
Complex Networks, CSYS/MATH 303—Assignment 8

University of Vermont, Spring 2011

Dispersed: Sunday, April 10, 2011.

Due: By start of lecture, 2:30 pm, Thursday, April 21, 2011.

Some useful reminders:

Instructor: Peter Dodds

Office: Farrell Hall, second floor, Trinity Campus

E-mail: peter.dodds@uvm.edu

Office hours: 3:45 pm to 4:15 pm Tuesday post class; 12:00 pm to 2:00 pm, Wednesday

Course website: http://www.uvm.edu/∼pdodds/teaching/courses/2011-01UVM-303

All parts are worth 3 points unless marked otherwise. Please show all your working

clearly and list the names of others with whom you collaborated.

Graduate students are requested to use LATEX (or related variant).

1. Using Gleeson and Calahane’s iterative equations below, derive the contagion

condition for a vanishing seed by taking the limit φ0 → 0 and t →∞.
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where θ0 = φ0, and Bkj is the probability that a degree k node becomes active

when j of its neighbors are active.

Recall that by contagion condition, we mean the requirements of a random

network for macroscopic spreading to occur.

To connect the paper’s model and notation to those of our lectures, given a

specific response function F and a threshold model, the Bkj are given by

Bkj = F (j/k).

Allow Bk0 to be arbitrary (i.e., not necessarily 0 as for simple threshold functions).

Here’s a graphical hint for the three cases you need to consider as θ0 → 0:
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Success: Sucesss: Fail:

2. Derive equation 4 in Gleeson and Cahalane (2007) [1]:
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3. (9 pts)

(a) Derive equation 6 in Gleeson and Cahalane (2007), which is a second order

approximation to the cascade condition for vanishing seeds.

Here’s an example of how this must work:

(b) Hence reproduce the dashed analytic curve shown in Figure 1 of their paper.

(c) Explain why there are jumps in the cascade window outline that do not occur

at reciprocals of the integers.

4. (6 pts)

(a) By solving for the fixed points of θt+1 = G(θt; 0), reproduce Figure 3 in

Gleeson and Cahalane (2007):
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Figure 2!a" shows ! on Poisson random graphs with
thresholds drawn from a Gaussian distribution of mean R and
standard deviation "=0.2. Unlike the assumption in #13$ that
F!0"=0, a Gaussian distribution necessarily implies the pres-
ence of negative-valued thresholds among the population, so
F!0"#0. Negative-threshold agents act as a natural seed,
since they activate regardless of the states of their neighbors.
The presence of these innovators #13$ allows us to set !0
=0 in this case. The extended cascade condition !6" again
gives a good approximation to the discontinuous ! transition
at high z values. Figure 2!b" focuses on the low-z transition
and highlights the existence of a discontinuous transition in z
for certain threshold distributions. This is qualitatively dif-
ferent from the previously-studied case #13$ where only con-
tinuous low-z transitions were found.

Bifurcation analysis of Eq. !2" elucidates this result. In
Fig. 3 we plot the roots of the fixed-point equations G!q"
−q=0 !recall that !0=0 here; extension to nonzero !0 is
straightforward" as functions of z, for different values of the
mean threshold R. Thick solid and dashed lines denote stable
and unstable fixed points respectively #24$. The PAP means
the value of q$ achieved at a given z is that of the lowest
stable branch above q=!0. The occurrence of triple roots as
R is increased causes the smooth low-z transition seen in Fig.
3!a" to become discontinuous #as shown by the thin solid line
in Fig. 3!b"$, as previously seen in the numerical simulations
of Fig. 2!b". The discontinuous low-z transition occurs for
R#Rc, where the critical coordinates !Rc ,zc" and the value
q=qc where the triple root appears are found by numerical

root finding for the system of three equations q=!0
+ !1−!0"G!q", !1−!0"G!!q"=1, and G"!q"=0. For "=0.2
this yields !Rc ,zc"= !0.3543,3.136"; this point is marked with
an arrow in Fig. 2!a". We remark that the discontinuous tran-
sition from q$%1 to q$%0 #which induces a similar transi-
tion in ! through Eq. !1"$ occurs due to a saddle-node bifur-
cation #24$. This behavior is quite generic, occurring for a
wide variety of parameters, with the exception of the special
case studied by Watts. For !0=0 and F!0"=0 as in #13$, the
coefficient C0 is zero and the fixed-point equation always has
a root at q=0, with transcritical bifurcations on the q=0 line
giving rise to the observed transitions. However, any nonzero
seed size replaces the transcritical bifurcations with saddle-
node bifurcations as described above. We have confirmed the
accuracy of these results #and Eq. !1"$ against numerical
simulations on other configuration model network topologies
#1$, including power-law degree distributions !with exponen-
tial cutoff": pk%k−& exp!−k /'" #17$.

We turn now to the derivation of Eqs. !1"–!3". Our ana-
lytical approach is based on methods introduced by Dhar et
al. to study the zero-temperature random-field Ising model
on Bethe lattices #22$. The RFIM is a spin-based model of
magnetic materials, and its zero-temperature limit has been
extensively studied as a model for systems exhibiting hyster-
esis and Barkhausen noise #21$. A Bethe lattice of coordina-
tion number z !for integer z" is an infinite tree where every
node has exactly z neighbors. Dhar et al. derive analytical
results valid on Bethe lattices, but their numerical simula-
tions show that the theory also applies very accurately to
random graphs where every node has exactly z neighbors,
provided that short-distance loops are rare. To analyze Watts’
model we extend the approach of #22$ in two ways. First, we
consider treelike random graphs with arbitrary degree distri-
butions, rather than the Bethe lattices of #22$. Second, we
account for the PAP, which is the essential difference be-
tween Watts’ update rule and standard RFIM dynamics. This
difference between the update rules is crucial to our deriva-
tion of the !0 dependence of the activated fraction !.

We begin by replacing the given random graph !with de-
gree distribution pk" by a tree structure. The top level of the
tree is a single node with degree k, and this is connected to
its k neighbors at the next lower level of the tree. Each of
these nodes is in turn connected to ki−1 neighbors at the next
lower level, where ki is the degree of node i. The degree
distribution of the nodes in the tree is given by p̃k= !k /z"pk,
which is the distribution for the number of nearest neighbors
in a connected graph #1,25$. To find the final density ! of
active nodes, we label the levels of the tree from n=0 at the
bottom, with the top node at an infinitely high level !n
→$". Define qn as the conditional probability that a node on
level n is active, conditioned on its parent !on level n+1"
being inactive. Consider updating a node on level n+1, as-
suming that the nodes on all lower levels have already been
updated. With probability p̃k the chosen node has k neigh-
bors: one of these is its parent !on level n+2", and the re-
maining k−1 are its children !on level n". Since a fraction !0
of nodes were initially set to be active, there is a probability
!0 that we have chosen one of these nodes. In this case the
state of the node remains unchanged. On the other hand, with
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FIG. 3. !Color online" Bifurcation diagrams as described in text
for dependence of q$ on z for "=0.2 and !0=0 at R= !a" 0.35, !b"
0.371, and !c" 0.375.
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(b) Also plot G(θt; 0) for an average threshold φ∗(= R) of 0.371 for

〈k〉(= z) = 1, 2, 3, . . . , 10.

Add the cobweb diagram for a φ0 = 0 seed.

Do this by creating a recursive plotting script in matlab, for example.

You can use the following Matlab scripts/data as a basis, and most of the

work is done. You’ll need to improve the plots with some labels, and

interpret them properly. The first function calls the other two.

http://www.uvm.edu/∼pdodds/share/matlab/Gfunction.m

http://www.uvm.edu/∼pdodds/share/matlab/gleeson fig3 02.mat

http://www.uvm.edu/∼pdodds/share/matlab/cobweb3.m

(c) Discuss how the stable points move with 〈k〉.

Note: φ∗ = 0.371 matches plot (b) in Figure 3 of [1].
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