Branching Networks II

Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

riuctuatic

Models

Nutshell

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$. Insert guestion 2, assignment 2 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

calling relation

Fluctuation

Models

Nutshell

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream\ segment\ lengths}}{{
m basin\ area}} = rac{\sum_{\omega=1}^\Omega n_\omega ar{s}_\omega}{a_\Omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

caming relation

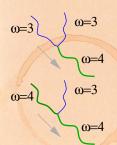
Fluctuation

Nutshell

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega'} T_{\omega' \omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

calling relation

Fluctuation

Models

Nutshell

More with the happy-making thing

Putting things together:

$$n_{\omega} = \underbrace{\frac{2n_{\omega+1}}{\text{generation}}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{\frac{T_{\omega'-\omega}n_{\omega'}}{\text{absorption}}}_{\text{absorption}}$$

- ► Use Tokunaga's law and manipulate expression to create R_n's.
- ► Insert question 3, assignment 2 (⊞)
- ► Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

calling relation

Fluctuations

Models

Nutshell

Finding other Horton ratios

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- \blacktriangleright For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horte

Scaling relation

riuciuali

Models Nutshell

Horton and Tokunaga are happy

Altogether then:

$$ightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T
ightarrow ar{R}_s = R_T$$

▶ Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_{s} = R_{T}$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

luctuation

Models Nutshell

Horton and Tokunaga are happy

Some observations:

- $ightharpoonup R_n$ and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

riuctuation

Models Nutshell

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell$$

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)...

Branching Networks II

Horton ⇔ Tokunaga

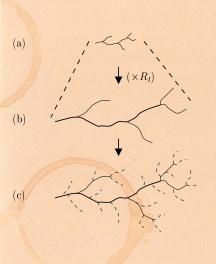
Reducing Horto

Models

Nutshell

Horton and Tokunaga are friends

From Horton to Tokunaga [2]



- Assume Horton's laws hold for number and length
- Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
- Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .
- Maintain drainage density by adding new order ω – 1 streams

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

Horton and Tokunaga are friends

... and in detail:

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, order $\omega + 1$ stream segment has T_1 order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right).$$

For large ω , Tokunaga's law is the solution—let's check...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

riuctuatio

Models

Nutshell

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

$$T_{1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k-1} 1 + T_{1} R_{\ell}^{i-1} \right)$$

$$= (R_{\ell} - 1) \left(1 + T_{1} \frac{R_{\ell}^{k-1} - 1}{R_{\ell} - 1} \right)$$

$$\simeq (R_{\ell} - 1) T_{1} \frac{R_{\ell}^{k-1}}{R_{\ell} - 1} = T_{1} R_{\ell}^{k-1} \quad ... \text{ yep.}$$

Branching Networks II

Horton ⇔ Tokunaga

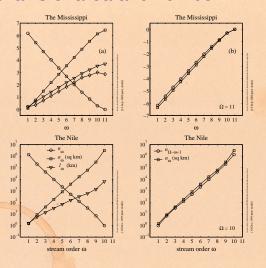
Reducing Horton

Fluctuations

A- dele

Nutshell

Horton's laws of area and number:



- In right plots, stream number graph has been flipped vertically.
- ▶ Highly suggestive that $R_n \equiv R_a$...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Measuring Horton ratios is tricky:

- How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Models

Nutshell

Mississippi:

ω range	R_n	R_a	R_ℓ	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3,8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

Amazon:

ω range	R_n	Ra	R_ℓ	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

- $ightharpoonup a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{s}_\omega/
ho_{
m dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

Branching Networks II

Reducing Horton

Models

Nutshell

Reducing Horton's laws:

Continued ...

 $\mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$ $= \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)}$ $\sim R_n^{\Omega - 1} \bar{\mathbf{s}}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow$

So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

ocalling relation

Fluctuation

Models

Nutshell

Reducing Horton's laws:

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- ► Insert question 4, assignment 2 (⊞)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Models

Nutshell

Equipartitioning:

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \text{const}}$$

► Reason:

$$n_{\omega} \propto (R_n)^{-\omega}$$
 $ar{a}_{\omega} \propto (R_a)^{\omega} \propto n_{\omega}^{-1}$

Branching Networks II

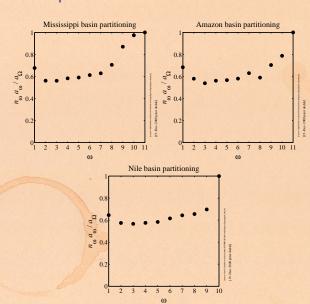
Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Models Nutshell

Equipartitioning: Some examples:



Branching Networks II

> Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

22 of 74

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

· raotac

Models Nutshell

References

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- ▶ Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - ► Statistical mechanics (phase transitions) [5]
- ► A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Horton ⇔ Tokunaga

Scaling relations

oamig roland

Nutshell

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathsf{max}}} P(\ell) \mathrm{d}\ell$$

$$P_{>}(\ell_*)=1-P(\ell<\ell_*)$$

Also known as the exceedance probability.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Tuctual

Models Nutshell

Finding γ :

- The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\sf max}} {\ell^{-\gamma} {
m d}\ell}$$

$$= \frac{\ell^{-\gamma+1}}{-\gamma+1} \Big|_{\ell=\ell_*}^{\ell_{\text{max}}}$$

$$\propto \ell_*^{-\gamma+1}$$
 for $\ell_{\text{max}} \gg \ell_*$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate $P_>(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

Use Horton's law of stream segments: $s_{\omega}/s_{\omega-1} = R_s...$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

· idotad

Nutshell

D------

Finding γ :

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

-

$$P_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Nutshell

Finding γ :

We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(rac{R_{s}}{R_{n}}
ight)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Finding γ :

1

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using
$$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a-1)$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Nutshell

Finding γ :

Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\ell_\omega \propto R_\ell^\omega = R_s^\omega = e^{\omega \ln R_s}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models Nutshell

Finding γ :

▶ Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega}^{} - \ln(R_n/R_s) / \ln R_s$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question 5, assignment 2 (⊞)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuatio

Models Nutshell

Hack's law: [6]

>

$$\ell \propto a^h$$

- ► Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Eluctuations

Models

Nutshell

Connecting exponents Only 3 parameters are independent: e.g., take *d*, *R*_n, and *R*_s

scaling relation/parameter: [2]
d
$T_1 = R_n - R_s - 2 + 2R_s/R_n$
$R_T = R_s$
R_n
$R_a = \frac{R_n}{R_n}$
$R_\ell = extcolor{R_s}$
$h = \log R_s / \log R_n$
D = d/h
H = d/h - 1
$\tau = 2 - h$
$\gamma = 1/h$
$\beta = 1 + h$
$arphi= extsf{d}$

Branching Networks II

Horton ⇔ Tokunaga

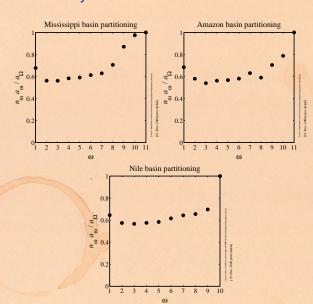
Reducing Horton

Scaling relations

-luctuation

Models Nutshell

Equipartitioning reexamined: Recall this story:



Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

- ► P(a) overcounts basins within basins...
- while stream ordering separates basins...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

noving beyond the mean.

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_s$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Horton ⇔ Tokunaga

Reducing Horton

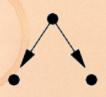
Scaling relation

Fluctuations

Models Nutshell

A toy model—Scheidegger's model

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

- Flow is directed downwards
- Useful and interesting test case—more later...

Branching Networks II

Scaling relations

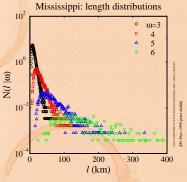
Fluctuations

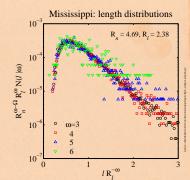
Models

Nutshell

$$ullet$$
 $ar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega}F_{\ell}(\ell/R_{\ell}^{\omega})$

$$ullet$$
 $ar{a}_\omega \propto (R_a)^\omega \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^\omega)$





- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

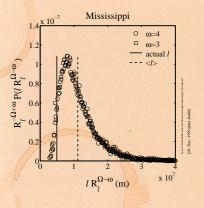
Branching Networks II

Fluctuations

Nutshell

Generalizing Horton's laws

How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- ► Actual length/Mean length = 44 %
- Okay.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Generalizing Horton's laws

hasin:

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

0/0-

basiii.	$\epsilon\Omega$	٤22	O_ℓ	$\epsilon/\epsilon\Omega$	$O_{\ell}/\epsilon\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	а	$ar{a}_\Omega$	σ_{a}	$a/ar{a}_\Omega$	$\sigma_{a}/ar{a}_{\Omega}$
Mississippi	<i>a</i> 2.74	\bar{a}_{Ω} 7.55	σ_a 5.58	a/\bar{a}_{Ω} 0.36	$\sigma_a/\bar{a}_{\Omega}$ 0.74
Mississippi Amazon				•	
• •	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74 0.89
Amazon Nile	2.74 5.40 3.08	7.55 9.07 0.96	5.58 8.04 0.79	0.36 0.60 3.19	0.74 0.89 0.82

Branching Networks II

Horton ⇔ okunaga

Reducing Horton

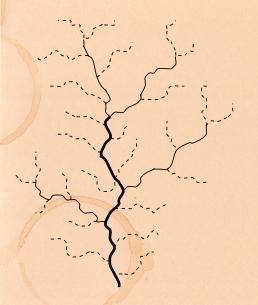
Scaling relations

Fluctuations

Models

Nutshell

Combining stream segments distributions:



Stream segments sum to give main stream lengths

 $\ell_\omega = \sum s_\mu$

 $\triangleright P(\ell_{\omega})$ is a convolution of distributions for the s_{ω}

Branching Networks II

Reducing Horton Scaling relations

Fluctuations

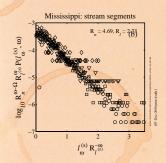
Models

Nutshell

Generalizing Horton's laws

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$N(s|\omega) = rac{1}{R_n^{\omega}R_{\ell}^{\omega}}F\left(s/R_{\ell}^{\omega}
ight)$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq 900$ m.

Branching Networks II

Horton ⇔ Tokunaga

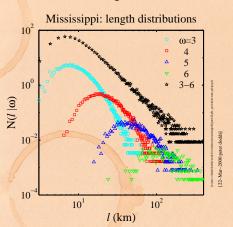
Reducing Horton

Scaling relatio

Fluctuations

Models Nutshell

 Next level up: Main stream length distributions must combine to give overall distribution for stream length



- $ightharpoonup P(\ell) \sim \ell^{-\gamma}$
- Another round of convolutions [3]
- Interesting...

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

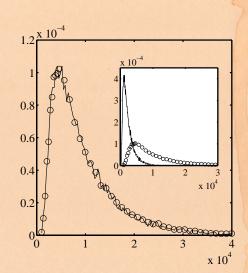
Fluctuations

Models

Nutshell

Generalizing Horton's laws

Number and area distributions for the Scheidegger model $P(n_{1.6})$ versus $P(a_6)$.



Branching Networks II

Horton ⇔ Tokunaga

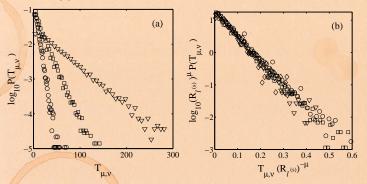
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Scheidegger:



- ▶ Observe exponential distributions for $T_{\mu,\nu}$
- Scaling collapse works using R_s

Branching Networks II

Horton ⇔ Tokunaga

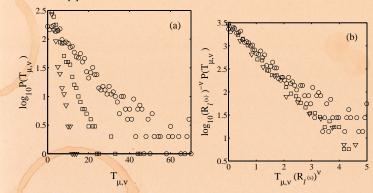
Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Mississippi:



Same data collapse for Mississippi...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- → random spatial distribution of stream segments

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

where

- p_{ν} = probability of absorbing an order ν side stream
- $m{ ilde{
 ho}}_{\mu}=$ probability of an order μ stream terminating
- Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} {s_{\mu} - 1 \choose T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

- Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- ▶ Obtain

$$P(x,y) = Nx^{-1/2} [F(y/x)]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

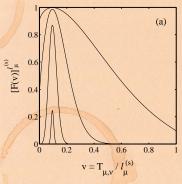
Scaling relatio

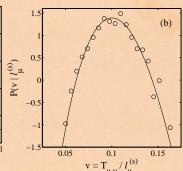
Fluctuations

Nutshell

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:





Branching Networks II

Reducing Horton

Scaling relations

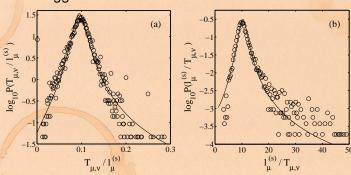
Fluctuations

Models

Nutshell

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

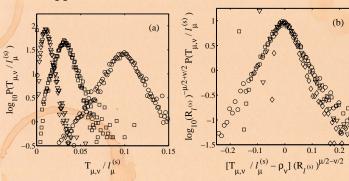
Fluctuations

Models

Nutshell

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

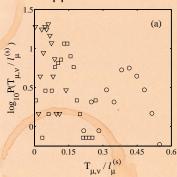
Fluctuations

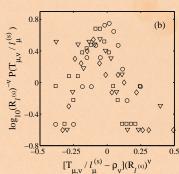
Models

Nutshell

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Mississippi:





Branching Networks II

Horton ⇔ Tokunaga

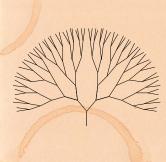
Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- So let's move on...

Horton ⇔ Tokunaga

Reducing Horton

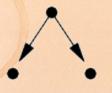
Fluctuations

Models

Nutshell

Scheidegger's model

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Flustuations

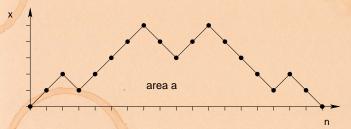
Models

Nutshell

A toy model—Scheidegger's model

Random walk basins:

▶ Boundaries of basins are random walks



Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

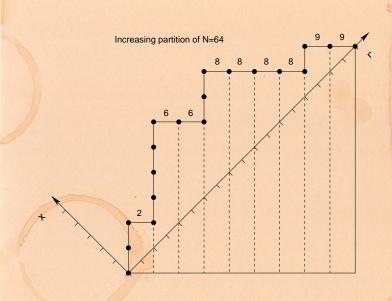
Scaling relations

Fluctuations

Models

Nutshell

Scheidegger's model



Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

Þ

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- $ightharpoonup R_n$ and R_ℓ have not been derived analytically.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \ (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5-0.7	1.0–1.2

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity).

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

Reducing Horton

Joanning Tolatio

· idotada

Models Nutshell

Water Resources Research, 30(12):3541–3543, 1994.

- [2] P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf (⊞)
- [3] P. S. Dodds and D. H. Rothman.

 Geometry of river networks. II. Distributions of component size and number.

 Physical Review E, 63(1):016116, 2001. pdf (H)

Tokunaga

Reducing Horton

Eluctuations

Madala

Nutshell

References II

Branching Networks II

[4] P. S. Dodds and D. H. Rothman.

Geometry of river networks. III. Characterization of component connectivity.

Physical Review E, 63(1):016117, 2001. pdf (⊞)

[5] N. Goldenfeld.

<u>Lectures on Phase Transitions and the</u>
<u>Renormalization Group</u>, volume 85 of <u>Frontiers in</u>
<u>Physics</u>.

Addison-Wesley, Reading, Massachusetts, 1992.

[6] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models Nutshell

[8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar. Universality classes of optimal channel networks.

Science, 272:984-986, 1996. pdf (⊞)

[9] S. D. Peckham.

New results for self-similar trees with applications to river networks.

Water Resources Research, 31(4):1023–1029, 1995.

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

References IV

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

[11] A. E. Scheidegger.
 A stochastic model for drainage patterns into an intramontane trench.
 Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967.

[12] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

[13] R. L. Shreve.
Infinite topologically random channel networks.
Journal of Geology, 75:178–186, 1967.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuation

Models

Nutshell

References V

Branching Networks II

[14] H. Takayasu.

Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563-2565, 1989.

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection.

Physical Review A, 37(8):3110–3117, 1988.

[16] M. Takayasu and H. Takayasu.

Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345-4347, 1989.

Tokunaga

neducing Hori

Modele

Nutshell

References VI

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. Water Resources Research, 26(9):2243–4, 1990.

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966.

[19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models Nutshell

References VII

Branching Networks II

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

[21] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

