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Generating functions Functons”
Generating

Functions
Defin

» |dea: Given a sequence agp, a1, a, . . ., associate

each element with a distinct function or other
mathematical object.

» Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements. References

Definition:

» The generating function (g.f.) for a sequence {an} is

Eo— N ard:
n=0

» Roughly: transforms a vector in R into a function
defined on R'.

» Related to Fourier, Laplace, Mellin, ... P
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Simple example Generatng

Functions

Generating
Functions

Definitions

Rolling dice:
> pi) = Pr(throwing a k) = 1/6 where k =1,2,...,6. e
>
6
EEIG) = Ypexic— ;(x+ XE e
k=1

» We’'ll come back to this simple example as we derive
various delicious properties of generating functions.
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Example Generating

Functions

» Take a degree distribution with exponential decay:

Definitions

P cea

where c=1— e
» The generating function for this distribution is

o (0.0 3 C
E(x)— 5 Poa— DE copiin = e
k=0 k=0

» Notice that F(1) = ¢/(1 — e™*) = 1.

» For probability distributions, we must always have
F(1) = 1 since

00 (o]
R e e
e k=0 P B
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Properties of generating functions

» Average degree:

» In general, many calculations become simple, if a little

abstract.

» For our exponential example:

» So:

ey i Ko — i KPpx G
k=0 k=0

e e 2

PO ="
/ En

=g

x=
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Properties of generating functions

Useful pieces for probability distributions:

» Normalization:
Fah) =1

» First moment:
(k) = F'(1)

» Higher moments:

(e= <x£(>n F(x)

X=i
» kth element of sequence (general):
Toed”
Pk = HdWF(X) e
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Edge-degree distribution

» Recall our condition for a giant component:

v

\oA/

v

v

Let’s réexpress our condition in terms of generating

functions.

(k)r =

(K?) — (k)

(k)

We first need the g.f. for Ry.
We’ll now use this notation:

Fp(x) is the g.f. for Py.
Fr(x) is the g.f. for R.

Condition in terms of g.f. is:

Now find how Fg is related to Fp...

(k)m = Fp(1) > 1.

L
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Edge-degree distribution Fifalate:
Generating

> We have Functions

ZRKX _Z”&%Pkﬂ ke

k=0

Shift index to j = k + 1 and pull out

References
S io:jp.xl—1 i L io: p.ixj
W e

fdi i d :
> de;P/Xj = @de(Fp(x)— Po) = wFP(X).

Finally, since (k) = Fp(1),

F' (1 ) '('J“\uwkm'v |2|
(7 F-¥ vervont 18]
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Edge-degree distribution

» Recall giant component condition is

(k)p = Fg(1) > 1.

» Since we have Fgr(x) = Fp(x)/Fp(1),

FR(x)

» Setting x = 1, our condition becomes

_ Fp(x)
FL(1).

FA()
F(i)

> 1
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Size distributions Generating

Functions

Generating
Functions

To figure out the size of the largest component (S;), we el
need more resolution on component sizes.

Definitions:

» 7, = probability that a random node belongs to a
finite component of size n < cc.

» pp = probability a random link leads to a finite
subcomponent of size n < .

References

Local-global connection:

PkaRk <:>7Tnapn

neighbors < components
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Size distributions
G.f.’s for component size distributions:

>

Fr(x) =Y mnx"and Fp(x) = pnx"
n=0 n=0
The largest component:

» Subtle key: Fr(1) is the probability that a node
belongs to a finite component.

» Therefore: Sy =1 — F(1).

Our mission, which we accept:

» Find the four generating functions

Fp, FR, F7r, and Fp.

Generating
Functions

Generating

Functions
Defi
Bas

References

) B O]
UNIVERSITY |g|
F-¥ vervont 18]

Qv 16 of 35


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Useful results we’ll need for g.f.’s

Sneaky Result 1:

» Consider two random variables U and V whose

values may be 0,1,2, ...

» Write probability distributions as Uy and Vj and g.f’s

as Fy and Fy.

» SR1: If a third random variable is defined as

then

U
w =" v with each v 4y
i=1

| Fw(x) = Fu (Fv(x))]
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Proof of SR1:

Write probability that variable W has value k as W.

Wy = Z U; x Pr(sum of j draws of variable V = k)

j=0

:ZU/’ Z Vi, Vi, -V,
j=0

{iq 550}
Iy +o+-...+lj=k

o G ST Wi SRS ELIGE SN e
k=0

k=0 j=0 Lt s
iy +ip+-...Fij=k
(0.) 0.0
i : ARV IR VARV VARV
=> U3 3 Yk
=0 k=0 {ig,ip,-.,ij}|

it i+ A=k
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Proof of SR1:

With some concentration, observe:

ZU S Y VixVxko Vi

A k=0 firsias }|
ittig+.. —H,—k

xk piece of (ZV ,Xi’>j

( Virx! ) = (Fv(x)Y
=04
j=0

= Fy(Fv(x)) v
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Useful results we'll need for g.f.’s Gererstig

Functions

Sneaky Result o Generating

Functions

Definitions

» Start with a random variable U with distribution Uy
(ki=0l2 oY)

» SR2: If a second random variable is defined as

References

V=U+1 then |Fy(x) = xFy(x)]

» Reason: Vi = Ux_q1 fork > 1and Vy = 0.
>

Fv(X) = Z Vka = Z Uk_1Xk
k=0 kel

o0
SISl )
s P
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Useful results we'll need for g.f.’s

Generalization of SR2:
» (1) If V=U+ithen

Fv(x) = x'Fy(x).
» (2) If V= U — ithen

== Eola)

o0
=x Z Uix”
k=0
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Connecting generating functions Functons”

» Goal: figure out forms of the component generating
functions, F; and F,.

» 1, = probability that a random node belongs to a iy
finite component of size n

L) i P, x pr( SUM of sizes of subcomponents
a0 e K at end of k random links = n — 1

Thesetore: | Fa(xi=" i Fpl(F 06

» Extra factor of x accounts for random node itself.
The B AEIO)
Al @
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Connecting generating functions Functons”

> pp = probability that a random link leads to a finite
subcomponent of size n.

» Invoke one step of recursion: p, = probability that in i
following a random edge, the outgoing edges of the Congennt
node reached lead to finite subcomponents of
combined size n — 1,

e i R, x pr( SUM of sizes of subcomponents
i poar A at end of k random links = n — 1

>
Thelsere: =5 (O —""4x: Eo(i= (X))
S R A
» Again, extra factor of x accounts for random node P B
o VERMONT 1O
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Connecting generating functions Functons”
Generating
Functions

Definitions
B

v

We now have two functional equations connecting
our generating functions:

References

Fr(x) = xFp (Fy(x)) and F,(x) = xFgr (Fy(x))

v

Taking stock: We know Fp(x) and

Fa(x) = Fp(x)/Fp(1)-

We first untangle the second equation to find F,
We can do this because it only involves F, and Fg.

The first equation then immediately gives us F; in
terms of F, and Fg.

v

v

v
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Component sizes

» Remembering vaguely what we are doing:

Finding F; to obtain the fractional size of the largest
component Sy =1 — F(1).
» Set x = 1 in our two equations:

F=(1) = Fp(F,(1)) and F,(1) = Fa(F,(1))

» Solve second equation numerically for F,(1).
» Plug F,(1) into first equation to obtain F.(1).
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Component sizes

Example: Standard random graphs.
» We can show Fp(x) = e—(k(1-x)

- Fr(x) = Fp(x)/Fp(1) = e=((1-0) /g=(0(1=x))

» RHS’s of our two equations are the same.
> S0 Fr(x) = Fp(x) = XFr(F,(x)) = XFr(Fx(x))
» Why our dirty (but wrong) trick worked earlier...

/:1
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Generating

Component sizes Fifetans

» We are down to
F..(x) = XFg(F(x)) and Fr(x) = e=k(1-x),
>
FW(X) B Xei<k>(17Fﬂ'(X)) Size of the Giant

» We're first after Sy =1 — F;(1) soset x =1 and
replace F.(1) by 1 — S;:

1 = 81 = e_<k>81 1

1 1 0.6)

Or: (k) = 5 In e o i

» Just as we found with our dirty trick . .. B B

o VERMONT Q!
» Again, we (usually) have to resort to numerics . . . e
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Average component size Fifalate:
» Next: find average size of finite components (n).
» Using standard G.F. result: (n) = F.(1).
» Try to avoid finding Fx(x)...
» Starting from F,(x) = xFp (F,(x)), we differentiate: S v

Fr(x) = Fp (Fo(x)) + xF(X)Fp (Fy(x))
» While F,(x) = xFr (F,(x)) gives
Fo(x) = Fr (Fp(x)) + XF,(x)F (Fp(x))

» Now set x = 1 in both equations.

» We solve the second equation for F,(1) (we must
already have F,(1)).

» Plug £/ (1) and F,(1) into first equation to find F;(1). P 9
o VERMONT 1O
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Average component size
Example: Standard random graphs.
» Use factthat Fp = Frand F = F,.
» Two differentiated equations reduce to only one:

Fr(x) = Fp (Fr(x)) + XFr(X) Fp (Fx (X))

Rearrange:  F7(x) = _F)P;/E'Z?gr)()x))

» Simplify denominator using Fp(x) = (k) Fp(x)
» Replace Fp(F:(x)) using Fr(x) = xFp(Fz(X)).
» Set x =1 and replace F.(1) with 1 — S;.

(1-51)
(oS

™

End result: (n) = F, (1) = e

Generating
Functions
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Average component size Functons.
» Our result for standard random networks:
1-5)
phl 1 A B ( L
e s ey
» Recall that (k) = 1 is the critical value of average Auersge Companent e

degree for standard random networks.

» Look at what happens when we increase (k) to 1
from below.

» We have S; =0 forall (k) <1 so

» This blows up as (k) — 1.
» Reason: we have a power law distribution of
component sizes at (k) = 1. 4 e

. g . £ o VERMONT 10!
» Typical critical point behavior.... SN
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Average component size

» Limits of (k) = 0 and oo make sense for

R e
WSy

» As (k) —» 0,S; =0,and (n) — 1.

» All nodes are isolated.

» As (k) — 00, Sy — 1and (n) — 0.

» No nodes are outside of the giant component.

Extra on largest component size:

» For (k) =1, S; ~ N?/3.
» For (k) <1, Sy ~logN.
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