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Generating functions

I Idea: Given a sequence a0, a1, a2, . . . , associate
each element with a distinct function or other
mathematical object.

I Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:
I The generating function (g.f.) for a sequence {an} is

F (x) =
∞∑

n=0

anxn.

I Roughly: transforms a vector in R∞ into a function
defined on R1.

I Related to Fourier, Laplace, Mellin, . . .
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Simple example

Rolling dice:

I p(�)
k = Pr(throwing a k) = 1/6 where k = 1, 2, . . . , 6.

I

F (�)(x) =
6∑

k=1

pkxk =
1
6
(x + x2 + x3 + x4 + x5 + x6).

I We’ll come back to this simple example as we derive
various delicious properties of generating functions.
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Example
I Take a degree distribution with exponential decay:

Pk = ce−λk

where c = 1− e−λ.
I The generating function for this distribution is

F (x) =
∞∑

k=0

Pkxk =
∞∑

k=0

ce−λkxk =
c

1− xe−λ
.

I Notice that F (1) = c/(1− e−λ) = 1.
I For probability distributions, we must always have

F (1) = 1 since

F (1) =
∞∑

k=0

Pk1k =
∞∑

k=0

Pk = 1.
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Properties of generating functions
I Average degree:

〈k〉 =
∞∑

k=0

kPk =
∞∑

k=0

kPk xk−1

∣∣∣∣∣
x=1

=
d

dx
F (x)

∣∣∣∣
x=1

= F ′(1)

I In general, many calculations become simple, if a little
abstract.

I For our exponential example:

F ′(x) =
(1− e−λ)e−λ

(1− xe−λ)2 .

I So:

〈k〉 = F ′(1) =
e−λ

(1− e−λ)
.
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Properties of generating functions

Useful pieces for probability distributions:

I Normalization:
F (1) = 1

I First moment:
〈k〉 = F ′(1)

I Higher moments:

〈kn〉 =

(
x

d
dx

)n

F (x)

∣∣∣∣
x=1

I k th element of sequence (general):

Pk =
1
k !

dk

dxk F (x)

∣∣∣∣
x=0
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Edge-degree distribution

I Recall our condition for a giant component:

〈k〉R =
〈k2〉 − 〈k〉

〈k〉
> 1.

I Let’s rëexpress our condition in terms of generating
functions.

I We first need the g.f. for Rk .
I We’ll now use this notation:

FP(x) is the g.f. for Pk .
FR(x) is the g.f. for Rk .

I Condition in terms of g.f. is:

〈k〉R = F ′
R(1) > 1.

I Now find how FR is related to FP . . .
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〈k〉R =
〈k2〉 − 〈k〉

〈k〉
> 1.

I Let’s rëexpress our condition in terms of generating
functions.

I We first need the g.f. for Rk .
I We’ll now use this notation:

FP(x) is the g.f. for Pk .
FR(x) is the g.f. for Rk .

I Condition in terms of g.f. is:

〈k〉R = F ′
R(1) > 1.

I Now find how FR is related to FP . . .
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Edge-degree distribution
I We have

FR(x) =
∞∑

k=0

Rkxk =
∞∑

k=0

(k + 1)Pk+1

〈k〉
xk .

Shift index to j = k + 1 and pull out 1
〈k〉 :

FR(x) =
1
〈k〉

∞∑
j=1

jPjx j−1 =
1
〈k〉

∞∑
j=1

Pj
d

dx
x j

=
1
〈k〉

d
dx

∞∑
j=1

Pjx j =
1
〈k〉

d
dx

(FP(x)− P0) =
1
〈k〉

F ′
P(x).

Finally, since 〈k〉 = F ′
P(1),

FR(x) =
F ′

P(x)

F ′
P(1)
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Edge-degree distribution

I Recall giant component condition is
〈k〉R = F ′

R(1) > 1.
I Since we have FR(x) = F ′

P(x)/F ′
P(1),

F ′
R(x) =

F ′′
P(x)

F ′
P(1).

I Setting x = 1, our condition becomes

F ′′
P(1)

F ′
P(1)

> 1
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Size distributions

To figure out the size of the largest component (S1), we
need more resolution on component sizes.

Definitions:
I πn = probability that a random node belongs to a

finite component of size n < ∞.
I ρn = probability a random link leads to a finite

subcomponent of size n < ∞.

Local-global connection:

Pk , Rk ⇔ πn, ρn

neighbors ⇔ components
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Size distributions
G.f.’s for component size distributions:

I

Fπ(x) =
∞∑

n=0

πnxn and Fρ(x) =
∞∑

n=0

ρnxn

The largest component:

I Subtle key: Fπ(1) is the probability that a node
belongs to a finite component.

I Therefore: S1 = 1− Fπ(1).

Our mission, which we accept:

I Find the four generating functions

FP , FR, Fπ, and Fρ.
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Useful results we’ll need for g.f.’s

Sneaky Result 1:

I Consider two random variables U and V whose
values may be 0, 1, 2, . . .

I Write probability distributions as Uk and Vk and g.f.’s
as FU and FV .

I SR1: If a third random variable is defined as

W =
U∑

i=1

V (i) with each V (i) d
= V

then
FW (x) = FU (FV (x))
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Proof of SR1:
Write probability that variable W has value k as Wk .

Wk =
∞∑

j=0

Uj × Pr(sum of j draws of variable V = k )

=
∞∑

j=0

Uj
∑

{i1,i2,...,ij}|
i1+i2+...+ij=k

Vi1Vi2 · · ·Vij

∴ FW (x) =
∞∑

k=0

Wkxk =
∞∑

k=0

∞∑
j=0

Uj
∑

{i1,i2,...,ij}|
i1+i2+...+ij=k

Vi1Vi2 · · ·Vij x
k

=
∞∑

j=0

Uj

∞∑
k=0

∑
{i1,i2,...,ij}|

i1+i2+...+ij=k

Vi1x i1Vi2x i2 · · ·Vij x
ij
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Proof of SR1:

With some concentration, observe:

FW (x) =
∞∑

j=0

Uj

∞∑
k=0

∑
{i1,i2,...,ij}|

i1+i2+...+ij=k

Vi1x i1Vi2x i2 · · ·Vij x
ij

︸ ︷︷ ︸
xk piece of

(∑∞
i ′=0 Vi ′x i ′

)j

=
∞∑

j=0

Uj (FV (x))j

= FU (FV (x))X
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Useful results we’ll need for g.f.’s
Sneaky Result 2:

I Start with a random variable U with distribution Uk
(k = 0, 1, 2, . . . )

I SR2: If a second random variable is defined as

V = U + 1 then FV (x) = xFU(x)

I Reason: Vk = Uk−1 for k ≥ 1 and V0 = 0.
I

∴ FV (x) =
∞∑

k=0

Vkxk =
∞∑

k=1

Uk−1xk

= x
∞∑

j=0

Ujx j = xFU(x).X
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Useful results we’ll need for g.f.’s

Generalization of SR2:
I (1) If V = U + i then

FV (x) = x iFU(x).

I (2) If V = U − i then

FV (x) = x−iFU(x)

= x−i
∞∑

k=0

Ukxk
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Connecting generating functions

I Goal: figure out forms of the component generating
functions, Fπ and Fρ.

I πn = probability that a random node belongs to a
finite component of size n

=
∞∑

k=0

Pk × Pr
(

sum of sizes of subcomponents
at end of k random links = n − 1

)

I

Therefore: Fπ(x) = x︸︷︷︸
SR2

FP (Fρ(x))︸ ︷︷ ︸
SR1

I Extra factor of x accounts for random node itself.
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Connecting generating functions

I Goal: figure out forms of the component generating
functions, Fπ and Fρ.

I πn = probability that a random node belongs to a
finite component of size n

=
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Connecting generating functions

I ρn = probability that a random link leads to a finite
subcomponent of size n.

I Invoke one step of recursion: ρn = probability that in
following a random edge, the outgoing edges of the
node reached lead to finite subcomponents of
combined size n − 1,

=
∞∑

k=0

Rk × Pr
(

sum of sizes of subcomponents
at end of k random links = n − 1

)

I

Therefore: Fρ(x) = x︸︷︷︸
SR2

FR (Fρ(x))︸ ︷︷ ︸
SR1

I Again, extra factor of x accounts for random node
itself.
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Connecting generating functions

I We now have two functional equations connecting
our generating functions:

Fπ(x) = xFP (Fρ(x)) and Fρ(x) = xFR (Fρ(x))

I Taking stock: We know FP(x) and
FR(x) = F ′

P(x)/F ′
P(1).

I We first untangle the second equation to find Fρ

I We can do this because it only involves Fρ and FR.
I The first equation then immediately gives us Fπ in

terms of Fρ and FR.
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Component sizes

I Remembering vaguely what we are doing:

Finding Fπ to obtain the fractional size of the largest
component S1 = 1− Fπ(1).

I Set x = 1 in our two equations:

Fπ(1) = FP (Fρ(1)) and Fρ(1) = FR (Fρ(1))

I Solve second equation numerically for Fρ(1).
I Plug Fρ(1) into first equation to obtain Fπ(1).
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Component sizes

Example: Standard random graphs.
I We can show FP(x) = e−〈k〉(1−x)

∴ FR(x) = F ′
P(x)/F ′

P(1) = e−〈k〉(1−x)/e−〈k〉(1−x ′)|x ′=1

= e−〈k〉(1−x) = FP(x) ...aha!

I RHS’s of our two equations are the same.
I So Fπ(x) = Fρ(x) = xFR(Fρ(x)) = xFR(Fπ(x))

I Why our dirty (but wrong) trick worked earlier...
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Component sizes
I We are down to

Fπ(x) = xFR(Fπ(x)) and FR(x) = e−〈k〉(1−x).
I

∴ Fπ(x) = xe−〈k〉(1−Fπ(x))

I We’re first after S1 = 1− Fπ(1) so set x = 1 and
replace Fπ(1) by 1− S1:

1− S1 = e−〈k〉S1

Or: 〈k〉 =
1

S1
ln

1
1− S1

I Just as we found with our dirty trick . . .
I Again, we (usually) have to resort to numerics . . .
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Average component size

I Next: find average size of finite components 〈n〉.
I Using standard G.F. result: 〈n〉 = F ′

π(1).

I Try to avoid finding Fπ(x)...
I Starting from Fπ(x) = xFP (Fρ(x)), we differentiate:

F ′
π(x) = FP (Fρ(x)) + xF ′

ρ(x)F ′
P (Fρ(x))

I While Fρ(x) = xFR (Fρ(x)) gives

F ′
ρ(x) = FR (Fρ(x)) + xF ′

ρ(x)F ′
R (Fρ(x))

I Now set x = 1 in both equations.
I We solve the second equation for F ′

ρ(1) (we must
already have Fρ(1)).

I Plug F ′
ρ(1) and Fρ(1) into first equation to find F ′

π(1).

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Generating
Functions

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

31 of 35

Average component size

I Next: find average size of finite components 〈n〉.
I Using standard G.F. result: 〈n〉 = F ′

π(1).

I Try to avoid finding Fπ(x)...
I Starting from Fπ(x) = xFP (Fρ(x)), we differentiate:

F ′
π(x) = FP (Fρ(x)) + xF ′

ρ(x)F ′
P (Fρ(x))

I While Fρ(x) = xFR (Fρ(x)) gives

F ′
ρ(x) = FR (Fρ(x)) + xF ′

ρ(x)F ′
R (Fρ(x))

I Now set x = 1 in both equations.
I We solve the second equation for F ′

ρ(1) (we must
already have Fρ(1)).

I Plug F ′
ρ(1) and Fρ(1) into first equation to find F ′

π(1).

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Generating
Functions

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

31 of 35

Average component size

I Next: find average size of finite components 〈n〉.
I Using standard G.F. result: 〈n〉 = F ′

π(1).

I Try to avoid finding Fπ(x)...
I Starting from Fπ(x) = xFP (Fρ(x)), we differentiate:

F ′
π(x) = FP (Fρ(x)) + xF ′

ρ(x)F ′
P (Fρ(x))

I While Fρ(x) = xFR (Fρ(x)) gives

F ′
ρ(x) = FR (Fρ(x)) + xF ′

ρ(x)F ′
R (Fρ(x))

I Now set x = 1 in both equations.
I We solve the second equation for F ′

ρ(1) (we must
already have Fρ(1)).

I Plug F ′
ρ(1) and Fρ(1) into first equation to find F ′

π(1).

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Generating
Functions

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

31 of 35

Average component size

I Next: find average size of finite components 〈n〉.
I Using standard G.F. result: 〈n〉 = F ′

π(1).

I Try to avoid finding Fπ(x)...
I Starting from Fπ(x) = xFP (Fρ(x)), we differentiate:

F ′
π(x) = FP (Fρ(x)) + xF ′

ρ(x)F ′
P (Fρ(x))

I While Fρ(x) = xFR (Fρ(x)) gives

F ′
ρ(x) = FR (Fρ(x)) + xF ′

ρ(x)F ′
R (Fρ(x))

I Now set x = 1 in both equations.
I We solve the second equation for F ′

ρ(1) (we must
already have Fρ(1)).

I Plug F ′
ρ(1) and Fρ(1) into first equation to find F ′

π(1).

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Generating
Functions

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

31 of 35

Average component size

I Next: find average size of finite components 〈n〉.
I Using standard G.F. result: 〈n〉 = F ′

π(1).

I Try to avoid finding Fπ(x)...
I Starting from Fπ(x) = xFP (Fρ(x)), we differentiate:

F ′
π(x) = FP (Fρ(x)) + xF ′

ρ(x)F ′
P (Fρ(x))

I While Fρ(x) = xFR (Fρ(x)) gives

F ′
ρ(x) = FR (Fρ(x)) + xF ′

ρ(x)F ′
R (Fρ(x))

I Now set x = 1 in both equations.
I We solve the second equation for F ′

ρ(1) (we must
already have Fρ(1)).

I Plug F ′
ρ(1) and Fρ(1) into first equation to find F ′

π(1).

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Generating
Functions

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

31 of 35

Average component size

I Next: find average size of finite components 〈n〉.
I Using standard G.F. result: 〈n〉 = F ′

π(1).

I Try to avoid finding Fπ(x)...
I Starting from Fπ(x) = xFP (Fρ(x)), we differentiate:

F ′
π(x) = FP (Fρ(x)) + xF ′

ρ(x)F ′
P (Fρ(x))

I While Fρ(x) = xFR (Fρ(x)) gives

F ′
ρ(x) = FR (Fρ(x)) + xF ′

ρ(x)F ′
R (Fρ(x))

I Now set x = 1 in both equations.
I We solve the second equation for F ′

ρ(1) (we must
already have Fρ(1)).

I Plug F ′
ρ(1) and Fρ(1) into first equation to find F ′

π(1).

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Generating
Functions

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

31 of 35

Average component size

I Next: find average size of finite components 〈n〉.
I Using standard G.F. result: 〈n〉 = F ′

π(1).

I Try to avoid finding Fπ(x)...
I Starting from Fπ(x) = xFP (Fρ(x)), we differentiate:

F ′
π(x) = FP (Fρ(x)) + xF ′

ρ(x)F ′
P (Fρ(x))

I While Fρ(x) = xFR (Fρ(x)) gives

F ′
ρ(x) = FR (Fρ(x)) + xF ′

ρ(x)F ′
R (Fρ(x))

I Now set x = 1 in both equations.
I We solve the second equation for F ′

ρ(1) (we must
already have Fρ(1)).

I Plug F ′
ρ(1) and Fρ(1) into first equation to find F ′

π(1).

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Generating
Functions

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

31 of 35

Average component size

I Next: find average size of finite components 〈n〉.
I Using standard G.F. result: 〈n〉 = F ′

π(1).

I Try to avoid finding Fπ(x)...
I Starting from Fπ(x) = xFP (Fρ(x)), we differentiate:

F ′
π(x) = FP (Fρ(x)) + xF ′

ρ(x)F ′
P (Fρ(x))

I While Fρ(x) = xFR (Fρ(x)) gives

F ′
ρ(x) = FR (Fρ(x)) + xF ′

ρ(x)F ′
R (Fρ(x))

I Now set x = 1 in both equations.
I We solve the second equation for F ′

ρ(1) (we must
already have Fρ(1)).

I Plug F ′
ρ(1) and Fρ(1) into first equation to find F ′

π(1).

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Generating
Functions

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

32 of 35

Average component size
Example: Standard random graphs.

I Use fact that FP = FR and Fπ = Fρ.
I Two differentiated equations reduce to only one:

F ′
π(x) = FP (Fπ(x)) + xF ′

π(x)F ′
P (Fπ(x))

Rearrange: F ′
π(x) =

FP (Fπ(x))

1− xF ′
P (Fπ(x))

I Simplify denominator using F ′
P(x) = 〈k〉FP(x)

I Replace FP(Fπ(x)) using Fπ(x) = xFP(Fπ(x)).
I Set x = 1 and replace Fπ(1) with 1− S1.

End result: 〈n〉 = F ′
π(1) =

(1− S1)

1− 〈k〉(1− S1)
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I Our result for standard random networks:

〈n〉 = F ′
π(1) =

(1− S1)

1− 〈k〉(1− S1)

I Recall that 〈k〉 = 1 is the critical value of average
degree for standard random networks.

I Look at what happens when we increase 〈k〉 to 1
from below.

I We have S1 = 0 for all 〈k〉 < 1 so

〈n〉 =
1

1− 〈k〉

I This blows up as 〈k〉 → 1.
I Reason: we have a power law distribution of

component sizes at 〈k〉 = 1.
I Typical critical point behavior....
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I Limits of 〈k〉 = 0 and ∞ make sense for

〈n〉 = F ′
π(1) =

(1− S1)

1− 〈k〉(1− S1)

I As 〈k〉 → 0, S1 = 0, and 〈n〉 → 1.
I All nodes are isolated.
I As 〈k〉 → ∞, S1 → 1 and 〈n〉 → 0.
I No nodes are outside of the giant component.

Extra on largest component size:

I For 〈k〉 = 1, S1 ∼ N2/3.
I For 〈k〉 < 1, S1 ∼ log N.
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