Measures of centrality

Complex Networks
CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

é UNIVERSITY C%S».

‘S8 ¥ VERMONT AV/,-\C(;

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Measures of
centrality

Background

Centrality
measures

References

) B O]
UNIVERSITY |g|
F-¥ vervont 18]

A 10of28


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2011-01UVM-303
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~cems/mathstat/
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
http://www.uvm.edu
http://www.uvm.edu
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds

Outline

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

References

Measures of
centrality

Background

Centrality
measures
o ty

Hubs and Authorities

References

) B O]
UNIVERSITY |§|
F-¥ vervont 18]

Qv 20f28


http://www.uvm.edu
http://www.uvm.edu/~pdodds

How big is my node?

» Basic question: how ‘important’ are specific nodes
and edges in a network?
» An important node or edge might:

1. handle a relatively large amount of the network’s
traffic (e.g., cars, information);

2. bridge two or more distinct groups (e.g., liason,
interpreter);

3. be a source of important ideas, knowledge, or
judgments (e.g., supreme court decisions, an
employee who ‘knows where everything is’).

» So how do we quantify such a slippery concept as
importance?

» We generate ad hoc, reasonable measures, and
examine their utility...
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Background

v

One possible reflection of importance is centrality.

Presumption is that nodes or edges that are (in some
sense) in the middle of a network are important for
the network’s function.

Idea of centrality comes from social networks
literature

Many flavors of centrality...

1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.qg., traffic).

v

v

v

We will define and examine a few...

v

v

(Later: see centrality useful in identifying
communities in networks.)
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Centrality

Degree centrality

» Naively estimate importance by node degree. !

» Doh: assumes linearity
(If node i has twice as many friends as node j, it's
twice as important.)

» Doh: doesn’t take in any non-local information.
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Closeness centrality cormalty

» |dea: Nodes are more central if they can reach other
nodes ‘easily.

» Measure average shortest path from a node to all
other nodes.

» Define Closeness Centrality for node i as

Closeness centrality

N —1
> jzi(distance from i to j).

» Range is 0 (no friends) to 1 (single hub).

» Unclear what the exact values of this measure tells
us because of its ad-hocness.

» General problem with simple centrality measures:
what do they exactly mean?

» Perhaps, at least, we obtain an ordering of nodes in
terms of ‘importance’
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Betweenness centrality ity

» Betweenness centrality is based on shortest paths in
a network.

» Idea: If the quickest way between any two nodes on
a network disproportionately involves certain nodes,
then they are ‘important’ in terms of global cohesion.

» For each node /i, count how many shortest paths
pass through /.

» In the case of ties, or divide counts between paths.

» Call frequency of shortest paths passing through
node i the betweenness of i, B;.

» Note: Exclude shortest paths between i and other
nodes.

» Note: works for weighted and unweighted networks.
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Measures of

» Consider a network with N nodes and m edges centrality
(possibly weighted).

» Computational goal: Find (})
between all pairs of nodes.

» Traditionally use algorithm.

» Computation time grows as O(N®).
» See also:
il for finding shortest path
between two specific nodes,
2. and which outperforms
Floyd-Warshall for sparse networks:
O(mN + N2 log N).
» Newman (2001) and Brandes (2001)
independently derive equally fast algorithms that also
compute betweenness.
» Computation times grow as:
1. O(mN) for unweighted graphs; %Bm% A
2. and O(mN + N?log N) for weighted graphs. ‘
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Shortest path between node i/ and all others:

» Consider unweighted networks.
» Use breadth-first search:

1)
2

3.

REOROLEL

Start at node /, giving it a distance d = 0 from itself.
Create a list of all of i’s neighbors and label them
being at a distance d = 1.

Go through list of most recently visited nodes and
find all of their neighbors.

Exclude any nodes already assigned a distance.
Increment distance d by 1.

Label newly reached nodes as being at distance d.
Repeat steps 3 through 6 until all nodes are visited.

» Record which nodes link to which nodes moving out
from i (former are ‘predecessors’ with respect to i’s
shortest path structure).

» Runs in O(m) time and gives N — 1 shortest paths.
» Find all shortest paths in O(mN) time
» Much, much better than naive estimate of O(mN?2).
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Newman'’s Betweenness algorithm: e

1. Set all nodes to have avalue ¢; =0,/ =1,...N
(c for count).

2. Select one node .

3. Find shortest paths to all other N — 1 nodes using
breadth-first search.

4. Record # equal shortest paths reaching each node.

5. Move through nodes according to their distance from
i, starting with the furthest.

6. Travel back towards / from each starting node J,
along shortest path(s), adding 1 to every value of ¢,
at each node / along the way.

7. Whenever more than one possibility exists, apportion
according to total number of short paths coming
through predecessors.

8. Exclude starting node j and / from increment.

9. Repeat steps 2-8 for every node i [} e
and obtain betweenness as B; = >, ¢;.

Qv 14 of 28


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Measures of

Newman’s Betweenness algorithm: capalty

» For a pure tree network, c; is the number of nodes
beyond j from /’s vantage point.

» Same algorithm for computing drainage area in river St
networks (with 1 added across the board).

» For edge betweenness, use exact same algorithm
but now

1. jindexes edges,
2. and we add one to each edge as we traverse it.

» For both algorithms, computation time grows as
O(mN).

» For sparse networks with relatively small average
degree, we have a fairly digestible time growth of

O(N?).
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Important nodes have important friends: conalty

» Define x; as the ‘importance’ of node i.
» ldea: x; depends (somehow) on X;
if j is a neighbor of .
» Recursive: importance is transmitted through a SRR
network.
» Simplest possibility is a linear combination:

Xj X Z ajiX;
J

» Assume further that constant of proportionality, c, is
independent of J.

» Above gives X = cATX or ’AT)? = v ‘
» Eigenvalue equation based on adjacency matrix...

» Note: Lots of despair over size of the largest
eigenvalue. '’ Lose sight of original assumption’s [} ey
non-physicality.
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Important nodes have important friends: gl

Background
» So... solve ATX = \X. Centrality

» But which eigenvalue and eigenvector? e
» We, the people, would like: .
1. A unique solution. v/

) to be real. v/ A

Entries of X to be real. v/

Entries of X to be non-negative. v

A to actually mean something... (maybe too much)

Values of x; to mean something

(what does an observation that x3 = 5x; mean?)

(maybe only ordering is informative...)

(maybe too much)

A to equal 1 would be nice... (maybe too much)

8. Ordering of X entries to be robust to reasonable
modifications of linear assumption (maybe too much)

» We rummage around in bag of tricks and pull out the . e
Perron-Frobenius theorem... A B
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If an Nx N matrix A has non-negative entries then:

1. Ahas areal eigenvalue Ay > |\j|fori=2,... N.

2. \q corresponds to left and right 1-d eigenspaces for
which we can choose a basis vector that has
non-negative entries.

3. The dominant real eigenvalue ) is bounded by the
minimum and maximum row sums of A:

Eigenvalue centrality

N N
min aii < A1 < max aji

4. All other eigenvectors have one or more negative
entries.

5. The matrix A can make toast.
6. Note: Proof is relatively short for symmetric matrices [ty [2]

that are strictly positive "' and just non-negative S
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Other Perron-Frobenius aspects: e

» Assuming our network is , meaning Eigenvae convalty
there is only one component, is reasonable: just
consider one component at a time if more than one
exists.

» Irreducibility means largest eigenvalue’s eigenvector
has strictly non-negative entries.

» Analogous to notion of ergodicity: every state is
reachable.

» (Another term: Primitive graphs and matrices.)
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Hubs and Authorities e

» Generalize eigenvalue centrality to allow nodes to
have two attributes:

1. Authority: how much knowledge, information, etc.,

held by a node on a topic. G S
2. Hubness (or Hubosity or Hubbishness): how well a

node ‘knows’ where to find information on a given

topic.

» Original work due to the legendary Jon Kleinberg.
» Best hubs point to best authorities.

» Recursive: nodes can be both hubs and authorities.
>

More: look for dense links between sets of good
hubs pointing to sets of good authorities.

Known as the
(Hyperlink-Induced Topics Search).

v
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Hubs and Authorities

| 2
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Give each node two scores:

1. x; = authority score for node i
2. y; = hubtasticness score for node i

As for eigenvector centrality, we connect the scores
of neighboring nodes.

New story I: a good authority is linked to by good
hubs.

Means x; should increase as Zj’\; ajiy; increases.
Note: indices are ji meaning j has a directed link to /.
New story II: good hubs point to good authorities.
Means y; should increase as Zj’\’: 1 @jX; increases.
Linearity assumption:

X < ATy and y oc AX
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Hubs and Authorities o
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» So let’s say we have S
X i i i S
Xt— C1A y and y = CZAX References

where ¢y and ¢, must be positive.
» Above equations combine to give
X = AT AX = MATAX.
where A = ¢ci¢ > 0.

» |t's all good: we have the heart of singular value
decomposition before us...
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We Can dO thlS centrality

» AT Ais symmetric.

» AT Ais semi-positive definite so its eigenvalues are
all > 0. Hubs and Authoriies

» AT A’s eigenvalues are the square of A’s singular
values.

» AT A’s eigenvectors form a joyful orthogonal basis.

» Perron-Frobenius tells us that only the dominant
eigenvalue’s eigenvector can be chosen to have
non-negative entries.

» So: linear assumption leads to a solvable system.

» What would be very good: find networks where we

have independent measures of node ‘importance’
and see how importance is actually distributed.
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