Branching Networks II

Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

-iuciualio

Models

Nutshell

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Horton and Tokunaga seem different:

- In terms of network achitecture. Horton's laws appear to contain less detailed information than Tokunaga's law.
 - Oddly, Horton's laws have four parameters and
 Tokunaga has two parameters.
- R_0 , R_0 , R_0 , and R_0 versus T_1 and R_T . One simple redundancy: $R_1 = R_0$. Insert question 2, assignment

 To make a connection, clearest approach is to star with Tokunaga's law...

► Known result: Takunaga — Horton [18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

luctuation

Models

Nutshell

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and
 Tokunaga has two parameters.
- \blacktriangleright $R_{\rm o}$, $R_{\rm o}$, and $R_{\rm s}$ versus $T_{\rm t}$ and $R_{\rm f}$. One simple redundancy: $R_{\rm t} = R_{\rm b}$. Insert question 2, assignment
- To make a connection, clearest approach is to star with Tokunaga's law...
- ▶ Known result: Tokunaga Horton [18, 19, 20, 9, 2

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n, R_n, and R_s versus T₁ and R_T. One simple redundancy: R_n = R_n. Insert question 2, assignment

 To make a connection, clearest approach is to start with Tokunaga's law.

▶ Known result: Tokunaga — Horton [18, 19, 20, 9, 2

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$. Insert question 2, assignment 2 (⊞)
 - to make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga Horton [18, 19, 20, 9, 2

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$. Insert question 2, assignment 2 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokupaga -- Horton [18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$. Insert guestion 2, assignment 2 (⊞)
- ➤ To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

We need one more ingredient:

Space-fillingness

- ► A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks: Drainage density $\rho_{\rm dd}$ = inverse of typical distance between channels in a landscape.
- ► In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{\omega=1}^\Omega n_\omega ar{s}}{a_\Omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Flustuations

Models

Nutshell

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
 Reasonable for river and cardiovascular network
- Drainage density $\rho_{\rm dd}$ = inverse of typical distance
- ▶ In terms of basin characteristics.

basin area $=rac{\sum_{\omega=1}^{\Omega}n_{\omega}ar{s}}{a_{\Omega}}$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river network
 - Drainage density $\rho_{\rm dd}$ = inverse of typical distance
 - between channels in a landscape

 - basin area
- $=rac{\sum_{\omega=1}^{\Omega}n_{\omega}ar{s}_{\omega}}{a_{\Omega}}$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks

Branching Networks II

Horton ⇔ Tokunaga

Scaling relations

Nutshell

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuation

Nutshell

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

```
ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}}
```

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Nutshell

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{\omega=1}^\Omega n_\omega ar{s}_\omega}{a_\Omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

ouning rolation

luctualio

Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law
 - $n_{\omega}/n_{\omega+1}=R_n$
- Estimate n_ω, the number of streams of order ω in terms of other n_ω, ω' > ω.
- Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega'} T_{\omega' \omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Flustuations

Fluctuation

Models

Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

Start looking for Horton's stream number law:

$$n_{\omega}/n_{\omega+1}=R_n$$

- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}, \omega' > \omega$.
- Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$
 - $n_{\omega'} T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - \triangleright 2 $n_{\omega+1}$ streams of order ω do this
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - ▶ $n_{\omega'} T_{\omega' \omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

calling relation

Fluctuations

Models

Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Observe that each stream of order ω terminates by either:

Running into another stream of order and generating a stream of order ω +

- $2n_{\omega+1}$ streams of order ω do this
- eam of higher order $\omega' > \omega$...
- $ightharpoonup n_{\omega'} T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

caling relation

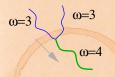
Fluctuation

Models

Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Observe that each stream of order ω terminates by either:



1. Running into another stream of order ω and generating a stream of order $\omega+1...$

▶ $2n_{\omega+1}$ streams of order ω do this

Running into and being absorbed by a stream of higher order was with

▶ $n_{\omega'} T_{\omega' - \omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

calling relatio

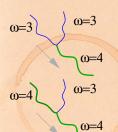
Fluctuations

Models

Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Observe that each stream of order ω terminates by either:



1. Running into another stream of order ω and generating a stream of order $\omega+1...$

 \blacktriangleright 2 $n_{\omega+1}$ streams of order ω do this

2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...

• $n \cdot T$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Janing Telatio

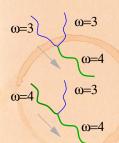
Fluctuations

Models

Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$

• n T = streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

calling relation

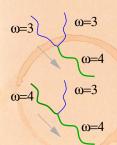
Fluctuation

Models

Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega'} T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

caling relation

Fluctuation

Models Nutshell

Putting things together:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \underbrace{7}_{\text{generation}}$$

- Use Tokunaga's law and manipulate expression to create R.s.
- ► Insert question 3, assignment 2 (⊞

Solution

 $\frac{(2+R_1+T_1)\pm\sqrt{(2+R_1+T_1)^2-8R_1}}{2}$

(The larger value is the one we want)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Putting things together:

$$n_{\omega} = 2n_{\omega+1} + \sum_{\omega'=\omega+1}^{M} \frac{T_{\omega'-\omega}n_{\omega}}{\text{absorption}}$$

- Use Tokunaga's law and manipulate expression to create R_n 's.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models Nutshell

Putting things together:

$$n_{\omega} = \underbrace{\frac{2n_{\omega+1}}{\text{generation}}} + \sum_{\omega'=\omega+1}^{M} \underbrace{\frac{T_{\omega'-\omega}n_{\omega}}{\text{absorption}}}$$

- ► Use Tokunaga's law and manipulate expression to create R_n's.
- ▶ Insert question 3, assignment 2 (⊞)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

Putting things together:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

- ► Use Tokunaga's law and manipulate expression to create R_n's.
- ► Insert question 3, assignment 2 (⊞)
- ► Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

calling relation

Fluctuation

Models

Nutshell

Connect Tokunaga to R_s

Now use uniform drainage density ρ_{dd} .

Assume side streams are roughly separated by

distance $1/
ho_{
m d}$

For an order ω stream segment, expected length is

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Connect Tokunaga to R_s

- Now use uniform drainage density $\rho_{\rm dd}$.
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.

For an order ω stream segment, expected length is

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

1 Idoladilo

Models

Nutshell

Connect Tokunaga to R_s

- Now use uniform drainage density $\rho_{\rm dd}$.
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- \blacktriangleright For an order ω stream segment, expected length is

$$ar{s}_{\omega} \simeq
ho_{
m dd}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k
ight)$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

1 Idoladii

Models Nutshell

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- \blacktriangleright For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right)$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horto

Scaling relation

Fluctuatio

Models

Nutshell

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horte

Scaling relation

1 laotaati

Models Nutshell

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T - R_s - R_s$$

ightharpoonup Recall $R_{\ell}=R_{s}$ so

$$R_{\ell} = R_{s} = R_{T}$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_1}}{2}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Models

Nutshell

Altogether then:

$$ightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow R_S = R_T$$

ightharpoonup Recall $R_{\ell}=R_{s}$ so

$$R_{\ell}=R_{s}=R_{T}$$

Another before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_1}}{2}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Altogether then:

$$ightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow ar{R}_s = ar{R}_T$$

▶ Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_{s} = R_{T}$$

► Anothern before:

$$R_0 = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models Nutshell

Altogether then:

$$ightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T
ightarrow ar{R}_s = R_T$$

▶ Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_{s} = R_{T}$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Models

Nutshell

Some observations:

- $ightharpoonup R_n$ and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well
- Suggests Horton's laws must contain some redundance
- \blacktriangleright We'll in fact see that $R_s = R_s$
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuation

Models

Nutshell

Some observations:

- $ightharpoonup R_n$ and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some
 - redunda
- We'll in fact see that R₂ = R.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial
 - statistical distributions. [3, 4]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Some observations:

- $ightharpoonup R_n$ and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- ➤ We'll in fact see that R_{*} = R_{*}.
- Also: Soth Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial erenewal distributions. [3, 4]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

riuctuation

Models Nutshell

Some observations:

- $ightharpoonup R_n$ and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.

Also Seth Tokunaga's law and Horton's laws can

Branching Networks II

Horton ⇔ Tokunaga

Scaling relations

riuciualioi

Models Nutshell

Some observations:

- $ightharpoonup R_n$ and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

-luckustians

Models

Nutshell

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell$$

$$T_1 = R_n - R_\ell - 2 + 2R_\ell/R_n$$
.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell$$

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)...

Branching Networks II

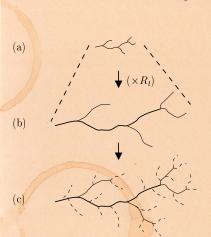
Horton ⇔ Tokunaga

Reducing Horton

Models

Nutshell

From Horton to Tokunaga [2]



- Assume Horton's laws hold for number and length
 - Start with picture showing an order ω stream and order ω generating and side streams
- Scale up by a factor of R_ℓ, orders increment to ω + 1 and ω.
 - density by adding new order == 1 streams

Branching Networks II

Horton ⇔ Tokunaga

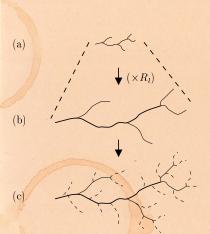
Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

From Horton to Tokunaga [2]



- Assume Horton's laws hold for number and length
- Start with picture showing an order ω stream and order ω generating and side streams.
- Scale up by a factor of R_L, orders increment to ω + 1 and ω.
 - density by adding new

Branching Networks II

Horton ⇔ Tokunaga

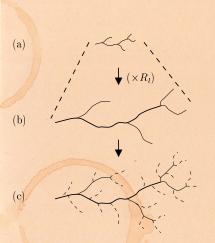
Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

From Horton to Tokunaga [2]



- Assume Horton's laws hold for number and length
- Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
- ► Scale up by a factor of B_e orders increment to

density by adding new

Branching Networks II

Horton ⇔ Tokunaga

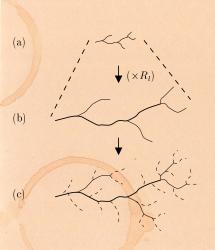
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

From Horton to Tokunaga [2]



- Assume Horton's laws hold for number and length
- Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
- Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .

Branching Networks II

Horton ⇔ Tokunaga

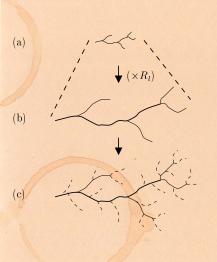
Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

From Horton to Tokunaga [2]



- Assume Horton's laws hold for number and length
- Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
- Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .
- Maintain drainage density by adding new order ω – 1 streams

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

... and in detail:

- Must retain same drainage density.
- Add an extra $(R_t 1)$ first order streams for each
- Since by definition, order ω + 1 stream segment has
 T₁ order 4 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

► For large w. Tokunaga's law is the solution—let solution.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

... and in detail:

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- \blacktriangleright Since by definition, order $\omega + 1$ stream segment has

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

➤ For large ω. Tokunaga's law is the solution—let's

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

... and in detail:

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, order $\omega + 1$ stream segment has T_1 order 1 side streams, we have:

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

References

► For large w, Tokunaga's law is the solution—let's

... and in detail:

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, order $\omega + 1$ stream segment has T_1 order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right).$$

► For large w, Tokunaga's law is the solution—let's check...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

riuctuation

Models

Nutshell

... and in detail:

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, order $\omega + 1$ stream segment has T_1 order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right).$$

For large ω , Tokunaga's law is the solution—let's check...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

$$(R_{\ell} - 1) \left(1 + T_1 \frac{R_{\ell}^{k-1} - 1}{R_{\ell} - 1} \right)$$

$$(R_{\ell} - 1) T_1 \frac{R_{\ell}^{k-1}}{R_{\ell}} = T_1 R_{\ell}^{k-1}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Eluctuations

Models

Nutshell

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

$$T_1 = (R_\ell - 1) \left(\sum_{i=1}^{k-1} 1 + T_1 R_\ell^{i-1} \right)$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

luctuations

Nutshell

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

$$T_1 = (R_{\ell} - 1) \left(\sum_{i=1}^{k-1} 1 + T_1 R_{\ell}^{i-1} \right)$$

$$= (R_{\ell} - 1) \left(1 + T_1 \frac{R_{\ell}^{k-1} - 1}{R_{\ell} - 1} \right)$$

Branching Networks II

Horton ⇔ Tokunaga

Nutshell

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

$$T_{1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k-1} 1 + T_{1} R_{\ell}^{i-1} \right)$$

$$= (R_{\ell} - 1) \left(1 + T_{1} \frac{R_{\ell}^{k-1} - 1}{R_{\ell} - 1} \right)$$

$$\simeq (R_{\ell} - 1) T_{1} \frac{R_{\ell}^{k-1}}{R_{\ell} - 1}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

luctuations

. . . .

Nutshell

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

$$T_{1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k-1} 1 + T_{1} R_{\ell}^{i-1} \right)$$

$$= (R_{\ell} - 1) \left(1 + T_{1} \frac{R_{\ell}^{k-1} - 1}{R_{\ell} - 1} \right)$$

$$\simeq (R_{\ell} - 1) T_{1} \frac{R_{\ell}^{k-1}}{R_{\ell} - 1} = T_{1} R_{\ell}^{k-1} \quad ... \text{ yep.}$$

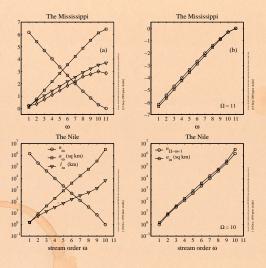
Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Nutshell

Horton's laws of area and number:



In right plots, stream number graph has been flipped vertically.

Branching Networks II

Horton ⇔ Tokunaga

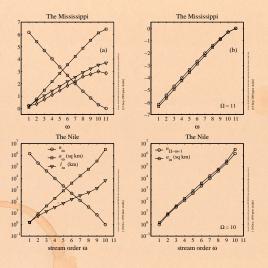
Reducing Horton

Scaling relations

Models

Nutshell

Horton's laws of area and number:



- In right plots, stream number graph has been flipped vertically.
- ▶ Highly suggestive that $R_n \equiv R_a$...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Eluctuations

Models

Nutshell

Measuring Horton ratios is tricky:

Tokunaga

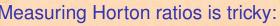
Branching

Networks II

Reducing Horton Scaling relations

Models

Nutshell



How robust are our estimates of ratios?

Measuring Horton ratios is tricky:

- How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Models

Nutshell

Mississippi:

ω range	R_n	R_a	R_{ℓ}	$R_{\rm s}$	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3,8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Amazon:

ω range	R_n	Ra	R_ℓ	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Rough first effort to show $R_n \equiv R_a$:

 a₀ > sum of all stream segment lengths in a order basin (assuming uniform drainage density)

$$a_\Omega \simeq \sum^\Omega n_\omega ar{s}_\omega/
ho_{
m dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

Rough first effort to show $R_n \equiv R_a$:

 $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

Rough first effort to show $R_n \equiv R_a$:

- $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{s}_\omega/
ho_{
m dd}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

scaling relation

Fluctuation

Models

Nutshell

Rough first effort to show $R_n \equiv R_a$:

- a_{Ω} \propto sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{s}_\omega/
ho_{
m dd}$$

$$\propto \sum_{\omega=1}^{\Omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctual

Models

Nutshell

Rough first effort to show $R_n \equiv R_a$:

- a_{Ω} \propto sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{s}_\omega/
ho_{
m dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{n_\omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

Rough first effort to show $R_n \equiv R_a$:

- $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{s}_\omega/
ho_{
m dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \underbrace{1}_{n_{\omega}}}_{\underline{s}_{\omega}} \underline{\bar{s}_1 \cdot R_s^{\omega-1}}_{\underline{\bar{s}}_{\omega}}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

Rough first effort to show $R_n \equiv R_a$:

- $ightharpoonup a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{s}_\omega/
ho_{
m dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \overbrace{1}^{n_{\Omega}}}_{n_{\omega}} \underline{\bar{s}_1 \cdot R_s^{\omega-1}}_{\underline{\bar{s}_{\omega}}}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{n=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

Branching Networks II

Reducing Horton

Models

Nutshell

Continued ...

$$a_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

 $\frac{R_n^{\Omega}}{R_s}\tilde{\mathsf{s}}_1\frac{R_s}{R_n}\frac{1-(R_s/R_n)^{\Omega}}{1-(R_s/R_n)}$

 $R_n^{\Omega-1} \bar{\mathbf{s}}_1 \frac{1}{1 - (R_s/R_n)}$ as Ω

 $R_0 = R_0$

Branching Networks II

Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Continued ...

$$egin{aligned} oldsymbol{a}_\Omega &\propto rac{R_n^\Omega}{R_s}ar{s}_1\sum_{\omega=1}^\Omega \left(rac{R_s}{R_n}
ight)^\omega \ &= rac{R_n^\Omega}{R_s}ar{s}_1rac{R_s}{R_n}rac{1-(R_s/R_n)^\Omega}{1-(R_s/R_n)} \end{aligned}$$

 $R_n^{\Omega-1} \bar{\mathbf{s}}_1 \frac{1}{1 - (R_s/R_n)}$ as

 $R_n \equiv R_a$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Continued ...

$$\mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

$$= \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)}$$

$$\sim R_n^{\Omega-1} \bar{\mathbf{s}}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow$$

 $R_n \equiv R_a$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Continued ...

 $\mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$ $= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)}$ $\sim R_n^{\Omega - 1} \bar{s}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow$

So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scalling relation

Models

Nutshell

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranchi
- ▶ Insert question 4, assignment 2 (⊞)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

riuciualic

Models Nutshell

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- ► Insert question 4, assignment 2 (⊞)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Models

Nutshell

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- ► Insert question 4, assignment 2 (⊞)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

riuctualic

Models Nutshell

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω .
- Not obvious, basins of low orders not necessarily contained in basis on higher orders.
- ▶ Stor

- $R_n = R_a \Rightarrow |n_{\omega}\bar{a}_{\omega}| = \text{const.}$
- ► Reason

 $n_{\rm o} \propto (R_{\rm o})^2$

 $a_\omega \propto (R_a)^\omega \propto n_\omega$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.

▶ Stor

 $R_n \equiv R_s \Rightarrow n.a. = \text{const}$

- Reason

 $n_{\odot} \propto (R_n$

 $\propto (R_a)^{\omega} \propto n_{\omega}^{-1}$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \text{const}}$$

Branching Networks II

Reducing Horton

Models Nutshell

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \text{const}}$$

► Reason:

$$n_{\omega} \propto (R_n)^{-\omega}$$
 $ar{a}_{\omega} \propto (R_a)^{\omega} \propto n_{\omega}^{-1}$

Branching Networks II

Horton ⇔ Tokunaga

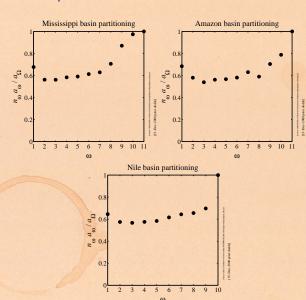
Reducing Horton

Scaling relation

Fluctuatio

Models Nutshell

Equipartitioning: Some examples:



Branching Networks II

> Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

References

22 of 74

The story so far:

- Natural branching networks are hierarchical self-similar structures
- ► Hierarchy is mixed
- ▶ Tokunaga's law describes detailed architecture T_k = T₁R_k^{k-1}
- We have connected Tokunaga's and Horton's laws
 - Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent
- $\mathbb{E}\left(T_{1},R_{T}\right)\Leftrightarrow\left(R_{n},R_{s}\right)$

Branching Networks II

lorton ⇔ okunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture
- ► We have connected Tokunaga's and Horton's laws
 - Only two parameters are independent
 - $(T_1,R_T)\Leftrightarrow (R_n,R_s)$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- Tokunaga's law describes detailed architecture:

We have connected Tokunaga's and Horton's lav
 Only two Horton laws are independent (R_n = R_a)
 Only two parameters are independent:

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.

We have connected lokunaga's and Horton's laws

Only two parameters are independent

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models Nutshell

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- ▶ We have connected Tokunaga's and Horton's laws

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- ▶ We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

A little further...

- ▶ Ignore stream ordering for the momen
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from ρ has length $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: 1.3 $\leq \tau \leq$ 1.5 and 1.7 $\leq \gamma \leq$ 2.0

Branching Networks II

Horton ⇔ okunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

A little further...

- Ignore stream ordering for the moment
- Each point p is associated with a basin and a longer
- ▶ Q: What is probability that the ρ 's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from ρ has length $\langle Y|P(\ell)\propto\ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: $1.3 \le \tau \le 1.5$ and $1.7 \le \alpha \le 2.0$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longer transfer of the property of the proper
- stream length
- Q: What is probability that the p's drainage basin has
 - area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from p
 - $P(\ell) \propto \ell^{-\gamma}$ for large
- ▶ Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \pi \lesssim 2$.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- ➤ Q: What is probability that the p's drainage basin has
 - $P(a) \propto a^{-\tau}$ for large a
- has length \setminus $P(\ell) \propto \ell^{-\gamma}$ for large
- ► Roughly observed: 1.3 < + < 1.5 and

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctual

Models Nutshell

Branching Networks II

Scaling relations

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a?

Nutshell Reference

 $P(\ell) \propto \ell^{-\gamma}$ for large

Scaling relations

Models

Nutshell

References

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- ▶ Q: What is probability that the p's drainage basin has area a?
- Q: What is probability that the longest stream from p has length ℓ ?

Elustrations

Nutshell

References

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- ▶ Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from p has length ℓ ?

Nutshell

References

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- ▶ Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ

Models

Nutshell

References

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- ▶ Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Probability distributions with power-law decays

- We see them everywhere
 - Earthquake magnitudes (Gutenberg-Richter law
 - City sizes (Zipf's law)
 - ► Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
 - Arise from mechanisms: growth, randomness, optimization. ...
- ➤ Our task is always to illuminate the mechanism...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law
 - City sizes (Zipf's law)
 - ➤ Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness,
- / optimization
- Our task is always to illuminate the mechanism.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - ► Uity Sizes (∠ipi s law)
 - ➤ Word frequency (Zipf's law) [21]
 - Chatatian machining (phase transitions)
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness,
- ► Our task is always to illuminate the mechanism
- Our task is always to illuminate the mechanism.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - ▶ Wealth (maybe not—at least heavy talled)
- A big part of the story of complex systems
- Arise from mechanisms, growth, randomness,
- ▶ Our task is always to illuminate the mechanism.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuati

Models

Nutshell

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ► Word frequency (Zipf's law) [21]

➤ Statistical mechanics (phase transitions) [5]

- A bid part of the story of complex systems
- Arise from mechanisms: growth, randomness
- ➤ Our task is always to illuminate the mechanism.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

riuciuali

viodeis

Nutshell

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ► Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
- ► A big part of the story of complex systems
- Arise from mechanisms: growth, randomness
- ➤ Our task is always to illuminate the mechanism

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctual

Models Nutshell

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ► Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]

Arise from mechanisms: growth, randomness

Our task is always to illuminate the mechanism.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctuat

Nutshell

Doforonoon

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ► Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems

Arise from mechanisms: growth, randomness

▶ Our task is always to illuminate the mechanism...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctuat

Nutshell

Poforonoos

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - ► Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...

Our task is always to illuminate the mechanism.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Hortor

Scaling relations

Nutshell

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - ► Statistical mechanics (phase transitions) [5]
- ► A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Horton ⇔ Tokunaga

Scaling relations

Nutshell

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \times a^{-r}$ and $P(\ell) \times \ell^{-r}$ starting with Tokunaga/Herton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$
- Our first fudge: assume Horton's laws hold
 Ibroughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Horton ⇔ okunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) x a⁻¹ and P(ℓ) x ℓ⁻¹ starting with Tokunaga/Horton story [17, 1, 2]
- Let's work on P(u)
- Our first fudge assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next place stick between teeth. Bite stick. Proceed

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

.

Models

Nutshell

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- Let's work on P(ll)
- Our first fudge: assume Horton's laws hold
- throughout a basin of order Ω .
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- ▶ Next, place stick between teeth. Bite stick. Proceed

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuali

Models

Nutshell

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold
- (We know they deviate from strict law
- Next place stick between teeth. Bite stick. Proceed

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.

Bite stick Proceed

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

1 Idoladi

Models Nutshell

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- ➤ Next, place stick between teeth. Bite stick. Proceed.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctual

Models

Nutshell

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctual

Models Nutshell

- Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick.

Tokunaga →

Reducing Horton

Scaling relations

Tuctua

Models Nutshell

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Tokunaga

Reducing Horton

Scaling relations

Fluctuati

Models Nutshell

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions
- The complementary cumulative distribution turns out to be most useful:

$$P_S(\ell_k) = P(\ell > \ell_k) = \int P(\ell) d$$

 $P_{>}(\ell_*) = 1 - P(\ell < \ell_*)$

Also known as the exceedance probability

Branching Networks II

Horton ⇔ okunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

Finding γ :

 Often useful to work with cumulative distributions, especially when dealing with power-law distributions.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathsf{max}}} P(\ell) \mathrm{d}\ell$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \mathrm{d}\ell$$

$$P_{>}(\ell_{*}) = 1 - P(\ell < \ell_{*})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

· raotaa

Models Nutshell

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathsf{max}}} P(\ell) \mathrm{d}\ell$$

$$P_{>}(\ell_*)=1-P(\ell<\ell_*)$$

Also known as the exceedance probability.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:

 ℓ large ℓ then for large enough

$$\sim \int_{\ell=\ell_*}^{\ell_{\sf max}} \ell^{-\gamma} {
m d}\ell$$

$$\left. \cdot \frac{\ell^{-\gamma+1}}{-\gamma+1} \right|_{\ell=\ell_*}^{\ell_{\mathsf{max}}}$$

$$\propto \ell^{-\gamma+1}$$

for $\ell_{\mathsf{max}} \gg \ell_*$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

- The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \,\mathrm{d}\ell$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

- The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \frac{\ell^{-\gamma}}{\ell} \mathrm{d}\ell$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

- The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \ell^{-\gamma} \mathrm{d}\ell$$

$$= \left. \frac{\ell^{-\gamma+1}}{-\gamma+1} \right|_{\ell=\ell_*}^{\ell_{\max}}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models Nutshell

Finding γ :

- The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \frac{\ell^{-\gamma}}{d\ell} \mathrm{d}\ell$$

$$= \frac{\ell^{-\gamma+1}}{-\gamma+1} \Big|_{\ell=\ell_*}^{\ell_{\max}}$$

$$\propto \ell_*^{-\gamma+1}$$
 for $\ell_{\text{max}} \gg \ell_*$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models Nutshell

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$

Assume some spatial sampling resolution in

Landscape is broken up into grid of $\Delta \times \Delta$ sites

▶ Approximate P_¬(ℓ_¬) as

 $P_{\beta}(\ell_{c}) = \frac{N_{\beta}(\ell_{c}, \Delta)}{N_{\beta}(0, \Delta)}.$

where $N_s(X, \Delta)$ is the number of sites with main stream length Y

► Use Horton's law of stream segments:

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctuati

Models

Nutshell

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ

 \triangleright Landscape is proken up into grid of $\Delta \times \Delta$ sites

Approximate P_¬(ℓ_x) as

 $P_{\sigma}(\ell_{\sigma}) = \frac{N_{\sigma}(\ell_{\sigma}, \Delta)}{N_{\sigma}(0, \Delta)}$

✓ where N_s(X \(\Delta\)) is the number of sites with mail stream length > I

▶ Use Horton's law of stream segments:

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

1 Idoladi

Models

Nutshell

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- ▶ Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ► Approximate P₁ (f₁) as
 - $P_{>}(\ell_{>}) = rac{N_{>}(\ell_{>}, \Delta)}{N_{>}(\ell_{>}, \Delta)}$
- where $N_s(\langle \cdot, \Delta \rangle)$ is the number of sites with main
- ► Use Horton's law of stream segments:

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate $P_>(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horic

Scaling relations

.

Nutshell

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate $P_>(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

Use Horton's law of stream segments: $s_{\omega}/s_{\omega-1} = R_s...$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Nutshell

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega}, \Delta)}{N_{>}(0, \Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- ▶ ∆'s cancel
- ▶ Denominator is ao p_{da}, a constant.
- using Horton's laws...

$$P_{\omega'(\omega)} = \sum_{\omega'=\omega+1}^{\Omega} a_{\omega} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some 1 $\ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{N_{>}(\ell_{\omega}; \Delta)}{N_{>}(0; \Delta)}$$

- A's cancel
- ▶ Denominator is ao p_{da}, a constant.
- using Horton's laws...

$$T_n \simeq \sum_{n'=n+1}^M (1{\cdot}R_n^{\Omega-\omega'})(ar{s}_1{\cdot}R_s^{\omega'-1})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Eluctuations

Fluctuation

Models Nutshell

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = rac{ extstyle N_{>}(\ell_{\omega};\Delta)}{ extstyle N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- A's cancel
- ➤ Denominator is aop_{na}, a constant.
- using Horton's laws...

$$ag{S}_{\omega}\simeq\sum_{\omega'=\omega\pm1}^{M}(1{\cdot}R_{n}^{\Omega-\omega'})(ar{s}_{1}{\cdot}R_{s}^{\omega'-1})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Nutshell

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = rac{ extstyle N_{>}(\ell_{\omega};\Delta)}{ extstyle N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is ao p_{da}, a constant.
- using Horton's laws...

$$\simeq \sum_{\omega'=\omega+1}^{\scriptscriptstyle M} (1\!\cdot\! R_n^{\Omega-\omega'}) (ar{s}_1\!\cdot\! R_s^{\omega'-1})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Nutshell

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = rac{ extstyle N_{>}(\ell_{\omega};\Delta)}{ extstyle N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- using Horton's laws...

$$\simeq \sum_{\omega'=\omega+1}^{M} (1{\cdot}R_n^{\Omega-\omega'})(ar{s}_1{\cdot}R_s^{\omega'-1})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctualic

Nutshell

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

•

$$P_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- ▶ ∆'s cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- So. Harro Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}$$
 $(1 \cdot R_n^{\Omega-\omega'})(\bar{s}_1 \cdot R_s^{\omega'-1})$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

1 Idoladii

Models

Nutshell

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

.

$$P_{>}(\ell_{\omega}) = rac{ extstyle N_{>}(\ell_{\omega};\Delta)}{ extstyle N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- So... Hsing Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 R_{n}^{\Omega-\omega'}) (\bar{s}_{1} R_{s}^{\omega})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

· idotadti

Nutshell

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

.

$$P_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) \bar{s}_{+} R_{s}^{\Omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctuatio

Nutshell

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

-

$$P_{>}(\ell_{\omega}) = rac{ extstyle N_{>}(\ell_{\omega};\Delta)}{ extstyle N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

riuctuatio

Nutshell

Finding γ :

We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Gleaning up irrelevant constants

► Change summation order by substituting

(equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

Finding γ :

We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

hange summation order by substituting

(equivalent to $\omega' = 0$ down to $\omega' = \omega + 1$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Finding γ :

We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

Change summation order by substituting $\omega'' = \Omega - \omega'$.

(equivalent to $\omega'=\Omega$ down to $\omega'=\omega+1$)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctuatio

Models

Nutshell

Finding γ :

▶ We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(rac{R_{s}}{R_{n}}
ight)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega \omega'$.
- ▶ Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

riuctuatio

Models Nutshell

Finding γ :

We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(rac{R_{s}}{R_{n}}
ight)^{\Omega-\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^{i} = (a^{n} - 1)/(a - 1)$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(rac{R_s}{R_n}
ight)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(rac{R_n}{R_s}
ight)^{\omega''}$$

▶ Since $R_n > R_n$ and $1 \ll \omega \ll \Omega$.

$$P_{s}(\ell_{\omega}) \propto \left(rac{R_{n}}{R_{s}}
ight)^{\Omega-\omega} \propto \left(rac{R_{n}}{R_{s}}
ight)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^{i} = (a^{n} - 1)/(a - 1)$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Nutshell

Potoropoo

Finding γ :

1

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$\left(\frac{R_n}{R_e}\right)$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Nutshell

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega}$$

again using
$$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a-1)$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Nutshell

Finding γ :

-

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using
$$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a-1)$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctualio

Nutshell

Finding γ :

Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

- Need to express right hand side in terms of
- ► Recall that $\ell \simeq \overline{\ell} R^s$

 $R_{\ell}^{\omega} = R_{\epsilon}^{\omega} = e^{\omega \ln R}$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

· idotadti

Models

Nutshell

Finding γ :

Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

- Need to express right hand side in terms of
- ► Recall that L. ≃ L. H.

 $R_{\ell}^{\omega} = R_{\epsilon}^{\omega} = e^{\omega \ln R}$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models

Nutshell

Finding γ :

Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} \, = e^{-\omega \ln(R_n/R_s)}$$

▶ Need to express right hand side in terms of ℓ_{ω} .

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations
Fluctuations

· idotadti

Models Nutshell

Deference

Finding γ :

Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} \, = e^{-\omega \ln(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} \, = e^{-\omega \ln(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\ell_\omega \propto R_\ell^\omega = R_s^\omega = e^{\omega \ln R_s}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctuatio

Models

Nutshell

Finding γ :

▶ Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)}$$

Branching Networks II

Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

Therefore:

$$P_>(\ell_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

Branching Networks II

Scaling relations

Models

Nutshell

Finding γ :

► Therefore:

$$P_>(\ell_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R_s$$

 $= f - (\ln R_n - \ln R_s) / \ln R$

 $\rho = \ln R_n / \ln R_s + 1$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

▶ Therefore:

$$P_>(\ell_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R_s$$

$$= \ell_{\omega}^{-(\ln R_n - \ln R_s)/\ln R_s}$$

 $\rho = \ln R_n / \ln R_s + 1$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

▶ Therefore:

$$P_>(\ell_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R_s$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

► Therefore:

$$P_>(\ell_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R_s$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question 5, assignment 2 (⊞)

Such connections between exponents are called scaling relations

▶ Let's connect to one last relationship: Hack's law

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question 5, assignment 2 (⊞)

such connections between exponents are called scaling relations

Let's connect to one last relationship: Hack's law

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctuati

Models Nutshell

Finding γ :

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question 5, assignment 2 (⊞)

 Such connections between exponents are called scaling relations Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question 5, assignment 2 (⊞)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Hack's law: [6]

$$e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}\right)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Branching Networks II

Reducing Horton Scaling relations

Models

Nutshell

Hack's law: [6]

Typically observed that $0.5 \lesssim h \lesssim 0.7$.

Use Horton laws to connect h to Horton ratios:

$$\propto R_s^{\omega}$$
 and $a_{\omega} \propto R_n^{\omega}$

win
$$R_s \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\,\omega})^{\ln R_s/\ln R_n} \propto a_\omega^{\,\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Hack's law: [6]

$\ell \propto a^h$

- ► Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

$$\propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_s}$$

$$\propto (R_n^{\,\omega})^{\ln R_s/\ln R_n} \propto a_\omega^{\,\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Hack's law: [6]

$$\ell \propto a^h$$

- ► Typically observed that $0.5 \le h \le 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

Observe:

$$\ell_{\omega} \propto e^{\omega \ln R_s}$$

Branching Networks II

Scaling relations

Models

Nutshell

Hack's law: [6]

>

$$\ell \propto a^h$$

- ► Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

▶ Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}\right)^{\ln R_s/\ln R_n}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models Nutshell

Hack's law: [6]

>

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}\right)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Hack's law: [6]

>

$$\ell \propto a^h$$

- ► Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

▶ Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctualic

Models

Nutshell

Hack's law: [6]

>

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

▶ Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Eluctuations

Models

Nutshell

Connecting exponents Only 3 parameters are independent: e.g., take *d*, *R*_n, and *R*_s

relation:	scaling relation/parameter: [2]
$\ell \sim {\sf L}^{\sf d}$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = R_s$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a$	$R_a = \frac{R_n}{R_n}$
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=R_{\ell}$	$R_\ell = R_{ m s}$
$\ell \sim \pmb{a^h}$	$h = \log R_s / \log R_n$
$a\sim L^D$	D = d/h
${\it L}_{\perp} \sim {\it L}^{\it H}$	H = d/h - 1
$P(a) \sim a^{- au}$	au = 2 - h
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^eta$	$\beta = 1 + h$
$\lambda \sim {\cal L}^{arphi}$	$arphi= extsf{d}$

Branching Networks II

Horton ⇔ Tokunaga

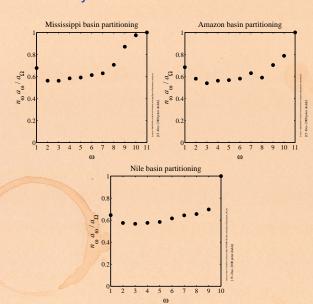
Reducing Horton

Scaling relations

Fluctuation

Models Nutshell

Equipartitioning reexamined: Recall this story:



Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$

 $aP(a) \sim a^{-\tau+1} \neq \text{const}$

- ▶ P(a) overcounts basins within basins
 - while stream ordering separates basins

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models Nutshell

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

► P(a) overcounts basins within basins

while stream ordering separates basins

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

► P(a) overcounts basins within basins...

Branching Networks II

Horton ⇔ Tokunaga

Scaling relations

Elizationa

Models

Nutshell

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

- P(a) overcounts basins within basins...
- while stream ordering separates basins...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Moving beyond the mean:

▶ Both Horton's laws and Tokunaga's law relate average properties, e.g..

 $\bar{s}_{\rm o}/\bar{s}_{\rm o-1}=R_{\rm s}$

- ► Natural generalization to consideration relationships between probability distributions
- Yields rish and full description of branching network structure
- > See into the heart of randomness.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_{s}$$

- Natural generalization to consideration relationships between probability distributions
- Vields rish and full description of branching network
- ➤ See into the heart of randomness.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Branching Networks II

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_{s}$$

 Natural generalization to consideration relationships between probability distributions Scaling relations

Fluctuations

Models Nutshell

References

See into the heart of randomness

Branching Networks II

Moving beyond the mean:

 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_{s}$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Tokunaga

Reducing Horton

Fluctuations

Models Nutshell

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_s$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

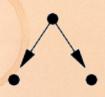
Fluctuations

Models

Nutshell

A toy model—Scheidegger's model

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

- ► Flow is directed downwards
- Useful and interesting test case—more later...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

$$\blacktriangleright \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

All moments grow exponentially with order

- $\blacktriangleright \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$
- $lack ar a_\omega \propto (R_a)^\omega \Rightarrow {\sf N}(a|\omega) = (R_n^2)^{-\omega} {\sf F}_a(a/R_n^\omega)$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

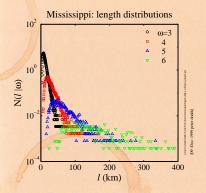
Fluctuations

Models Nutshell

- UNIVERSITI VERMON

$$\blacktriangleright \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$

$$lack ar a_\omega \propto (R_a)^\omega \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^\omega)$$



for intermediate orders

All moments grow exponentially with order

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

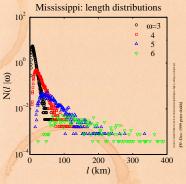
Fluctuations

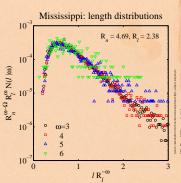
Models

Nutshell

 $\bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega}F_{\ell}(\ell/R_{\ell}^{\omega})$

$$lack ar a_\omega \propto (R_a)^\omega \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^\omega)$$





Scaling collapse works well for intermediate orders

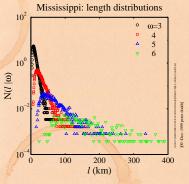
Branching Networks II

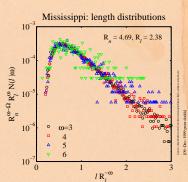
Fluctuations

Nutshell

 $\bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega}F_{\ell}(\ell/R_{\ell}^{\omega})$

$$ullet$$
 $ar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$





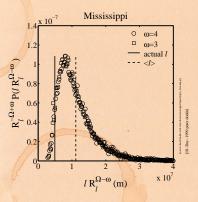
- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Branching Networks II

Fluctuations

Nutshell

How well does overall basin fit internal pattern?



- ➤ Actual length = 4920 kr (at 1 km res)
- ► Predicted Mean length = 11100 km
- ► Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %
- Okay

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

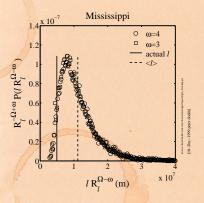
Scaling relations

Fluctuations

Models

Nutshell

► How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- ► Predicted Mean length
 - Predicted Sto
- ► Actual length/Mean
- ▶ Okav.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

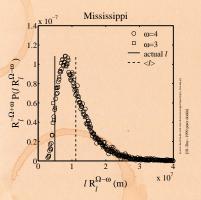
Scaling relations

Fluctuations

Models

Nutshell

How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- ► Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- ► Actual length/Mean length = 44 %
- ▶ Okay.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horto

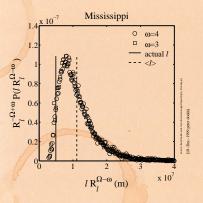
Scaling relations

Fluctuations

Models

Nutshell

How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- ► Actual length/Mean length = 44 %
- Okav

Branching Networks II

Horton ⇔ Tokunaga

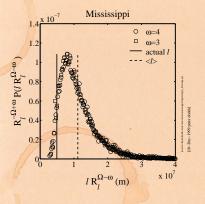
Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

How well does overall basin fit internal pattern?



- ► Actual length = 4920 km (at 1 km res)
- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %

Branching Networks II

Horton ⇔ Tokunaga

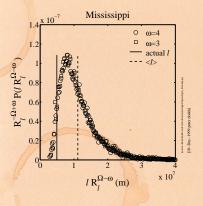
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- ► Actual length/Mean length = 44 %
- ► Okay.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

.. ..

Nutshell

hasin:

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

0/00

Daoiii.	~77	~72	\circ_{ℓ}	~/~22	0 (/ 252
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
		-		/-	,-
	а	$ar{a}_\Omega$	σ_{a}	$a/ar{a}_\Omega$	$\sigma_{\pmb{a}}/ar{\pmb{a}}_{\pmb{\Omega}}$
Mississippi	2.74	a_{Ω} 7.55	σ_a 5.58	a/a_{Ω} 0.36	σ_a/a_{Ω} 0.74
Mississippi Amazon				,	'
• •	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36	0.74 0.89
Amazon Nile	2.74 5.40 3.08	7.55 9.07 0.96	5.58 8.04 0.79	0.36 0.60 3.19	0.74 0.89 0.82

Branching Networks II

Horton ⇔ okunaga

Reducing Horton Scaling relations

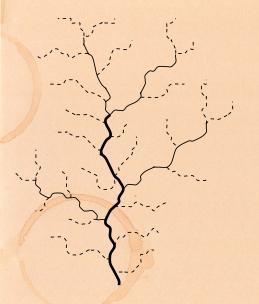
Eluctuations

Fluctuations

Models

Nutshell

Combining stream segments distributions:



Stream segments sum to give main stream lengths

 $\ell_{\omega} = \sum_{j=1}^{\mu=\omega} s_{\mu}$

envolution of stributions for Branching Networks II

Horton ⇔ Tokunaga

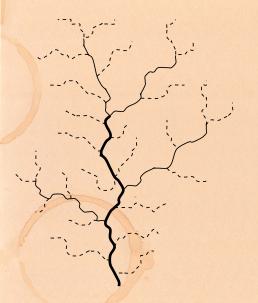
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Combining stream segments distributions:



Stream segments sum to give main stream lengths

 $\ell_\omega = \sum s_\mu$

 $\triangleright P(\ell_{\omega})$ is a convolution of distributions for the s_{ω}

Branching Networks II

Reducing Horton Scaling relations

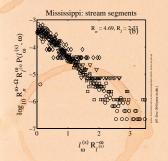
Fluctuations

Models

Nutshell

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



 $N(s|\omega) = \frac{1}{R_n^2 R_n^2} F(s/R_n^2)$ $F(x) = e^{-x/8}$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horto

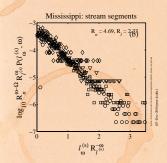
Scaling relations

Fluctuations

Models Nutshell

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F(s/R_{\ell}^{\omega})$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq 900$ m.

Branching Networks II

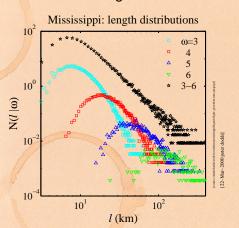
Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models Nutshell



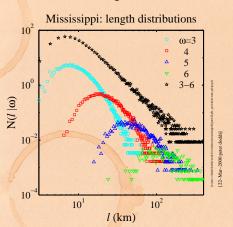
 $ightharpoonup P(\ell) \sim \ell^{-\gamma}$

Scaling relations **Fluctuations**

Models

Nutshell

Next level up: Main stream length distributions must combine to give overall distribution for stream length



 $ightharpoonup P(\ell) \sim \ell^{-\gamma}$

- Another round of convolutions [3]
- Interesting...

Horton ⇔ Tokunaga

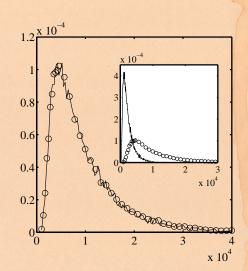
Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Number and area distributions for the Scheidegger model $P(n_{1,6})$ versus $P(a_6)$.



Branching Networks II

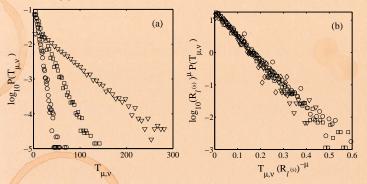
Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Scheidegger:



- ▶ Observe exponential distributions for $T_{\mu,\nu}$
- Scaling collapse works using R_s

Branching Networks II

Horton ⇔ Tokunaga

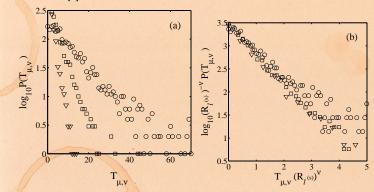
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Mississippi:



Same data collapse for Mississippi...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models Nutshell

Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models Nutshell

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segmenterminating is constant:

 $ilde{p}_n \simeq 1/(R_s)^{\mu-1} \xi$

Probability decays exponentially with stream order

Inter-tributary lengths exponentially distributed

s random spatial distribution of stream segments

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

Probability decays exponentially with stream order

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models Nutshell

Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- → random spatial distribution of stream segments

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models Nutshell

Deferences

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu, \nu}}
ho_{
u}^{T_{\mu,
u}} (1 - p_{
u} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

where

• $p_{\nu}=$ probability of absorbing an order ν side stream

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} {s_{\mu} - 1 \choose T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

where

- $p_{\nu} =$ probability of absorbing an order ν side stream
- $m{ ilde{
 ho}}_{\mu}=$ probability of an order μ stream terminating

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

where

- p_{ν} = probability of absorbing an order ν side stream
- ightharpoonup $ilde{p}_{\mu}=$ probability of an order μ stream terminating
- Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

• Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 - \rho_{\nu} - \tilde{p}$

approximate liberally

▶ Ohtail

 $P(x, y) = Nx^{-1/2} [F(y/x)]^{x}$

 $\begin{pmatrix} -(1-v) \begin{pmatrix} v \\ - \end{pmatrix} \end{pmatrix}$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

/lodels

Nutshell

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 - p_{\nu} - \tilde{p}_{\mu}$, approximate liberally.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relatio

Fluctuations

Nutshell

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

- Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- ▶ Obtain

$$P(x,y) = Nx^{-1/2} [F(y/x)]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

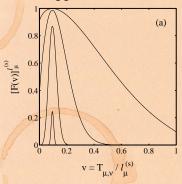
Scaling relatio

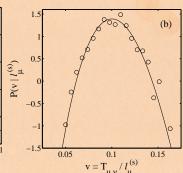
Fluctuations

Models Nutshell

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:





Branching Networks II

Reducing Horton

Scaling relations

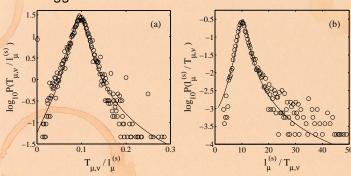
Fluctuations

Models

Nutshell

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

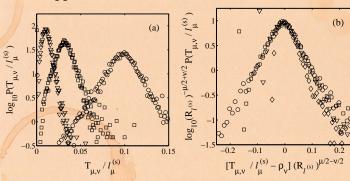
Fluctuations

Models

Nutshell

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

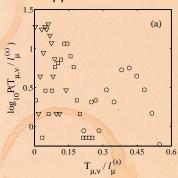
Fluctuations

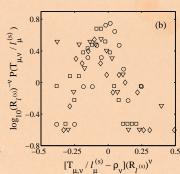
Models

Nutshell

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Mississippi:





Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

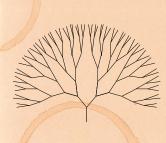
Scaling relations

Fluctuations

Models

Nutshell

Random subnetworks on a Bethe lattice [13]



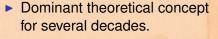
Branching Networks II

Reducing Horton Scaling relations

Models

Nutshell

Random subnetworks on a Bethe lattice [13]



- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river networ statistics [7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices
 infinite dimensional spaces
 (oops)
- So let's move on.

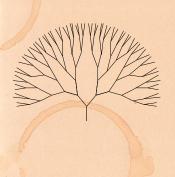
Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

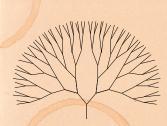
Fluctuations

Models

Nutshell



Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- So let's move on.

Branching Networks II

Horton ⇔ Tokunaga

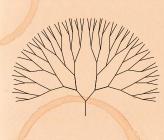
Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- ➤ But Bethe lattices unconnected with surfaces.
 ➤ In fact, Bethe lattices ∞
 - infinite dimensional spaces (oops).
- So let's move on.

Branching Networks II

Horton ⇔ Tokunaga

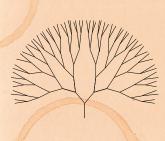
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.

infinite dimensional spaces (oops)

So let's move on....

Branching Networks II

Horton ⇔ Tokunaga

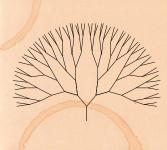
Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).

Branching Networks II

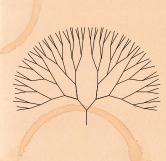
Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- So let's move on...

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

[15, 16, 14]

Branching Networks II

Horton ⇔ Tokunaga

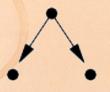
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

 Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluetuetiene

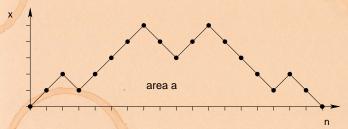
Models

Nutshell

A toy model—Scheidegger's model

Random walk basins:

▶ Boundaries of basins are random walks



Branching Networks II

Horton ⇔ Tokunaga

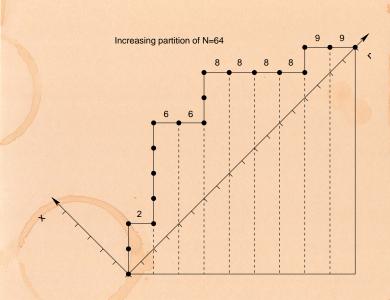
Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell



Branching Networks II

Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

 $P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$

Find $\tau = 4/3$, h = 2/3, y = 3/2, d =

Note $\tau = 2 - h$ and $\gamma = 1/h$.

▶ R_n and R_p have not been derived analytically

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$
.

and so $P(\ell) \propto \ell^{-3/2}$.

Branching Networks II

Models

Nutshell

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$
.

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

bearing relatio

Fluctuations

Models

Nutshell

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$
.

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}.$$

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

scaling relatio

Fluctuations

Models

Nutshell

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- $ightharpoonup R_n$ and R_ℓ have not been derived analytically.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes h(x) evolve such that energy dissipations is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d}ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- ▶ Landscapes obtained numerically give exponents near that of real networks.
- ▶ But: numerical method used matters
- And: Maritan et al. find basic universality classes ar that of Scheideguer self-similar, and a third kind of random rietwork [8]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

Landscapes obtained numerically give exponents

Duty assessment and and

But: numerical method used matters

 And: Marifan et al. find basic universality classes ar that of Scheidegger, self-similar, and a third-kind of random rietwork [8]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathrm{d} ec{r} \, (\mathrm{flux}) imes (\mathrm{force})$$

- Landscapes obtained numerically give exponents
- Healthat Official Helworks.
- But: numerical method used matter
- And: Maritan et al. find basic universality classes ar that of Scheidegner, self-similar, and a third kind of random network [8]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathrm{d} ec{r} \; (\mathrm{flux}) imes (\mathrm{force}) \sim \sum_i a_i
abla h_i$$

- Landscapes obtained numerically give exponents
- But: numerical method used matters
- And: Maritan et al. find basic universality classes ar that of Scheidegger, self-similar, and a third kind of random network [8]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents
- But: numerical method used matters
- And: Maritan et al. find basic universality classes ar that of Scheidegger, self-similar, and a third kind of tandom network ^[8]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

Landscapes obtained numerically give exponents near that of real networks.

But

 And: Maritan et al. find basic universality classes are that at Scheidechas self-dimiter and a third kind of

random network [8]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- ▶ But: numerical method used matters.
- ▶ And: Maritan et al. find basic universality classes are

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton

9

Fluctuations

Models

Nutshell

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5-0.7	1.0–1.2

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L_{||}^d$ (stream self-affinity).

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- hib. for 2-d networks, these laws are 'planform' laws
 - Abundant scaling relations can be derived.
- ▶ Can take H_n, H_r, and o as three independent parameters necessary to describe all 2-d branching parameters.
- For scaling laws, only $h = \ln R_b / \ln R_h$ and d are needed.
- ▶ Laws can be extended nicely to laws of distributions
- Numérous models of branching network evolution exist: nothing rock solid vet.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.

Abundant scaling relations can be derived.

 \rightarrow Can take R_n , R_l , and d as three independent

parameters necessary to describe all 2-d branchi

= in R_{ℓ} /in $R_{
ho}$ and d are

➤ Numerous models of branching network evolution

 Numerous models of branching network evolution exist: publified rock solid vel Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.

Models Nutshell

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

Water Resources Research, 30(12):3541–3543, 1994.

- [2] P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf (\pm)
- [3] P. S. Dodds and D. H. Rothman.

 Geometry of river networks. II. Distributions of component size and number.

 Physical Review E, 63(1):016116, 2001. pdf (H)

Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

References II

Branching Networks II

[4] P. S. Dodds and D. H. Rothman.

Geometry of river networks. III. Characterization of component connectivity.

Physical Review E, 63(1):016117, 2001. pdf (⊞)

[5] N. Goldenfeld.

<u>Lectures on Phase Transitions and the</u>
<u>Renormalization Group</u>, volume 85 of <u>Frontiers in</u>
<u>Physics</u>.

Addison-Wesley, Reading, Massachusetts, 1992.

[6] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

1995.

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993.

[8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar. Universality classes of optimal channel networks. <u>Science</u>, 272:984–986, 1996. pdf (⊞)

[9] S. D. Peckham.
New results for self-similar trees with applications to river networks.
Water Resources Research, 31(4):1023–1029,

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

References IV

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

[11] A. E. Scheidegger.
 A stochastic model for drainage patterns into an intramontane trench.
 Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967.

[12] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

[13] R. L. Shreve.
Infinite topologically random channel networks.
Journal of Geology, 75:178–186, 1967.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuation

Models

Nutshell

References V

Branching Networks II

[14] H. Takayasu.

Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563-2565, 1989.

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection.

Physical Review A, 37(8):3110-3117, 1988.

[16] M. Takayasu and H. Takayasu.

Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345-4347, 1989.

Tokunaga

a ...

Threatreations

Madala

Nutshell

References VI

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. Water Resources Research, 26(9):2243–4, 1990.

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966.

[19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References VII

Branching Networks II

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984.

[21] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Models

Nutshell

