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Random directed networks:

K

Network defined by joint in- and out-degree distribution:
Pi k.

Normalization: Y2 o > o Py k, = 1

Marginal in-degree and out-degree distributions:

Pk‘ = Z Pk,,ko and Pkc = Z thko
k=0 k=0

unweighted edges.
» Now consider directed, unweighted edges.

> Nodes have k and k, incoming and outgoing
edges, otherwise random.

v

v

v

v

Required balance:

=2 D KPuk =D > kPik = (k)

ki=0 k,=0 ki=0 k,=0

» So far, we've studied networks with undirected,
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Directed network structure:

» GWCC = Giant Weakly
Connected Component

4 LD; (directions removed);
e e 9@
o \\O » GIN = Giant
L In-Component;
( Wﬂl » GOUT = Giant
\ Out-Component;
T~ __ » GSCC = Giant Strongly
Connected Component;
From Bogufia and Serano. '] » DC = Disconnected

Components (finite).

» When moving through a family of increasingly
connected directed random networks, GWCC usually
appears before GIN, GOUT, and GSCC which tend
to appear together. [+ ]

Mixed random networks:
Important observation:

» Directed and undirected random networks are
separate families. . .

» ...and analyses are also disjoint.

» Need to examine a larger family of random networks
with mixed directed and undirected edges.

» Consider nodes with three types of
edges:
1. k, undirected edges,
2. k; incoming directed edges,
3. k, outgoing directed edges.
» Define a node by generalized
degree:

k=[kd k k"

Mixed random networks:
» Joint degree distribution:
(ki ki Ko™

» As for directed networks, require in- and out-degree
averages to match up:

PE where k =

oo 0o 00 oo 00 00

ED WIS P IL

ki=0 ki=0 k,=0 k=0 ki=0 k,=0

» Otherwise, no other restrictions and connections are
random.

» Directed and undirected random networks are
disjoint subfamilies:

Undirected: P, = Py,dk 00k, 0,
Directed: Py = 6,0 Pk k-
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Correlations:

» Now add correlations (two point or Markovian):

1. PO (K| K') = probability that an undirected edge
leaving a degree k’ nodes arrives at a degree k
node.

2. PW(k| k") = probability that an edge leaving a
degree k' nodes arrives at a degree k node is an
in-directed edge relative to the destination node.

3. P0)(k| k') = probability that an edge leaving a
degree k' nodes arrives at a degree k node is an
out-directed edge relative to the destination node.

» Now require more refined (detailed) balance.
» Conditional probabilities cannot be arbitrary.

1. PO(K| k') must be related to P() (K’ | k).

2. PL)(k| k') and P©) (k| k') must be connected.

Correlations—Undirected edge balance:

» Randomly choose an edge, and randomly choose
one end.

» Say we find a degree K node at this end, and a
degree k’ node at the other end.

» Define probability this happens as PO (K, k).
» Observe we must have P")(k, k') = P()(K', k).

» Conditional probability
connection:

DK K — POk | R KEPE)
: )(I\l\(7k/) = PRKINR

Correlations—Directed edge balance:

» The quantities
koP(k) kiP(k)
R 2" k)

give the probabilities that in
starting at a random end of a
randomly selected edge, we begin
at a degree k node and then find
ourselves travelling:

1. along an outgoing edge, or
2. against the direction of an incoming edge.

» We therefore have

K. P(K') o kP(K)

PUN)(k, k') = PO(K | E’)7< i PO(K' | k)
» Note that P4 (k, k') and PUn(K’ k) are in general
not related if K # K'.

POK.K) = PO |K)LP®,
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Global spreading condition:
When are cascades possible?:

» Consider uncorrelated mixed networks first.

» Recall our first result for undirected random
networks, that edge gain ratio must exceed 1:

>, kP,
R=Y" kg o(ky,—1)eBg1>1.

=
Il
<)
—~

» Both are composed of (1) probability of connection to
a node of a given type; (2) number of newly infected
edges if successful; and (3) probability of infection.

Global spreading condition:

Local growth equation:

» Define number of infected edges leading to nodes a
distance d away from the original seed as f(d).

» Infected edge growth equation:
f(d + 1) = Rf(d).

» Applies for discrete time and continuous time
contagion processes.

» Now see By, ; is the probability that an infected edge
eventually infects a node.

» Also allows for recovery of nodes (SIR).

Global spreading condition:

Mixed, uncorrelated random netwoks:

» Now have two types of edges spreading infection:
directed and undirected.
» Gain ratio now more complicated:
1. Infected directed edges can lead to infected directed
or undirected edges.
2. Infected undirected edges can lead to infected
directed or undirected edges.
» Define f(")(d) and f(°)(d) as the expected number of
infected undirected and directed edges leading to
nodes a distance d from seed.
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» Gain ratio now has a matrix form:

[Fofe i3] -]

» Two separate gain equations:
ko Pz

fW(d+1) = G >k o (ky — 1)By k1
kP
©)(d+1) = <k—; o kB sk 1 1 (d)+

» Gain ratio matrix:

>

“ok

@ ”@

) (d)
0)(d) }

kP, Ky ® By i 110(d)
(ki)

)(d)+

‘PE (o)
Tk e ko s B ()

® By, k1
k o K, '

» Spreading condition: max eigenvalue of R > 1.

Global spreading condition:

» Useful change of notation for ma

general: write PO (K | +) = k”:k

where x indicates the starting node’s degree is

irrelevant (no correlations).

> Also write By . to indicate a more general infection

probability, but one that does not
edge’s origin.

andP(\) "
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» Now have, for the example of mixed, uncorrelated

random networks:
_ Z pt ’(k | )

PW(K | %) o ko

Summary of contagion conditions
networks:

» |. Undirected, Uncorrelated—f(d

R=> PU(Kk|[+)e(k

Ku

» |I. Directed, Uncorrelated—f(d + 1) = f(d):

R=> PO(k,k|+)e

Kisko

Yo (ki—1) PO(K|x) ek,
PO (K| %) o k

%/‘%
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:| 'Bkuki,*

for uncorrelated
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oty ] =]

PO(K | ) o (ks —
PO(K | %) o Kk,

Nutshell
S Bk ok References
fW(d) .
£9)(d) %/%

1) POKk|x) ek |,pg
PO(K| ) ok, | @
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Correlated version:

» Now have to think of transfer of infection from edges
emanating from degree k' nodes to edges emanating
from degree k nodes.

» Replace PO (K | ) with P@(k | k') and so on.

» Edge types are now more diverse beyond directed
and undirected as originating node type matters.

» Sums are now over k.

Summary of contagion conditions for correlated
networks:

» IV. Undirected, Correlated—fx,(d 4+ 1) = >, Rik: fu:(d)
Rik = PW (K, | k) o (K — 1) ® Biis

» V. Directed,

Correlated—fk‘ko(d + 1) = Zk’,k’ Rkiknk,'kn’ fk,/k;i(d)

Rickohr, = PO (Ki, Ko | K K]) @ Ko ® Bikors

» VI. Mixed Directed and Undirected, Correlated—

u) “)
(d+1) (d)
°’ (d+1) ;RW { f7°)(d)}
(K| K’ ® Ky — (K| Kk ® Ky
L e S (%i.ﬂ-%

PW(K|K') o k, PO)(

Summary of triggering probabilities for uncorrelated
networks: [°!

» |. Undirected, Uncorrelated—
Q=5 PO(K; 1 )B(1. k) [1- (1 - @)

Sue = D P(K) [1— (1 - Q]
K

» |I. Directed, Uncorrelated—
Q=S4 POK. K| )BO1.K) [1 - (1 - Q)]

Sue =Y P(K.K) [1 - (1 - @]

K kg
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Summary of triggering probabilities for uncorrelated

networks:

» |ll. Mixed Directed and Undirected, Uncorrelated—

QW = 3" PW(K'|)B(1,K') [1 —(1— QWK1 — Q)
K

Q9 =3 PO(K|-)B(1,K) [1 —(1— QWK — o<°>)ké]
PG

Sve =D P(K) [1-(1 - QU)(1 - Q@]
K

Summary of triggering probabilities for correlated
networks:

» |V. Undirected, Correlated—
Qu = Y POk, k)BT, ) [1 = (1 - Q)|

Sue = D P(k) [1 = (1= Q)¥]
K

» V. Directed, Correlated—

Q= Xy s PO Kl Ky k)BT ) [1 = (1= Q)<

Stig = Z P(K, k) [1 -(1- Qk;kg)ké}

Kok

Summary of triggering probabilities for correlated
networks:

» VI. Mixed Directed and Undirected, Correlated—

Q) = > UK K)B(1,K) [1- (1= Qe - o]
k

QY =" POKK)B(1,K') [1 —(1-QWk(1 - oé?’)ko']

K

Swe = 3 PIR) [1- (1= Q)< (1 - Q)]
K
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Full generalization:

&=\

f(d+1) = Rswfx(d)

Rsa is the gain ratio matrix
and has the form:

Rsar = Paar  Kaar @ Baar -

» Pss = conditional probability that a type )’ edge
emanating from a type +/ node leads to a type v
node.

» kza = potential number of newly infected edges of
type A emanating from nodes of type v.

» Bzs = probability that a type v node is eventually
infected by a single infected type X’ link arriving from
a neighboring node of type v/'.

» Generalized contagion condition:

max|u| : p € o (R) > 1

Nutshell:

» Mixed, correlated random networks with undirected
and directed edges form natural inclusive
generalization of purely undirected and purely
directed random networks.

» Spreading conditions and triggering probabilities of
contagion processes can be determined using a
direct, physical approach.

» These conditions can be generalized to arbitrary

random networks with arbitrary node and edge types.
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