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Random networks

Pure, abstract random networks:

I Consider set of all networks with N labelled nodes
and m edges.

I Standard random network =
one randomly chosen network from this set.

I To be clear: each network is equally probable.
I Sometimes equiprobability is a good assumption, but

it is always an assumption.
I Known as Erdős-Rényi random networks or ER

graphs.
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Random network generator for N = 3:

I Get your own exciting generator here (�).
I As N ↗, our polyhedral die rapidly becomes a ball...
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Random networks—basic features:

I Number of possible edges:

0 ≤ m ≤
(

N
2

)
=

N(N − 1)

2

I Limit of m = 0: empty graph.
I Limit of m =

(N
2

)
: complete or fully-connected graph.

I Number of possible networks with N labelled nodes:

2(N
2) ∼ e

ln 2
2 N2

.

I Given m edges, there are
((N

2)
m

)
different possible

networks.
I Crazy factorial explosion for 1 � m �

(N
2

)
.

I Real world: links are usually costly so real networks
are almost always sparse.
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Random networks

How to build standard random networks:
I Given N and m.
I Two probablistic methods (we’ll see a third later on)

1. Connect each of the
(N

2

)
pairs with appropriate

probability p.
I Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

I Algorithm: Randomly choose a pair of nodes i and j ,
i 6= j , and connect if unconnected; repeat until all m
edges are allocated.

I Best for adding relatively small numbers of links
(most cases).

I 1 and 2 are effectively equivalent for large N.
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Random networks
A few more things:

I For method 1, # links is probablistic:

〈m〉 = p
(

N
2

)
= p

1
2

N(N − 1)

I So the expected or average degree is

〈k〉 =
2 〈m〉

N

=
2
N

p
1
2

N(N − 1) =
�2

��N
p

1
�2

��N(N − 1) = p(N − 1).

I Which is what it should be...
I If we keep 〈k〉 constant then p ∝ 1/N → 0 as

N →∞.
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Random networks: examples for N=500

m = 100
〈k〉 = 0.4

m = 260
〈k〉 = 1.04

m = 200
〈k〉 = 0.8

m = 280
〈k〉 = 1.12

m = 230
〈k〉 = 0.92

m = 300
〈k〉 = 1.2

m = 240
〈k〉 = 0.96

m = 500
〈k〉 = 2

m = 250
〈k〉 = 1

m = 1000
〈k〉 = 4
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Random networks: largest components

m = 100
〈k〉 = 0.4

m = 260
〈k〉 = 1.04

m = 200
〈k〉 = 0.8

m = 280
〈k〉 = 1.12

m = 230
〈k〉 = 0.92

m = 300
〈k〉 = 1.2

m = 240
〈k〉 = 0.96

m = 500
〈k〉 = 2

m = 250
〈k〉 = 1

m = 1000
〈k〉 = 4
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Random networks: examples for N=500

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1
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Random networks: largest components

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1
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Clustering in random networks:
I For method 1, what is the clustering coefficient for a

finite network?
I Consider triangle/triple clustering coefficient: [1]

C2 =
3×#triangles

#triples

I Recall: C2 = probability that
two friends of a node are also
friends.

I Or: C2 = probability that a
triple is part of a triangle.

I For standard random
networks, we have simply that

C2 = p.
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Other ways to compute clustering:

I Expected number of triples in entire network:

1
2

N(N − 1)(N − 2)p2

(Double counting dealt with by 1
2 .)

I Expected number of triangles in entire network:

1
6

N(N − 1)(N − 2)p3

(Over-counting dealt with by 1
6 .)

I

C2 =
3×#triangles

#triples
=

3× 1
6N(N − 1)(N − 2)p3

1
2N(N − 1)(N − 2)p2

= p.
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Other ways to compute clustering:

I Or: take any three nodes, call them a, b, and c.
I Triple a-b-c centered at b occurs with probability

p2 × (1− p) + p2 × p = p2.
I Triangle occurs with probability p3.
I Therefore,

C2 =
p3

p2 = p.
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Clustering in random networks:

I So for large random networks
(N →∞), clustering drops to
zero.

I Key structural feature of
random networks is that they
locally look like
pure branching networks

I No small loops.
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Random networks
Degree distribution:

I Recall Pk = probability that a randomly selected
node has degree k .

I Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

I Now consider one node: there are ‘N − 1 choose k ’
ways the node can be connected to k of the other
N − 1 nodes.

I Each connection occurs with probability p, each
non-connection with probability (1− p).

I Therefore have a binomial distribution:

P(k ; p, N) =

(
N − 1

k

)
pk (1− p)N−1−k .
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Random networks

Limiting form of P(k ; p, N):

I Our degree distribution:
P(k ; p, N) =

(N−1
k

)
pk (1− p)N−1−k .

I What happens as N →∞?
I We must end up with the normal distribution right?
I If p is fixed, then we would end up with a Gaussian

with average degree 〈k〉 ' pN →∞.
I But we want to keep 〈k〉 fixed...
I So examine limit of P(k ; p, N) when p → 0 and

N →∞ with 〈k〉 = p(N − 1) = constant.
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Limiting form of P(k ; p, N):

I Substitute p = 〈k〉
N−1 into P(k ; p, N) and hold k fixed:

P(k ; p, N) =

(
N − 1

k

) (
〈k〉

N − 1

)k (
1− 〈k〉

N − 1

)N−1−k

=
(N − 1)!

k !(N − 1− k)!

〈k〉k

(N − 1)k

(
1− 〈k〉

N − 1

)N−1−k

=
(N − 1)(N − 2) · · · (N − k)

k !

〈k〉k

(N − 1)k

(
1− 〈k〉

N − 1

)N−1−k

' ��Nk (1− ��
1
N ) · · · (1− ��

k
N )

k !��Nk

〈k〉k

(1− ��
1
N )k

(
1− 〈k〉

N − 1

)N−1−k
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Limiting form of P(k ; p, N):

I We are now here:

P(k ; p, N) ' 〈k〉k

k !

(
1− 〈k〉

N − 1

)N−1−k

I Now use the excellent result:

lim
n→∞

(
1 +

x
n

)n
= ex .

(Use l’Hôpital’s rule to prove.)

I Identifying n = N − 1 and x = −〈k〉:

P(k ; 〈k〉) ' 〈k〉k

k !
e−〈k〉

(
1− 〈k〉

N − 1

)−k

→ 〈k〉k

k !
e−〈k〉

I This is a Poisson distribution (�) with mean 〈k〉.
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Poisson basics:

P(k ;λ) =
λk

k !
e−λ I λ > 0

I k = 0, 1, 2, 3, . . .

I Classic use: probability
that an event occurs k
times in a given time
period, given an
average rate of
occurrence.

I e.g.:
phone calls/minute,
horse-kick deaths.

I ‘Law of small numbers’
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Poisson basics:

I Normalization: we must have
∞∑

k=0

P(k ; 〈k〉) = 1

I Checking:

∞∑
k=0

P(k ; 〈k〉) =
∞∑

k=0

〈k〉k

k !
e−〈k〉

= e−〈k〉
∞∑

k=0

〈k〉k

k !

= e−〈k〉e〈k〉 = 1X
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Poisson basics:
I Mean degree: we must have

〈k〉 =
∞∑

k=0

kP(k ; 〈k〉).

I Checking:
∞∑

k=0

kP(k ; 〈k〉) =
∞∑

k=0

k
〈k〉k

k !
e−〈k〉

= e−〈k〉
∞∑

k=1

〈k〉k

(k − 1)!

= 〈k〉e−〈k〉
∞∑

k=1

〈k〉k−1

(k − 1)!

= 〈k〉e−〈k〉
∞∑
i=0

〈k〉i

i!
= 〈k〉e−〈k〉e〈k〉 = 〈k〉X

I Note: We’ll get to a better and crazier way of doing this...
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Poisson basics:

I The variance of degree distributions for random
networks turns out to be very important.

I Use calculation similar to one for finding 〈k〉 to find
the second moment:

〈k2〉 = 〈k〉2 + 〈k〉.

I Variance is then

σ2 = 〈k2〉 − 〈k〉2 = 〈k〉2 + 〈k〉 − 〈k〉2 = 〈k〉.

I So standard deviation σ is equal to
√
〈k〉.

I Note: This is a special property of Poisson
distribution and can trip us up...
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General random networks

I So... standard random networks have a Poisson
degree distribution

I Generalize to arbitrary degree distribution Pk .
I Also known as the configuration model. [1]

I Can generalize construction method from ER
random networks.

I Assign each node a weight w from some distribution
Pw and form links with probability

P(link between i and j) ∝ wiwj .

I But we’ll be more interested in
1. Randomly wiring up (and rewiring) already existing

nodes with fixed degrees.
2. Examining mechanisms that lead to networks with

certain degree distributions.
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Random networks: examples for N=1000

γ = 2.1
〈k〉 = 3.448

γ = 2.55
〈k〉 = 1.712

γ = 2.19
〈k〉 = 2.986

γ = 2.64
〈k〉 = 1.6

γ = 2.28
〈k〉 = 2.306

γ = 2.73
〈k〉 = 1.862

γ = 2.37
〈k〉 = 2.504

γ = 2.82
〈k〉 = 1.386

γ = 2.46
〈k〉 = 1.856

γ = 2.91
〈k〉 = 1.49
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Random networks: largest components

γ = 2.1
〈k〉 = 3.448

γ = 2.55
〈k〉 = 1.712

γ = 2.19
〈k〉 = 2.986

γ = 2.64
〈k〉 = 1.6

γ = 2.28
〈k〉 = 2.306

γ = 2.73
〈k〉 = 1.862

γ = 2.37
〈k〉 = 2.504

γ = 2.82
〈k〉 = 1.386

γ = 2.46
〈k〉 = 1.856

γ = 2.91
〈k〉 = 1.49
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The edge-degree distribution:

I The degree distribution Pk is fundamental for our
description of many complex networks

I Again: Pk is the degree of randomly chosen node.
I A second very important distribution arises from

choosing randomly on edges rather than on nodes.
I Define Qk to be the probability the node at a random

end of a randomly chosen edge has degree k .
I Now choosing nodes based on their degree (i.e.,

size):
Qk ∝ kPk

I Normalized form:

Qk =
kPk∑∞

k ′=0 k ′Pk ′
=

kPk

〈k〉
.
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The edge-degree distribution:

I For random networks, Qk is also the probability that
a friend (neighbor) of a random node has k friends.

I Useful variant on Qk :

Rk = probability that a friend of a random node has
k other friends.

I

Rk =
(k + 1)Pk+1∑

k ′=0(k ′ + 1)Pk ′+1
=

(k + 1)Pk+1

〈k〉

I Equivalent to friend having degree k + 1.
I Natural question: what’s the expected number of

other friends that one friend has?
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The edge-degree distribution:
I Given Rk is the probability that a friend has k other

friends, then the average number of friends’ other friends
is

〈k〉R =
∞∑

k=0

kRk =
∞∑

k=0

k
(k + 1)Pk+1

〈k〉

=
1
〈k〉

∞∑
k=1

k(k + 1)Pk+1

=
1
〈k〉

∞∑
k=1

(
(k + 1)2 − (k + 1)

)
Pk+1

(where we have sneakily matched up indices)

=
1
〈k〉

∞∑
j=0

(j2 − j)Pj (using j = k+1)

=
1
〈k〉

(
〈k2〉 − 〈k〉

)
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The edge-degree distribution:

I Note: our result, 〈k〉R = 1
〈k〉

(
〈k2〉 − 〈k〉

)
, is true for

all random networks, independent of degree
distribution.

I For standard random networks, recall

〈k2〉 = 〈k〉2 + 〈k〉.

I Therefore:

〈k〉R =
1
〈k〉

(
〈k〉2 + 〈k〉 − 〈k〉

)
= 〈k〉

I Again, neatness of results is a special property of the
Poisson distribution.

I So friends on average have 〈k〉 other friends, and
〈k〉+ 1 total friends...
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Two reasons why this matters

Reason #1:

I Average # friends of friends per node is

〈k2〉 = 〈k〉 × 〈k〉R = 〈k〉 1
〈k〉

(
〈k2〉 − 〈k〉

)
= 〈k2〉 − 〈k〉.

I Key: Average depends on the 1st and 2nd moments of Pk
and not just the 1st moment.

I Three peculiarities:

1. We might guess 〈k2〉 = 〈k〉(〈k〉 − 1) but it’s actually
〈k(k − 1)〉.

2. If Pk has a large second moment,
then 〈k2〉 will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you...
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Two reasons why this matters

More on peculiarity #3:

I A node’s average # of friends: 〈k〉
I Friend’s average # of friends: 〈k2〉

〈k〉
I Comparison:

〈k2〉
〈k〉

= 〈k〉〈k
2〉

〈k〉2
= 〈k〉σ

2 + 〈k〉2

〈k〉2
= 〈k〉

(
1 +

σ2

〈k〉2

)
≥ 〈k〉

I So only if everyone has the same degree
(variance= σ2 = 0) can a node be the same as its
friends.

I Intuition: for random networks, the more connected a
node, the more likely it is to be chosen as a friend.
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Two reasons why this matters

(Big) Reason #2:

I 〈k〉R is key to understanding how well random
networks are connected together.

I e.g., we’d like to know what’s the size of the largest
component within a network.

I As N →∞, does our network have a giant
component?

I Defn: Component = connected subnetwork of nodes
such that ∃ path between each pair of nodes in the
subnetwork, and no node outside of the subnetwork
is connected to it.

I Defn: Giant component = component that comprises
a non-zero fraction of a network as N →∞.

I Note: Component = Cluster
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Structure of random networks

Giant component:

I A giant component exists if when we follow a random
edge, we are likely to hit a node with at least 1 other
outgoing edge.

I Equivalently, expect exponential growth in node
number as we move out from a random node.

I All of this is the same as requiring 〈k〉R > 1.
I Giant component condition (or percolation condition):

〈k〉R =
〈k2〉 − 〈k〉

〈k〉
> 1

I Again, see that the second moment is an essential
part of the story.

I Equivalent statement: 〈k2〉 > 2〈k〉
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Giant component

Standard random networks:
I Recall 〈k2〉 = 〈k〉2 + 〈k〉.
I Condition for giant component:

〈k〉R =
〈k2〉 − 〈k〉

〈k〉
=
〈k〉2 + 〈k〉 − 〈k〉

〈k〉
= 〈k〉

I Therefore when 〈k〉 > 1, standard random networks
have a giant component.

I When 〈k〉 < 1, all components are finite.
I Fine example of a continuous phase transition (�).
I We say 〈k〉 = 1 marks the critical point of the system.
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Giant component
Random networks with skewed Pk :

I e.g, if Pk = ck−γ with 2 < γ < 3, k ≥ 1, then

〈k2〉 = c
∞∑

k=1

k2k−γ

∼
∫ ∞

x=1
x2−γdx

∝ x3−γ
∣∣∣∞
x=1

= ∞ (� 〈k〉).

I So giant component always exists for these kinds of
networks.

I Cutoff scaling is k−3: if γ > 3 then we have to look
harder at 〈k〉R.

I How about Pk = δkk0?
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Giant component
And how big is the largest component?

I Define S1 as the size of the largest component.

I Consider an infinite ER random network with average
degree 〈k〉.

I Let’s find S1 with a back-of-the-envelope argument.

I Define δ as the probability that a randomly chosen node
does not belong to the largest component.

I Simple connection: δ = 1− S1.

I Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

I So

δ =
∞∑

k=0

Pkδk

I Substitute in Poisson distribution...
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Giant component

I Carrying on:

δ =
∞∑

k=0

Pkδk =
∞∑

k=0

〈k〉k

k !
e−〈k〉δk

= e−〈k〉
∞∑

k=0

(〈k〉δ)k

k !

= e−〈k〉e〈k〉δ = e−〈k〉(1−δ).

I Now substitute in δ = 1− S1 and rearrange to obtain:

S1 = 1− e−〈k〉S1 .
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Giant component

I We can figure out some limits and details for
S1 = 1− e−〈k〉S1 .

I First, we can write 〈k〉 in terms of S1:

〈k〉 =
1

S1
ln

1
1− S1

.

I As 〈k〉 → 0, S1 → 0.
I As 〈k〉 → ∞, S1 → 1.
I Notice that at 〈k〉 = 1, the critical point, S1 = 0.
I Only solvable for S1 > 0 when 〈k〉 > 1.
I Really a transcritical bifurcation. [2]
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Giant component
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Giant component

Turns out we were lucky...

I Our dirty trick only works for ER random networks.
I The problem: We assumed that neighbors have the

same probability δ of belonging to the largest
component.

I But we know our friends are different from us...
I Works for ER random networks because 〈k〉 = 〈k〉R.
I We need a separate probability δ′ for the chance that

an edge leads to the giant (infinite) component.
I We can sort many things out with sensible

probabilistic arguments...
I More detailed investigations will profit from a spot of

Generatingfunctionology. [3]
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