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Basic idea:

>

>

Random networks with arbitrary degree distributions
cover much territory but do not represent all
networks.
Moving away from pure random networks was a key
first step.
We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
Node attributes may be anything, e.g.:

1. degree

2. demographics (age, gender, etc.)

3. group affiliation

» We speak of mixing patterns, correlations, biases...

» Networks are still random at base but now have more

global structure.
Build on work by Newman [ !
Serano. [,

, and Boguna and
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General mixing between node categories

» Assume types of nodes are countable, and are
assigned numbers 1, 2,3, ....

» Consider networks with directed edges.

e —pr( @ edge connects a node of type p
e to a node of type v

a, = Pr(an edge comes from a node of type 1)

b, = Pr(an edge leads to a node of type v)

» Write E = [e,,], @ = [a,], and b = [b,].
» Requirements:

dew=1,> e,=a,and) e, =b,
% v W

Notes:

» Varying e, allows us to move between the following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0 if u # v and Z“ e =1.

2. Uncorrelated networks (as we have studied so far)
For these we must have independence: e,, = a,b,.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.

» Disassortative networks can be hard to build and
may require constraints on the e,,, .

» Basic story: level of assortativity reflects the degree
to which nodes are connected to nodes within their
group.

Correlation coefficient:

» Quantify the level of assortativity with the following
assortativity coefficient [°l:
_ D € — 2y @b
1—3, 8uby

E—||E%;
T—IEl4

where || - ||1 is the 1-norm = sum of a matrix’s entries.

» TrE is the fraction of edges that are within groups.

» ||E?||; is the fraction of edges that would be within
groups if connections were random.

» 1 —||E?||1 is a normalization factor 0 fyux = 1.
» When Tre,, = 1,wehave r=1. v
» When e, = a,b,, we have r =0. v
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Correlation coefficient:

Notes:

» r = —1is inaccessible if three or more types are
present.

» Disassortative networks simply have nodes
connected to unlike nodes—no measure of how
unlike nodes are.

» Minimum value of r occurs when all links between
non-like nodes: Tre,,, = 0.

>

o _lIE
1—1IE2[|4
where —1 < ryin < 0.

Scalar quantities

» Now consider nodes defined by a scalar integer
quantity.

» Examples: age in years, height in inches, number of
friends, ...

> ej = Pr (a randomly chosen edge connects a node
with value j to a node with value k).

> g; and by are defined as before.

» Can now measure correlations between nodes
based on this scalar quantity using standard Pearson
correlation coefficient (E):

o >jx) k(e — ajbk) (k) = ()alk)b

7a% L f(R)a G5 k) (0

» This is the observed normalized deviation from
randomness in the product jk.

Degree-degree correlations

» Natural correlation is between the degrees of
connected nodes.

» Now define ej with a slight twist:

e —pr( 2" edge connects a degree j + 1 node
k= to a degree k + 1 node

an edge runs between a node of in-degree j
=Pr
and a node of out-degree k

» Useful for calculations (as per Ry)

» Important: Must separately define Py as the {ey}
contain no information about isolated nodes.

» Directed networks still fine but we will assume from
here on that ey = ey;.

)
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Degree-degree correlations

» Notation reconciliation for undirected networks:
. >k ) k(e — RjRk)

2
R

where, as before, Ry is the probability that a
randomly chosen edge leads to a node of degree

k+ 1, and

2
a—,%:ZFR,— ZjR,- .
j j

Degree-degree correlations

Error estimate for r:

» Remove edge i and recompute r to obtain r;.

» Repeat for all edges and compute using the jackknife

method (m) 2]

oF = (r—rp.

» Mildly sneaky as variables need to be independent
for us to be truly happy and edges are correlated...

Measurements of degree-degree correlations

Group Network Type Sizen  Assortativity r  Error o,
a  Physics coauthorship undirected 52909 0363 0.002
a  Biology coauthorship undirected 1520251 0.127 0.0004
b i i i 253339 0.120 0.002
Social ¢ Film actor collaborations  undirected 449913 0.208 0.0002
d  Company directors undirected 7673 0276 0.004
Student relationships undirected 573 ~0.029 0037
f  Email address books directed 16881 0092 0.004
g Power grid undirected 4941 —0.003 0013
Technological ~ h  Internet undirected 10697 ~0.189 0.002
i World Wide Web directed 269504 ~0.067 0.0002
i Software dependencies directed 3162 -0016 0.020
k  Protein interactions undirected 2115 —0.156 0010
1 Metabolic network undirected 765 —0.240 0.007
Biological m Neural network directed 307 -0.226 0016
n Marine food web directed 134 —0.263 0037
o Freshwater food web directed 92 -0326 0031

» Social networks tend to be assortative (homophily)
» Technological and biological networks tend to be

disassortative
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Spreading on degree-correlated networks

» Next: Generalize our work for random networks to
degree-correlated networks.

» As before, by allowing that a node of degree k is
activated by one neighbor with probability B+, we
can handle various problems:

1. find the giant component size.
2. find the probability and extent of spread for simple
disease models.

3. find the probability of spreading for simple threshold

models.

Spreading on degree-correlated networks

» Goal: Find f,; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

» Repeat: a node of degree k is in the game with
probability By .

» Define By = [Bk1]-

» Plan: Find the generating function
Fi(x; B1) = Xozo fajx™

Spreading on degree-correlated networks

» Recursive relationship:

Fi(x;By) = OZ ]k1—Bk+11)

+ XZ %Bmm [Fk(X; B )]k
k=0 "

» First term = Pr that the first node we reach is not in

the game.

» Second term involves Pr we hit an active node which

has k outgoing edges.
» Next: find average size of active components

reached by following a link from a degree j + 1 node

— FI(1:By).
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Spreading on degree-correlated networks

» Differentiate F;(x; By), set x = 1, and rearrange.

» We use Fi(1; B1) = 1 which is true when no giant
component exists. We find:

RiF/(1;B1) = 6xBrst1 + Y ke Bry1.1Fi(1; By).

» Rearranging and introducing a sneaky dj:

Z SR — kBiy1,181) Fr(1: By) Z €k Bk1.1-
k=0

Spreading on degree-correlated networks

» In matrix form, we have
Ag 5 F'(1:B1) = EB;
where
F(1;B
[ (1; 1)} k+1

(Elj+1 k41 = €k, and [51]”1

= F(1:By),

= Bk411.

Spreading on degree-correlated networks
» So, in principle at least:

F'(1;By) = A_'. EB.

E,B;

» Now: as F'(1; By), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

» Right at the transition, the average component size

explodes.

» Exploding inverses of matrices occur when their
determinants are 0.

» The condition is therefore:

detA 5 =0
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Spreading on degree-correlated networks

» General condition details:

detAEE = det [5];(:‘:?;(,1 — (k—1)Byg1 ej,17k,1] =0.

» The above collapses to our standard contagion
condition when ej = R;R.

» When B, = BT, we have the condition for a simple
disease model’'s successful spread

det [(Sjkﬁk,1 — B(k — 1)9],11/(,1} =0.

» When 91 = T, we have the condition for the
existence of a giant component:

det [5,‘/(/?/(,1 —(k— 1)6/,1’;(,1] =0.

» Bonusville: We'll find a much better version of this
set of conditions later...

Spreading on degree-correlated networks

We’ll next find two more pieces:

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Triggering probability:

» Generating function:

H(x:Bi) = x> Py [qu(X; §1)]k

k=0

» Generating function for vulnerable component size is

more complicated.

Spreading on degree-correlated networks

» Want probability of not reaching a finite component.

Plrig = Strig =1- H(11§1)

=1 7§:Pk [Fk_1(1;§1)]k

k=0

» Last piece: we have to compute Fx_1(1; By ).

» Nastier (nonlinear)—we have to solve the recursive

expressmn we started with when x = 1:
€
Fi(1; By) = > ko /k( — By, 1)Jr

ko R Bk+11 [Fk(1 51)]

» lterative methods should work here.
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Spreading on degree-correlated networks

» Truly final piece: Find final size using approach of
Gleeson [°], a generalization of that used for
uncorrelated random networks.

» Need to compute 0;;, the probability that an edge
leading to a degree j node is infected at time t.

» Evolution of edge activity probability:

0141 = Gi(07) = o + (1 — o)
0o e 1 k—1 k—1 ) )
) ]F;-f 12( i )6',2’[(1 — O)* "By
k=1 v i

» Overall active fraction’s evolution:

=) k

K\ .
bri1 = do+(1—d0) D _ Pk (i)9é,t(1 — k1) By

k=0 i=0

Spreading on degree-correlated networks

» As before, these equations give the actual evolution

of ¢ for synchronous updates. . .
» Contagion condition follows from 6;,1 = G(6})-
» Expand G around 0y = 6

22G(0
2| Z 892 GK t

011 = Gj(0)+k,1 Z)Hk‘,

> If Gj(ﬁ) # 0 for at least one j, always have some
infection.

> If G(0) =
» Condition for spreading is therefore dependent on
eigenvalues of this matrix:
9G/(0) _ €141
=—“——(k—1)B
B Ry K~ DB

Insert question from assignment 9 (E)

0V, want largest eigenvalue DG’( )

How the giant component changes with
assortativity:

08 —
networks
0.6 —

> 1.

» More assortative

giant component §

from Newman, 2002 4]

0.4

0.2

percolate for lower

average degrees
» But disassortative

networks end up

- o assortative
o neutral
4 disassortative

00 ‘ with higher
! 10 100
exponential parameter k eXtentS. of
spreading.
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