g|
F-¥ vervont 18]

DA 52 of 57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Sublinear attachment kernels

Details:
e FOrl 2 = dl

Kl—v_ol-v
Ly

»Fonkl /3 — Uil 2

1—v 2  1—2v
i v oS 4
ng~ ke W= T

» Andfor 1/(r +1) <v < 1/r, we have r pieces in

exponential.
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Superlinear attachment kernels

» Rich-get-much-richer:

A ~ KV with v > 1.
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Superlinear attachment kernels

» Rich-get-much-richer:
Ak ~ K" withv > 1.

» Now a winner-take-all mechanism.

Scale-Free
Networks

Original model

Introduction

Model details

Redner &
Krapivisky’s model
Generalized model

Analysis

References

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

DA 54 of 57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Superlinear attachment kernels N

Original model

Introduction

» Rich-get-much-richer: Fl L

Generalized model

A ~ k¥ with v > 1.

» Now a winner-take-all mechanism.

» One single node ends up being connected to almost
all other nodes.

References

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

Qv 54 of 57


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Superlinear attachment kernels

» Rich-get-much-richer:
Ay ~ KV with v > 1.

» Now a winner-take-all mechanism.

» One single node ends up being connected to almost
all other nodes.

» For v > 2, all but a finite # of nodes connect to one
node.
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