Generating Functions for Random
Networks

Complex Networks
CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

é UNIVERSITY c‘;\?.

Y VERMONT e

||@ ¢

Licensed under the Creative Comm ibution-N

Outline

, VACC

ike 3.0 License.

Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size

References

Generating functions

» |dea: Given a sequence ay, as, a», . . . , associate
each element with a distinct function or other
mathematical object.

» Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:

» The generating function (g.f.) for a sequence {an} is

o0
= anx".
n=0

» Roughly: transforms a vector in R* into a function
defined on R'.

» Related to Fourier, Laplace, Mellin, ...
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Simple example

Rolling dice:

> p,((D) = Pr(throwing a k) =1/6 where k =1,2,...,6.

>

O(x) = Zpkx

» We’'ll come back to this simple example as we derive
various delicious properties of generating functions.

Example
» Take a degree distribution with exponential decay:

Py = ce

where c=1— e,
» The generating function for this distribution is

F(x) = 2 Piexk = Z ce Mxk = = T ():(e—

» Notice that F(1) = ¢c/(1 — ™) = 1.
» For probability distributions, we must always have
F(1) =1 since

F(1):§:Pk1k:§:Pk=1.
k=0 k=0

Properties of generating functions

> Average degree:

:iikﬂgzﬁikﬂx“1
k=0 k=0

x=1

d
= aF(x)

x=1

» In general, many calculations become simple, if a little
abstract.

» For our exponential example:

! (1 _e_>\)e_A
FOO ="
» So: \
iy €
k) =F (=

x+x +x3 4+ x* + x5 4+ x8).
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Properties of generating functions

Useful pieces for probability distributions:

» Normalization:
» First moment:

» Higher moments:

(kM) = (x%) ' F(x)

x=1
> kth element of sequence (general):
1 d
(e I

Edge-degree distribution

» Recall our condition for a giant component:

» Let’s réexpress our condition in terms of generating

functions.
We first need the g.f. for Ry.
We’ll now use this notation:

Fp(x) is the g.f. for Pg.
Fr(x) is the g.f. for Ry.

Condition in terms of g.f. is:

vy

v

(k) = Fa(1) > 1.

v

Now find how Fg is related to Fp. ..

Edge-degree distribution

» We have
Falx) = 3 Ao = Y- (e
k=0 =0

Shift index to j = k + 1 and pull out <17>

[e%e]

Fal) - C@Z/P/W iy 2 P
=1
dxz = ey (0 = PO = il
Finally, since (k) = F5(1),
Fp(x)
FR(X) = FIZ(1)
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Edge-degree distribution

» Recall giant component condition is
(K)r = Fg(1) > 1.
» Since we have Fr(x) = Fp(x)/Fp(1),

FA)

A0 =F0),

» Setting x = 1, our condition becomes

FAC)

D

Size distributions

To figure out the size of the largest component (Sy), we

need more resolution on component sizes.
Definitions:

» 7, = probability that a random node belongs to a
finite component of size n < co.

» pp = probability a random link leads to a finite
subcomponent of size n < co.

Local-global connection:

Py, Bk < mn, pn

neighbors < components

Size distributions
G.f’s for component size distributions:

>

Zw,,x and F,( anx
n=0

The largest component:

» Subtle key: F(1) is the probability that a node
belongs to a finite component.

» Therefore: Sy =1 — F(1).
Our mission, which we accept:
» Find the four generating functions

Fp, FH, Fﬂ-, and Fp.
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Useful results we’ll need for g.f.’s

Sneaky Result 1:

» Consider two random variables U and V whose
values may be 0,1,2,...

» Write probability distributions as Uk and Vi and g.f.’s
as Fy and Fy,.

» SR1: If a third random variable is defined as

U
w =" v with each v) £ v

i=1

then

[Fw(x) = Fu(Fv(x)]

Proof of SR1:
Write probability that variable W has value k as W.

Wy = Z U; x Pr(sum of j draws of variable V = k)
j=0

o0

= Z Y Z Vi Vip -V
j=0 {ig iy}

itio .. +i=k

oo o0 oo
SR =Y Wt =33y Y
k=0 k=0 j=0 {ig gy} |
i+t =k

ViV, - VixX

U

o] [ee]

i i ii
=2UY T v
j =0 {ijsigseif}|
fi+ip+...+jj=k

Proof of SR1:

With some concentration, observe:

oo

FW(X):ZU/Z >

o0
/=0 k=0 {ig.iz,-.ij}|
i1+ip .. A=k

VI'1 xH Vl-zx’Z . Vl-jx’/

N
xk piece of (fo’zo Vixi )
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Useful results we’ll need for g.f.’s
Sneaky Result 2:

» Start with a random variable U with distribution Uy
(k=0,1,2,...)
» SR2: If a second random variable is defined as

V=U+1 then | Fy(x) = xFy(x)

» Reason: Vg = Ux_q fork > 1and Vy =0.
| 4

S Fu(x) = i Viexk = i Uy_1x*

k=0 =1

=xY_Ux = xFy(x).v
=0

Useful results we'll need for g.f’s

Generalization of SR2:
» (1) If V=U+ithen

Fy(x) = X'Fy(x).
> (2) If V= U—ithen

Fu(x) = x""Fy(x)

o0
=x7" " Uk
k=0

Connecting generating functions

» Goal: figure out forms of the component generating

functions, F and F,.

» 7, = probability that a random node belongs to a
finite component of size n

_ i p, x pr( SUm of sizes of subcomponents
- k at end of k random links = n — 1

Therefore: | Fr(x) = _X_Fp (Fy(X))

» Extra factor of x accounts for random node itself.

)
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Connecting generating functions

> pp = probability that a random link leads to a finite
subcomponent of size n.

» Invoke one step of recursion: p, = probability that in
following a random edge, the outgoing edges of the
node reached lead to finite subcomponents of
combined size n — 1,

- i R, x pr( SUm of sizes of subcomponents
n pard k at end of k random links = n— 1

Therefore: | Fy(x) = _x_Fr(F,(x))

» Again, extra factor of x accounts for random node
itself.

Connecting generating functions

» We now have two functional equations connecting
our generating functions:

Fr(x) = xFp (Fy(x)) and  F,(x) = xFg (F,(x))

v

Taking stock: We know Fp(x) and

Fr(x) = Fp(x)/Fp(1).

We first untangle the second equation to find F,
We can do this because it only involves F, and Fg.

The first equation then immediately gives us F; in
terms of F, and Fp.

v

v

v

Component sizes

» Remembering vaguely what we are doing:

Finding F; to obtain the fractional size of the largest
component Sy =1 — F(1).
» Set x = 1in our two equations:

F=(1) = Fp(F,(1)) and F,(1) = Fr(F,(1))

» Solve second equation numerically for F,(1).
» Plug F,(1) into first equation to obtain Fr(1).
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Component sizes

Example: Standard random graphs.
» We can show Fp(x) = e~k(1-x)

< Fa(x) = Fp(x)/Fp(1) = e 00X g 000-X)
=e W0 = Fp(x) ..ahal

» RHS’s of our two equations are the same.
> So Fr(x) = Fu(x) = xFr(F,(x)) = xFr(Fx (X))
» Why our dirty (but wrong) trick worked earlier...

Component sizes

» We are down to
Fr(X) = xFr(Fx(x)) and Fa(x) = e~ R(1-x),
| 4
cFR(x) = xe— (K (1=Fx(x))

» Wer're first after Sy =1 — F,(1) soset x =1 and

replace F-(1) by 1 — S;:
N

1-8 =e (WS
5 og
1 i 0.6}
Or: (k) = ——1In
< > 81 1— S1 0.4}
02
0 1 2 3 4

kO
» Just as we found with our dirty trick ...
» Again, we (usually) have to resort to numerics . ..

Average component size

Next: find average size of finite components (n).
Using standard G.F. result: (n) = F.(1).

Try to avoid finding Fr(x)...

Starting from Fr(x) = xFp (F,(x)), we differentiate:

vV vy vy

Fr(x) = Fp (Fp(x)) + XFj(x)Fp (F,(x))
» While F,(x) = xFgr (F,(x)) gives
Fi(x) = Fr(F,(x)) + xF,(x)Fg (F,(x))

» Now set x = 1 in both equations.

» We solve the second equation for F/(1) (we must
already have F,(1)).

» Plug F/(1) and F,(1) into first equation to find F/(1).
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Average component size Fenctons. References | Fincians.
Generating Generating
F Funcf

Example: Standard random graphs.
» Use fact that Fp = Fg and F,, = F,.
» Two differentiated equations reduce to only one:

Fr(x) = Fp (Fz(x)) + xF(x)Fp (Fx(x))

Rearrange: F.(x) = %

» Simplify denominator using Fp(x) = (k) Fp(x)
» Replace Fp(Fr(x)) using Fr(x) = xFp(Fx(x)).
» Set x =1 and replace F,(1) with 1 — S;.
1-%)
Endresult: (n)=F.(1) = +— o~
Tk =5) iz B (e
“va 320f35 a > 350f35
Average component size Fenctons”
» Our result for standard random networks: Foncions.
1-8)
ny = FL(1)= —(1=S)
e I

» Recall that (k) = 1 is the critical value of average
degree for standard random networks.

» Look at what happens when we increase (k) to 1
from below.

» We have S; =0 for all (k) <1 so

» This blows up as (k) — 1.
» Reason: we have a power law distribution of
component sizes at (k) = 1. trmm Bl

. . . . o VERMONT
» Typical critical point behavior.... e 330135

Average component size Fenctons.”
Generating
Functions

» Limits of (k) = 0 and co make sense for

! (1_8)
<”>=F7r(1)=w11_s1)

References
As (k) — 0, Sy =0,and (n) — 1.
All nodes are isolated.
As (k) — o, Sy — 1and (n) — 0.
No nodes are outside of the giant component.

vV v vy

Extra on largest component size:
» For (k) =1, Sy ~ N?/3,
» For (k) <1, Sy ~logN.
iz B
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