Diffusion Where iS Barry!? Diffusion

Random walks on Random walks on

Random walks and diffusion on networks networks » Consider simple undirected, ergodic (strongly Roworks
Complex Networks connected) networks.
CSYS/MATH 303, Spring, 2011 » As usual, represent network by adjacency matrix A
where

a; = 1if i has an edge leading to j,

Prof. Peter Dodds :
a; = 0 otherwise.

Department of Mathematics & Statistics » Barry is at node j at time t with probability p;(t).
Center for Complex Systems .
Vermont Advanced Computing Center » In the next time step, he randomly lurches toward
University of Vermont one of j’S neighbor&
» Barry arrives at node i from node j with probability -
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Outline e o Inebriation and diffusion: e akeon
networks networks
» Excellent observation: The same equation applies
for stuff moving around a network, such that at each
time step all material at node i is sent to its
neighbors.
Random walks on networks » x;(t) = amount of stuff at node /i at time t.
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» Random walking is equivalent to diffusion (&).
[ o Aoz @
va 20f8 Da 50f8
Random walks on networks—basics: e o Where is Barry? e keon
nefworks™ " nefworks™™ """
» Imagine a single random walker moving around on a » Linear algebra-based excitement:
network. pi(t+1) = Z]'-’:1 aj,-%l_pj(t) is more usefully viewed as
» At t =0, start walker at node j and take time to be
discrete. p(t+1) = ATK~1B(1)
» Q: What's the long t_erm probability distribution for where [K;] = [3;k] has node degrees on the main
where the walker will be? :
Defi # as th bability that at i tep ¢ diagonal and zeros everywhere else.
> .
eine p,( ) as © probabfily that at time step £, our » So... we need to find the dominant eigenvalue of
walker is at node i. ATK1
g We want to charactﬁnze the evE)Iunon of p(1). » Expect this eigenvalue will be 1 (doesn’t make sense
> First task: connect p(t + 1) to p(t). L for total probability to change).
> Let's call our walker Barry. £ » The corresponding eigenvector will be the limiting
» Unfortunately for Barry, he lives on a high L probability distribution (or invariant measure).
dimensional graph and is far from home. » Extra concerns: multiplicity of eigenvalue = 1, and
» Worse still: Barry is hopelessly drunk. P g network connectedness. 4 (el
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Where is BaFFY? Diffusion

Random walks on

» By inspection, we see that

1 -
= =i—/k
27:1 ki

satisfies p(oo) = ATK~15(c0) with eigenvalue 1.
We will find Barry at node i with probability
proportional to its degree k;.

Nice implication: probability of finding Barry travelling
along any edge is uniform.
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» Diffusion in real space smooths things out.
» On networks, uniformity occurs on edges.

» So in fact, diffusion in real space is about the edges
too but we just don’t see that.
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Other pieces: Random walks on

» Goodness: ATK~ 1 is similar to a real symmetric
matrix if A= AT,
» Consider the transformation M = K~1/2:

K71/2ATK71K1/2 — K71/2ATK71/2.
» Since AT = A, we have
(K—1/2AK—1/2)T _ K_1/2AK_1/2.

» Upshot: ATK—' = AK~! has real eigenvalues and a
complete set of orthogonal eigenvectors.

» Can also show that maximum eigenvalue magnitude
is indeed 1.
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