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Contagion models

Some large questions concerning network
contagion:

B

For a given spreading mechanism on a given
network, what'’s the probability that there will be
global spreading?

. If spreading does take off, how far will it go?
. How do the details of the network affect the

outcome?

. How do the details of the spreading mechanism

affect the outcome?
What if the seed is one or many nodes?

Next up: We’'ll look at some fundamental kinds of

spreading on generalized random networks.
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Spreading mechanisms

—

b

B uninfected
B infected

» General spreading
mechanism:
State of node i depends
on history of i and i’s
neighbors’ states.

» Doses of entity may be

stochastic and
history-dependent.

» May have multiple,

interacting entities
spreading at once.
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Spread|ng on Random Networks Contagion

Basic Contagion

Social Contagion
Models

» For random networks, we know local structure is
pure branching.

References

» Successful spreading is .. contingent on single
edges infecting nodes.

Success Failure:
Al s \O

» Focus on binary case with edges and nodes either
infected or not.
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Contagion condition el

Basic Contagion

» We need to find: Models

r = the average # of infected edges that one random
infected edge brings about.

» Define by as the probability that a node of degree k
is infected by a single infected edge.

>
o
kP,
e el e B o ot
£ < k> ~— N IETE
o S Prob. of # outgoing
prob. of infection infected
connecting to edges
a degree k node
kP,
k
+) el et
< > R
k=0 Prob. of # outgoing
: ; infected vy [9)
noinfecton  Infect R B
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Contagion condition Contagion

Basic Contagion

Models
Social Contagion
Models
» Our contagion condition is then: A
00 References
kPy
r=3 (k-1 DA
kz_%( s T

» Case1: If by =1 then

kR k(K = 1))

L e e e

» Good: This is just our giant component condition
again.
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Contagion condition Contagion

Basic Contagion

» Case2: lfbp=b<1ithen = = = & = o = SR

Social Contagion
Models

References

» A fraction (1-b) of edges do not transmit infection.

» Analogous phase transition to giant component case
but critical value of (k) is increased.

» Aka bond percolation (£).

» Resulting degree distribution P;:

Rig= bki (/i)“ — b)~*p;.

=l

Insert question from assignment 7 (H)

» We can show Fp/(x) = Fp(bx + 1 — b).

|°|
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Contagion condition

» Cases 3, 4,5, .... Now allow b, to depend on k

\ S e B 5T

Asymmetry: Transmission along an edge depends
on node’s degree at other end.

Possibility: by increases with k... unlikely.
Possibility: by is not monotonic in k... unlikely.
Possibility: bx decreases with k... hmmm.

bk "\ is a plausible representation of a simple kind of
social contagion.

The story:
More well connected people are harder to influence.

Contagion

Social Contagion
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Contagion

Contagion condition

Social Contagion

Models
» Example: by = 1/k.

. (k — 1)kPy Sl 1)k28

podFiis DR L e TR
b P LS
= (k= 1)Py R
(k) (k)
» Since r is always less than 1, no spreading can
occur for this mechanism.
» Decay of by is too fast.
» Result is independent of degree distribution.
| g
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Contagion

Contagion condition

Basic Contagion
Models

Social Contagion

» Example: by = H(1 — ¢)
where 0 < ¢ < 1 is a threshold and H is the
Heaviside function (H).

,,,,,,,,,,,,,,, References

» Infection only occurs for nodes with low degree.

» Call these nodes vulnerables:
they flip when only one of their friends flips.

>

& —1kP S
e el

k=1
= (k= 1)kP,

= *«W where [-| means floor.
k=1
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Contagion condition

» The contagion condition:

i
L‘“ (k kPk 5

k=1

» As ¢ — 1, all nodes become resilient and r — 0.

» As ¢ — 0, all nodes become vulnerable and the
contagion condition matches up with the giant
component condition.

» Key: If we fix ¢ and then vary (k), we may see two
phase transitions.
» Added to our standard giant component transition,

we will see a cut off in spreading as nodes become
more connected.

Contagion

Social Contagion
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SOClal Contag|on Contagion

Basic Contagion
Models

Social Contagion
Models

Network version

Some important models (recap from CSYS 300) Dbl

» Tipping models—Schelling (1971) & 9. 10]

» Simulation on checker boards.
» |dea of thresholds.

» Threshold models—Granovetter (1978) !

» Herding models—Bikhchandani et al. (1992) " 2!
» Social learning theory, Informational cascades,...
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Threshold model on a network Gontagion

Basic Contagion
Models

Social Contagion
Models
Network version

B i1
Original work: eferences

“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 !"?!

» Mean field Granovetter model — network model
» Individuals now have a limited view of the world
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Threshold model on a network

Y& V- V. V. 'V VRV

Contagion

Network version

Interactions between individuals now represented by 5
a network

Network is sparse

Individual /i has k; contacts

Influence on each link is reciprocal and of unit weight
Each individual i has a fixed threshold ¢;

Individuals repeatedly poll contacts on network
Synchronous, discrete time updating

Individual i becomes active when
number of active contacts a; > ¢;k;

Activation is permanent (SI)

The
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Threshold model on a network Gontagion

Qi\g?if?,w
o 7

» All nodes have threshold ¢ = 0.2.
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The most gullible Contagion

Vulnerables:

Network version

» Recall definition: individuals who can be activated by
just one contact being active are vulnerables.

» The vulnerability condition for node i: 1/k; > ¢;.
» Means # contacts k; < [1/¢;].

» Key: For global cascades on random networks, must
have a global component of vulnerables

» For a uniform threshold ¢, our contagion condition
tells us when such a component exists:
5] (k —1)kP,
o k
e — — > 1.
2
|}
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Cascades on random networks Cogenig)

Basic Contagion
Models
1

Social Contagion

» Top curve: final fraction  wodeis
infected if successful. Kol

» Middle curve: chance of
starting a global
spreading event

(cascade).

» Bottom curve: fractional
size of vulnerable
(nb., z = (k) subcomponent. ']

0.8

0.6

References

0.4

0.2

» Cascades occur only if size of vulnerable
subcomponent > 0.

» System is robust-yet-fragile just below upper
boundary % 4 1]

» ‘Ignorance’ facilitates spreading. P 2]

o VERMONT 10
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Cascades on random networks

50

40

30

20

Time to Steady State

(n.b.,
>

>

. » Time taken for cascade

to spread through
R network. 7!

» Two phase transitions.

Z = (k)
Largest vulnerable component = critical mass.

Now have endogenous mechanism for spreading
from an individual to the critical mass and then
beyond.
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Cascade window for random networks

30

25

20 no cascades

vi 15

5 cascades

0
0.05 0.1 0.15 0.2 0.25

¢

(n.b., z = (k)

» OQutline of cascade window for random networks.
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Contagion

Cascade window for random networks

Basic Contagion
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Network version
to-all nety k
30 sk
References

e
N
o

no cascades .-

Y4
=
a1

influence
=
o

cascades

a1

0.1 0.15 0.2 0.25
@ = uniform individua threshold
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o
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Contagion

SOCIal Contaglon Basic Contagion
Models
Social Contagion
Models
Granovetter’'s Threshold model—recap st et
» Assumes deterministic References
. response functions
44 > ¢, = threshold of an
5 individual.
Gk > f(¢.) = distribution of
: thresholds in a population.
0.2
» F(¢.) = cumulative
0

il distribution = [ (m*:o f(¢l)dg),

» ¢; = fraction of people ‘rioting’
at time step t.
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Social Sciences—Threshold models

» Attime t + 1, fraction rioting = fraction with ¢, < ¢x.
| 4

ol
G /0 Ao )0se= Flo)es Fie)

» = lterative maps of the unit interval [0, 1].
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Social Sciences—Threshold models Sorsner

Basic Contagion

Models
: . s Social Cont:
Action based on perceived behavior of others. Mo
1A e Te siclnonods
~ 038 2 ~. 08 Theory
— S
06 o 15 : 0.6] References
& = i
8 04 - 1 - 04
T/ 02 05 S 02 i
% o 1 % 05 1 % 05 1
L @ )
» Two states: S and |
» Recover now possible (SIS)
» ¢ = fraction of contacts ‘on’ (e.g., rioting)
» Discrete time, synchronous update (strong

assumption!)
This is a Critical mass model

v
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Social Sciences—Threshold models

w

1
25
0.8}
7| | | ‘
0.6| i
= il !
E1s = |
0.4 !
al JA— I
05 02 !
CO 0.2 04 0.6 0.8 il 0 0.2 0.4 0.6 0.8
Y %

» Example of single stable state model
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Social Sciences—Threshold models

Implications for collective action theory:

1. Collective uniformity #- individual uniformity
2. Small individual changes = large global changes

Next:

» Connect mean-field model to network model.
» Single seed for network model: 1/N — 0.

» Comparison between network and mean-field model
sensible for vanishing seed size for the latter.
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All-to-all versus random networks Soyiaden
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Threshold contagion on random networks g

Basic Contagion
Models

Social Contagion
Models
Network versior

All-to-all networks

Three key pieces to describe analytically: lifioienes

.

The fractional size of the largest subcomponent of
vulnerable nodes, Syn.-

. The chance of starting a global spreading event,

'DtriY T Strig-
g

. The expected final size of any successful spread, S.

» n.b., the distribution of S is almost always bimodal.
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Contagion

Threshold contagion on random networks

» First goal: Find the largest component of vulnerable
nodes.

» Recall that for finding the giant component’s size, we )
had to solve:

Fr(x) = xFp (F,(x)) and Fy(x) = xFgr (Fy(x))

» We'll find a similar result for the subset of nodes that
are vulnerable.

» This is a node-based percolation problem.

» For a general monotonic threshold distribution f(¢), a
degree k node is vulnerable with probability

1/k
b = /0 F(6)do .

U'\ll\ ERSITY
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Threshold contagion on random networks g

Basic Contagion

Models
Social Contagion
Models
» Everything now revolves around the modified o
generating function: st

vuln) Z bk PkX

» Generating function for friends-of-friends distribution
is related in same way as before:

vuln
b (%)
vul ;
dixl:l(J n)(X)|x:1

F,gvuln) (X) i,
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Threshold contagion on random networks

» Functional relations for component size g.f.'s are
almost the same...

Févuln) (X) e g F/(Jvuln)(.l ) —I-XF,(;VUIH) <ngvuln) (X))
—_———
central node
is not
vulnerable

vuln vuln vuln vuln
Fm) (x) = 1= PR (1) +xFF"™ (FE™(x))
| R —
first node
is not
vulnerable

» Can now solve as before to find Syum = 1 — £ (1).
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Threshold contagion on random networks g

Basic Contagion

Models
Social Contagion
Models
» Second goal: Find probability of triggering largest Sl
Vulnerable Component. References

» Assumption is first node is randomly chosen.

» Same set up as for vulnerable component except
now we don’t care if the initial node is vulnerable or
not:

FER)(x) = xFp ( F§™)(x))

F‘gvuln) (X) e 1 F;) (1 ) i XF,(qvuln) <F‘gvuln) (X))

> Solve as before to find Py, = Sirig = 1 — FI8(1).
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Threshold contagion on random networks Shs

» Third goal: Find expected fractional size of spread.
» Not obvious even for uniform threshold problem.

» Difficulty is in figuring out if and when nodes that
need > 2 hits switch on.

» Problem solved for infinite seed case by Gleeson and
Cahalane:
“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007.

» Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008.
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Contagion

Expected size of spread

Idea:

» Randomly turn on a fraction ¢y of nodes at time t = 0

» Capitalize on local branching network structure of ™
random networks (again)

» Now think about what must happen for a specific
node i to become active at time t:

e (= 0:iis one of the seeds (prob = ¢g)

e [ =1:jwas not a seed but enough of /’s friends
switched on at time t = 0 so that /’s threshold is now
exceeded.

e [ = 2: enough of /’s friends and friends-of-friends
switched on at time t = 0 so that /’s threshold is now
exceeded.

e t = n: enough nodes within n hops of / switched on W
at t = 0 and their effects have propagated to reach i. bl

¥ VERMONT |0|
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Expected size of spread S

Basic Contagion

Models
Social Contagion
=k H e S Model
@ = active, ¢ = 1/3
t O TN ! All-to-all networks
— 4 AR
: y

References
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Expected size of spread

@ = activeat t=0
O =activeatt=1
@ =activeat t=2
@ -activeat t=3
@ =activeat t=4
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Contagion

Expected size of spread

Notes:

» Calculations are possible nodes do not become
inactive.

» Not just for threshold model—works for a wide range
of contagion processes.

» We can analytically determine the entire time
evolution, not just the final size.

» We can in fact determine
Pr(node of degree k switching on at time ).

» Asynchronous updating can be handled too.
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Expected size of spread

Pleasantness:
» Taking off from a single seed story is about
expansion away from a node.

» Extent of spreading story is about contraction at a
node.
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Expected size of spread

| 2

Contagion

Notation:
¢k = Pr(a degree k node is active at time t).

Notation: by; = Pr (a degree k node becomes active
if j neighbors are active).

Our starting point: ¢x o = ¢o.

(’/‘) qbé(1 — ¢0)*/ = Pr (j of a degree k node’s
neighbors were seeded at time t = 0).

Probability a degree k node was aseedatt =0 is ¢g
(as above).

Probability a degree k node was notaseedatt =0
is (1 = (Do)

Combining everything, we have:
KL S :
$r1=do+(1—d0)) <j>(/)é(1 — ¢0)" by,
=0 |

|O

%)
O
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Expected size of spread

>

v

v

v

v

v

For general t, we need to know the probability an

edge coming into a degree k node at time t is active.

Notation: call this probability 6;.
We already know 6y = ¢y.
Story analogous to t = 1 case:

ki

AN i
Gitr1 = o+ (1= o)) <j>9r](1 — 00) T by.

j=0

Average over all nodes to obtain expression for ¢, 1:

(%) k k ; :
Oti1 = ®0+(1 *gbo)zpkz <j>9tl(1 —Qt)k*/bkj.

k=0  j=0

So we need to compute 6;... massive excitement...
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Expected size of spread S

Basic Contagion
Models

Social Contagion

First connect 6, to 64 s
> 01 = got il
P S e N :
(1= 000> T2 ("7 ) d - o0yt 1y
= >j:0 J

o % = Ry = Pr (edge connects to a degree k node).

> 4 piece gives Pr(degree node k activates) of its
neighbors k — 1 incoming neighbors are active.

> oo and (1 — ¢p) terms account for state of node at
time t = 0.

» See this all generalizes to give 0;,¢ in terms of 6;...

) B (]
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Expected size of spread el
Two pieces: edges first, and then nodes

Models

Social Contagion

frpaa th B
v All-to-all networks
exogenous ;ﬁiﬂ
S -
+(1 —¢0)Zﬁ ( : )9#(1 — 01~y
k=1 gy
social effects
with 69 = ¢g
2. Pt
o0
f Me 43P 2(1)911—(%) i,
exogenous S

‘ The Fughid, S e 10
social effects W‘E‘}é“{}?}ﬁ»} |3|
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Contagion

Comparison between theory and simulations

1 » Pure random networks

1ks) (a)
with simple threshold
o responses: .. o .. e
X 0.5 » R = uniform threshold
5 (our ¢,); z = average
degree; p = ¢; q = 6;
0 0 N = 10°.
0 0.1 = 0.2 (0)¢}
> ¢o=10"3,05 x 102,
4
_|® I and 102,
05 : » Cascade window is for
| P $o = 1072 case.
0 & . 2 -
QR Sa TR LR » Sensible expansion of
cascade window as
From Gleeson and Cahalane ; Po
Increases. "7311)'|;R5|'1'); |g|
o VERMONT Q!
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Contagion

Notes:

» Retrieve cascade condition for spreading from a
single seed in limit ¢g — 0.

» Depends on map 0.1 = G(0; ¢o)- i
» First: if self-starters are present, some activation is
assured:
o0
kP
0 (Z)o Z bko > 0.
=i

meaning by > 0 for at least one value of kK > 1.
» If 6 =0 is a fixed point of G (i.e., G(0; ¢p) = 0) then
spreading occurs if

o0

1
0 qbo Z —1 kPkbk1 Sl
k:O
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- Contagion
Notes: :
Basic Contagion
Models
¢ Social Contagion
In words: Models

Network
to-all network

» If G(0; ¢p) > 0, spreading must occur because some

nOdeS turn on fOI’ free. References

» If G has an unstable fixed point at # = 0, then
cascades are also always possible.

Non-vanishing seed case:

» Cascade condition is more complicated for ¢g > 0.

» If G has a stable fixed point at # = 0, and an unstable
fixed point for some 0 < 6, < 1, then for 6y > 6.,
spreading takes off.

» Tricky point: G depends on ¢g, S0 as we change ¢,
we also change G.
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Contagion

General fixed point story:

1 1

0L 0 e
0 1 0 1 0 1
0 0 0,

= G(0y; ¢o)
= G(0,
011 = G(0r; &

0.

» Given 6p(= ¢p), 6 Will be the nearest stable fixed
point, either above or below.

» n.b., adjacent fixed points must have opposite
stability types.

» Important: Actual form of G depends on ¢y.

» So choice of ¢ dictates both G and starting
point—can’t start anywhere for a given G.
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Comparison between theory and simulations

1

0.5

)]

0 2 4 6 8 10

From Gleeson and Cahalane [/

Contagion

Basic Contagion
Models

Social Contagion
Models

Network versior

Now allow thresholds to  weemeene
be distributed according
to a Gaussian with
mean R.

R =10.2.0'862 ard
0.38; 0 =0.2.
¢o = 0 but some nodes

have thresholds < 0 so
effectively ¢g > 0.

References

Now see a (nasty)
discontinuous phase
transition for low (k).
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Comparison between theory and simulations ="'

Basic Contagion

Models
A S | Cont
(a) M(())(SZB ontagion
0.5 » Plots of stability points
for 6;,.1 = G(0+; ¢o).- Theory

References

0 2 4 6 8 10 » n.b.: 0 is not a fixed
point here: 8y = 0
always takes off.

» Top to bottom: R =
0.35, 0.371, and 0.375.

» n.b.: higher values of 6
for (b) and (c) lead to
higher fixed points of G.

. » Saddle node
G bifurcations appear and

0 2 4 6 8 10
z merge (b and c). 3
e
From Gleeson and Cahalane [°! 4 [V
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Spreadarama ol

Bridging to single seed case: Treet
» Consider largest vulnerable component as initial set
of seeds.

» Not quite right as spreading must move through
vulnerables.

» But we can usefully think of the vulnerable
component as activating at time t = 0 because order
doesn’t matter.

» Rebuild ¢; and 6; expressions...
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Spreadal’ama Contagion

Basic Contagion
Models

Social Contagion

Two pieces modified for single seed: Models

Network versior
All-to-all networks

. 6)1‘-i-1 = evuln = Theory

(%) kPkk 1
- Vulnz< >Z( )9!1_9t)k1 lbk/
k=1 /=0

with 6y = 6yuin = Pr an edge leads to the giant
vulnerable component (if it exists).

2 ¢t+1 = vuln ol

References

00 k
(1 — Svum) ZPkZ< >9/ (1 - 60) by
k=0 =0
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Time-dependent solutions Contagion

Basic Contagion
Models

Social Contagion
Models

Network versior
All-to-all network

Synchronous update

References

» Done: Evolution of ¢; and 6; given exactly by the
maps we have derived.

Asynchronous updates

» Update nodes with probability «.

» As o — 0, updates become effectively independent.
» Now can talk about ¢(t) and 6(t).

» More on this later...
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