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Scale-free networks

» Networks with power-law degree distributions have
become known as scale-free networks.

» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Py ~ k™7 for ‘large’ k

» One of the seminal works in complex networks:
Laszlo Barabdsi and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” [?]

» Somewhat misleading nomenclature...
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Scale-free networks

v

Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ... (non-physical)

Primary example: hyperlink network of the Web

Much arguing about whether or networks are
‘scale-free’ or not. ..
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Random networks: largest components
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Scale-free networks

The big deal:

» We move beyond describing of networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?

» Do the mechanism details matter?
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Heritage

Work that presaged scale-free networks

» 1924: G. Udny Yule®!:
# Species per Genus
» 1926: Lotka [*):
# Scientific papers per author
» 1953: Mandelbrot °]):
Zipf's law for word frequency through optimization
» 1955: Herbert Simon & 191;
Zipf’s law, city size, income, publications, and
species per genus
» 1965/1976: Derek de Solla Price [ 71
Network of Scientific Citations

BA model
» Barabasi-Albert model = BA model.
» Key ingredients:
Growth and Preferential Attachment (PA).
» Step 1: start with my disconnected nodes.
» Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,....
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of connecting to
ith node is  k;.

» In essence, we have a rich-gets-richer scheme.

BA model

» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:
A=k

» Definition: Pucn(K, t) is the attachment probability.
» For the original model:

Panach(node 1, t) = N(’tg ) — kmﬂx(;)( )
St k() X kNk(1)

where N(t) = mg + t is # nodes at time ¢
and N (t) is # degree k nodes at time t.
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Approximate analysis

» When (N + 1)th node is added, the expected
increase in the degree of node i is

Kin
S k(1)

» Assumes probability of being connected to is small.

E(k/7N+1 — k,"N) ~m

» Dispense with Expectation by assuming (hoping) that

over longer time frames, degree growth will be
smooth and stable.

» Approximate ki ni1 — Kin With $£K; ;-
d ki(t)

ik/‘t — mNi
e k()

where t = N(t) — mo.

Approximate analysis

» Deal with denominator: each added node brings m
new edges.
N(t)

2> ki) =2tm
j=1

» The node degree equation now simplifies:

d Ki(t) k() _ 1
fk[’t = mNi =m = fk,'(t)
dt SN0y 2mt 2t

» Rearrange and solve:
N
=~ = | k() = t'2
k() 2t L =a

» Nextfindg;...

Approximate analysis

» Know ith node appears at time

P i—my fori>my
fstrt = 0 fori < my

» So for i > mg (exclude initial nodes), we must have

1/2
k,(t) =m ( ) fort > ti,slarl-

B start

» All node degrees grow as t'/2 but later nodes have
larger t; e Which flattens out growth curve.

» Early nodes do best (First-mover advantage).
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Degree distribution

Original model

» So what'’s the degree distribution at time t?

» Use fact that birth time for added nodes is distributed
uniformly:

:
Redner &

P(t dt - dfi,smn Kreapnwewrsky's model

(i,slan) istart — Generalized model

t+ mg

» Using

References

1/2 m2t
) = tiﬁstart =

k,(t) = m( W

ti ,start

and by understanding that later arriving nodes have
lower degrees, we can say this:

mPt
Pl'(k,' < k) = Pr(ti,start > F)
1 0}
Ao B
Q¢ 17 of 57
Degree distribution Nomorke
Original model
» Using the uniformity of start times:
m2t _ LZI
Pr(ki < k) = Pr(tisan > ?) ~ ﬁ-
» Differentiate to find Pr(k):
References
d 2mPt
Pr(k) = —Pr(ki< k) = ———=
(k) = G Prtk < K) = e

~2mPk—%as m— oo.
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Degree distribution

v

We thus have a very specific prediction of

Pr(k) ~ k— with 5 = 3.

v

v

Typical for real networks: 2 < v < 3.
Range true more generally for events with size

distributions that have power-law tails.

v

v

upper cutoff.

v

Examples

WwWw

Www

Movie actors
Words (synonyms)

2 < ~ < 3: finite mean and ‘infinite’ variance (wild)
In practice, v < 3 means variance is governed by

~ > 3: finite mean and variance (mild)

~v ~ 2.1 for in-degree

~ ~ 2.45 for out-degree
y~23

y~28

The Internets is a different business...

Real data

From Barabasi and Albert’s original paper [°:

107 ;
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
= 2.3, (B) Yyww = 2.1 and (C) Ypower = 4

slopes (A)

Vactor
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Things to do and questions

» Vary attachment kernel.
» Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

» Deal with directed versus undirected networks.

» Important Q.: Are there distinct universality classes
for these networks?

» Q.: How does changing the model affect v?

» Q.: Do we need preferential attachment and growth?
» Q.: Do model details matter?

» The answer is (surprisingly) yes.

Preferential attachment

» Let’s look at preferential attachment (PA) a little more
closely.

» PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

» For example: If Pycn(k) o k, we need to determine
the constant of proportionality.

» We need to know what everyone’s degree is...
» PAis . an outrageous assumption of node capability.
» But a very simple mechanism saves the day. ..

Preferential attachment through randomness

» Instead of attaching preferentially, allow new nodes
to attach randomly.

» Now add an extra step: new nodes then connect to
some of their friends’ friends.

» Can also do this at random.
» We know that friends are weird...

» Assuming the existing network is random, we know
probability of a random friend having degree k is

Qx o kP

» So rich-gets-richer scheme can now be seen to work
in a natural way.
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Robustness

» We've looked at some aspects of contagion on
scale-free networks:

1. Facilitate disease-like spreading.
2. Inhibit threshold-like spreading.

» Another simple story concerns system robustness.

» Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks”["!

Robustness

» Standard random networks (Erdés-Rényi)
versus
Scale-free networks

b LE ] .,
._ e LY ..n
ki - .
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& s
ed N .
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.'O . ] . ....
L LY l..-t ot
Exponential Scale-free
from
Albert et al., 2000
Robustness
12 T
a E SF Fail
Tor o © Atack e ] » Plots of network
‘ o diameter as a function
1 of fraction of nodes
removed
4 L ” s .
oo 00 oot » Erdds-Rényi versus
e T T TS e L scale-free networks
15 ° o
memet o pop MW o » blue symbols =
O e ] ° random removal
15 F o0%°
sh? 1 |#en000000%00 » red symbols =
. | e ]  Fallre targeted removal
0.00 0.01 0.02 ’0.00 0.01 0.02 trom (mOSt Connected fiI’St)

Albert et al., 2000
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Robustness

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.

» But: next issue is whether hubs are vulnerable or not.

» Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

» Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

» Need to explore cost of various targeting schemes.

Generalized model

Fooling with the mechanism:

» 2001: Redner & Krapivsky (RK) ! explored the
general attachment kernel:

Pr(attach to node i) oc A = k7’

where A is the attachment kernel and v > 0.

» RK also looked at changing the details of the
attachment kernel.

» We'll follow RK’s approach using rate equations (H).

Generalized model

» Here’s the set up:

dN, 1
Ttk =2 [Ax—1Nk—1 — AkNk] + Ok

where Ny is the number of nodes of degree k.
1. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.
2. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.
. Detail: Ap =0
. One node is added per unit time.
. Seed with some initial network
(e.g., a connected pair)

g~ w
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Generalized model

» In general, probability of attaching to a specific node
of degree k at time t is

Pr(attach to node /) = %

where A(t) = > -5 AxNk(t).
» E.g., for BA model, Ay = k and A= >"32 ; kN(t).
» For Ax = k, we have

A(t) = i K N (1) = 2t
K'=1

since one edge is being added per unit time.
» Detail: we are ignoring initial seed network’s edges.

Generalized model

» So now
% = %[Ak—1Nk—1 — AkNi] + k1
becomes
A= 1k 10Nk — KNG+

» As for BA method, look for steady-state growing
solution: Ny = nit.

» We replace dNj/dt with dnyt/df = ny.
» We arrive at a difference equation:

ng = 217[(k — 1)1/ — knl] + 61

Generalized model

» Rearrange and simply:

1 1
ng = E(k — 1)nk,1 — éknk + 6/(1
= (k + 2)nk = (k — 1)nk_1 + 2041

» Two cases:

k=1:m =2/3sinceny =0
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Generalized model
» Now find ng:

(k-1)

pe o (k=1 (k-2)
k+2 7

k>1: =
> 1 k+2 k1

Nk—2
(k-1)(k-2)(k-3)
k+2 k+1 Kk 8

_(k=1)(k=2)(k=3)(k-4)
k12 k11 Kk k—1 k-

_ (k1) (k—2) (k—8) (k4] (k—5)---5A321

Kk~ (k—1)(k—2) - B7654"

k+2 k+1

6 - 4

TR Kk Dk ) T Rk (kT 2)

Universality?

v

As expected, we have the same result as for the BA
model:

Ni(t) = nk(t)t oc k=3 for large k.

» Now: what happens if we start playing around with

the attachment kernel Ac?
» Again, is the result v = 3 universal (5)?

» Natural modification: Ay = k¥ with v # 1.

» But we'll first explore a more subtle modification of
Ay made by Redner/Krapivsky [°!

» Keep Ay linear in k but tweak details.
» |dea: Relax from Ax = kto Ax ~ k as k — oo.

Universality?
» Recall we used the normalization:

A(t) =Y K'Ni(t)

k'=1

~ 2t for large t.

» We now have

A(t) = AuNe(t)

k'=1

where we only know the asymptotic behavior of Ag.

» We assume that A = ut

» We'll find u later and make sure that our assumption
is consistent.

» As before, also assume N (t) = nt.

~ k3
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Universality?
» For Ax = k we had

1
M= 5 [(k = 1)nk—1 — kng] + Oky
» This now becomes

1
Nk = m [Ak—1nKk—1 — AkNk] + 0k
= (Ak + )Nk = Ak—1Mk—1 + pox

» Again two cases:

Universality?
» Dealing with the k > 1 case:

A1 A1 1
aln B
w+ Ag A 1+ Aik

My = Nk—1

I
=

Universality?

» Time for pure excitement: Find asymptotic behavior
of nk given Ax — k as k — oc.

» For large k:

A

?\t
—.

+

ko
I35 =
Jj=1

_ﬁ A1 A2 k-1 }(/
I ACE I B GRS Ean I ()

r(k) V2rkkt1/2g=k

?\t

Aj 1

3>\t

1

-
I

“Tkrpr1) "~

o k—;1—1

» Since i depends on Ay, details matter...

A /27l'(k +p+ 1 )k+}4+1+1/29—(k+u+1)
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Universality?

» Now we need to find p.

» Our assumption again: A = ut = > 77 Ni(t)Ax

» Since N = ngt, we have the simplification
1=k McAk

» Now subsitute in our expression for ny:

0o k
1y =
» ;A/l;[ A

A
» Closed form expression for u.
» We can solve for i in some cases.
» Our assumption that A = ut is okay.

Universality?

» Amazingly, we can adjust A, and tune -y to be
anywhere in [2, 00).
» ~ = 2 is the lower limit since

oo o0
= ZAknk ~ Z kny
k=1 k=

must be finite.

» Let’s now look at a specific example of A, to see this

range of ~ is possible.

Universality?
» Consider Ay = aand Ay = k for k > 2.
» Find v = p+ 1 by finding 1.
» Expression for u:

NIt

L
k:1/:11 A
1 > ko
2l
1 i
1+ Al k=2 j=1 1+ A
o k
1 1 1
1 = > 11
i 7 i
T+4 1+A1k:2/:21+A/
LS
a since Ay = «
T+4 1+§k:2j:21 Aj
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Universality?
» Carrying on:

: > 11+
=
//{ /‘VK =2 +A/'
n_y w
a Z Fk+p+1)
» Now use result that[®!
MNa+2)

—~a+k)
ZI'(b+k) T (b—a-1r(b+1)

witha=1and b= p+1.

g - re)
B 11— D@+

M2+ u)

= pup—1)=2a

Universality?

1++v1+48a

pwp—1)=2a=p= 5

» Since v = u+ 1, we have
0<a<oo=2<y< o0

» Craziness...

Sublinear attachment kernels

» Rich-get-somewhat-richer:
Ak ~ K with0 < v < 1.
» General finding by Krapivsky and Redner: [°]

., 1—v :
N ~ k™ Ve cik +correction terms'

Stretched exponentials (truncated power laws).
aka Weibull distributions.

vV v vy

Universality: now details of kernel do not matter.
Distribution of degree is universal providing v < 1.
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