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Mechanisms

A powerful story in the rise of complexity:

» structure arises out of randomness.
» Exhibit A: Random walks... (&)

like 3.0 License.
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Random walks

The essential random walk:

» One spatial dimension.

» Time and space are discrete

» Random walker (e.g., a drunk) starts at origin x = 0.
» Step attime tis ¢;:

{+1
€t = 1

with probability 1/2
with probability 1/2

Random walks

Displacement after ¢ steps:
t
= Z €
i=1

Expected displacement:

t t
i) = <z> Y e =
i=1

i=1

Random walks

Variances sum: (H)*

M-

Var(x;) = Var

e,-)
i

t
=) Var(e) =) 1=
=1

=1

~

* Sum rule = a good reason for using the variance to measure
spread; only works for independent distributions.
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Random walks

So typical displacement from the origin scales as

o=1t/?

= A non-trivial power-law arises out of
additive aggregation or accumulation.

Random walks

Random walks are weirder than you might think...
For example:

> &t = the probability that by time step t, a random
walk has crossed the origin r times.

» Think of a coin flip game with ten thousand tosses.

» If you are behind early on, what are the chances you
will make a comeback?

» The most likely number of lead changes is... 0.

See Feller,®! Intro to Probability Theory, Volume |

Random walks

In fact:

Sot>&1t>8& >

Even crazier:
The expected time between tied scores = oc!
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Random walks—some examples

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t

L s s s s L s s s
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t

Random walks—some examples

L s s s L L L s s
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t

Random walks

The problem of first return:

» What is the probability that a random walker in one
dimension returns to the origin for the first time after t
steps?

» Will our drunkard always return to the origin?

» What about higher dimensions?

Power-Law
Mechanisms

Random Walks

Problem

Ex

Variable

transformation
Ba
Ho

Growth
Mechanisms

os, and the Web

References

e O]
‘& UNIVERSITY |§|
8l VERMONT |O

“a 100f 88

Power-Law
Mechanisms

Variable
transformation
Basics
H

s Distribution

Growth
Mechanisms
Random Copying

References

- o]
UNIVERSITY I'Jl
ﬂ; |/ VERMONT 1O}

Da > 110f88

Power-Law
Mechanisms

Random Walks

Variable
transformation
Basics

Holtsmark's Distribution
PLIPLO

Growth
Mechanisms

opying

os, and the Web

References

e O]
ﬁ UNIVERSITY Iﬁl
A s VErvONT O

Da > 120f 88


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds

First returns

Reasons for caring:
1. We will find a power-law size distribution with an
interesting exponent

2. Some physical structures may result from random
walks

3. We'll start to see how different scalings relate to
each other

Random Walks

s s L s s s s s s
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-10¢

L s s L s s s s s
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Again: expected time between ties = ...
Let’s find out why... [*!

First Returns

2 - -
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First Returns

For random walks in 1-d:

» Return can only happen when t = 2n.

> Call Prrst return(2n) = Pr(2n) probability of first return
att=2n.

» Assume drunkard first lurches to x = 1.
» The problem

Pi(2n) =2Pr(xy >1,t=1,...,2n—1, and Xz, = 0)

First Returns
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> A useful restatement: Py(2n) =
2-1Pr(xy>1,t=1,....2n—1, and x; = xzp_1 = 1)
» Want walks that can return many times to x = 1.

» (The % accounts for stepping to 2 instead of 0 at
t=2n.)

First Returns

» Counting problem (combinatorics/statistical
mechanics)

» Use a method of images

Define N(i,j, t) as the # of possible walks between

x =i and x = j taking t steps.

Consider all paths starting at x = 1 and ending at

x =1 after t = 2n — 2 steps.

Subtract how many hit x = 0.
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First Returns

Key observation:

# of t-step paths starting and ending at x = 1

and hitting x = 0 at least once

= # of t-step paths starting at x = —1 and ending at x = 1
=N(-1,1,1)

S0 Nirst reurn(20) = N(1,1,2n—2) — N(—1,1,2n - 2)

See this 1-1 correspondence visually...

First Returns

I

First Returns

» For any path starting at x = 1 that hits 0,
there is a unique matching path starting at x = —1.

» Matching path first mirrors and then tracks.
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First Returns

First Returns

Next problem: what is N(i, j, t)?

# positive steps + # negative steps = t.

Random walk must displace by j — i after t steps.
# positive steps - # negative steps = — i.

# positive steps = (t +j — i)/2.

vV vV vV vV VY Y

., t t
N(B 1= (# positive steps) in ((l‘ +j- i)/2)

First Returns

We now have

Nhirst retrn(20) = N(1,1,2n = 2) — N(—1,1,2n - 2)

where

N(i,j, t) = ((t+jt— i)/2)
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First Returns

Insert question from assignment 4 (H)

: 2n—3/2
Find Nst return(20) ~ W

» Normalized Number of Paths gives Probability
» Total number of possible paths = 227
>

1
Pﬁrst retum(zn) = ﬁNﬁrSt return(zn)

1 922n-3/2
= 220 arpp/e
1

_3/2
Nzl

First Returns

v

P(t) x t73/2, v =3/2
P(t) is normalizable
Recurrence: Random walker always returns to origin

v

v

v

Moral: Repeated gambling against an infinitely
wealthy opponent must lead to ruin.

First Returns

Higher dimensions:

Walker in d = 2 dimensions must also return
Walker may not return in d > 3 dimensions
Ford=1,y=8/2 > (t) =

vV vVv.v Yy

Same scaling holds for continuous space/time walks.

Even though walker must return, expect a long wait...
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Random walks

On finite spaces:
» In any finite volume, a random walker will visit every
site with equal probability
» Random walking = Diffusion

» Call this probability the Invariant Density of a
dynamical system

» Non-trivial Invariant Densities arise in chaotic
systems.

Random walks on

On networks:

» On networks, a random walker visits each node with
frequency «x node degree

» Equal probability still present:
walkers traverse edges with equal frequency.

Scheidegger Networks"-#

~
e

/\/<Q/

e

§>/ CONSUN <\§ N

» Triangular lattice

» ‘Flow’ is southeast or southwest with equal
probability.
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Scheidegger Networks

» Creates basins with random walk boundaries

» Observe Subtracting one random walk from another
gives random walk with increments

-+1 with probability 1/4
€t = 0  with probability 1/2
—1 with probability 1/4

» Basin length ¢ distribution: P(¢)  ¢~3/2

Connections between Exponents

For a basin of length ¢, width o< ¢1/2
Basin area a o £ - 11/2 = (3/2
Invert: ¢ o a2/3

d¢ « d(&/®) =2/3a /3da
Pr(basin area = a)da

= Pr(basin length = ¢)d¢

oc £3/2d¢

o (22/3)-3/23-1/3da

=a*da

=a "da

vV Vv VY

Connections between Exponents

» Both basin area and length obey power law
distributions

» Observed for real river networks

» Typically: 1.3 <7<15and15<vy<2
» Smaller basins more allometric (h > 1/2)
» Larger basins more isometric (h = 1/2)

Power-Law
Mechanisms

Rﬁndom Wa\ks

Variable
transformation

Growth
Mechanisms

e O
ﬁ UNIVERSITY |§|
=l ¥ VERMONT 1O

“a 330f88

Power-Law
Mechanisms

Random Walks
The First R

Variable
transformation

Growth
Mechanisms

L‘NNER.SITY |9|
o VERMONT

Q> 340f88

Power-Law
Mechanisms

Random \/\/a\ks
The First Re

Variable
transformation

PLIPLO

Growth

References

N
2

.l‘varRslTY JI
o VERMONT

“a 350f88

Connections between Exponents

» Generalize relationship between area and length

» Hack’s law [*:

lx @

where 0.5 < h<0.7
» Redo calc with v, 7, and h.

Connections between Exponents

» Given
txa, P(a)oca™, and P(¢) oc L7

» d¢ « d(a") = ha"'da
> Pr(basin area = a)da
= Pr(basin length = ¢)d¢
oc £=de
x (a")~7a"'da
— g (1+h(h=1)g4g

T=1+h(y-1)

Connections between Exponents

With more detailed description of network structure,
7 =14 h(y — 1) simplifies:

T=2-h
~v=1/h

» Only one exponent is independent
» Simplify system description

» Expect scaling relations where power laws are found

» Characterize universality class with independent
exponents

Power-Law
Mechanisms

Random Walks

Variable
transformation

Growth
Mechanisms

e O]
‘& UNIVERSITY |§|
8l 7 VERMONT |O

va > 360f88

Power-Law
Mechanisms

Variable

transformation
Basics

Holtsmark's Distribution
oLIPLO

Growth
Mechanisms

- o]
UNIVERSITY I'Jl
ﬂ; |/ VERMONT 1O}

Q> 370f88

Power-Law
Mechanisms

Random Walks
Return Problem

Variable
transformation
Basics

Holtsmark's Distribution
PLIPLO

Growth

References

P 8]
o VERMONT

a > 380f 88


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds

Other First Returns

Failure

A very simple model of failure/death:
= entity’s ‘health’ at time t

Xp could be > 0.

Entity fails when x hits 0.

vV vy vy

Streams

» Dispersion of suspended sediments in streams.

» Long times for clearing.

More than randomness

v

Can generalize to Fractional Random Walks
Levy flights, Fractional Brownian Motion
In 1-d,

\4

v

o~ t
a > 1/2 — superdiffusive
a < 1/2 — subdiffusive
Extensive memory of path now matters...

v

Variable Transformation

Understand power laws as arising from

1. elementary distributions (e.g., exponentials)
2. variables connected by power relationships
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Variable Transformation

» Random variable X with known distribution Py
» Second random variable Y with y = f(x).

> Py(y)dy = Px(x)dx

Zy|f(x):y PX(f#1 (y)) |f/(fi}1/(y)

» Often easier to do by
hand...

General Example
Assume relationship between x and y is 1-1.

» Power-law relationship between variables:
y=cx%a>0
» Look at y large and x small
>
dy =d(cx™®)

= c(—a)x*Tdx

-1
invert: dx = —x*'dy
ca
BB (a+1)/a
d d
=G v

*01/0‘ 1.1
dx = —y~1-1g
X Y y

General Example
Now make transformation:

Py(y)dy = Px(x)dx

(x) dx

—1/a C1/a ik
Py(y)dy = Py ((%) >7y ey

» If Px(x) — non-zero constant as x — 0 then

—1-1/a

Py(y) oy as y — oo.

> If Py(x) — x° as x — 0 then

Py(y) & y—1—1/(\—ﬁ/a as y — oo.
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Example

Exponential distribution
Given Py(x) = te~/* and y = cx~°, then

P(y)ocy 0y o)

» Exponentials arise from randomness...
» More later when we cover robustness.

Gravity

v

Select a random point in the
universe X

(possible all of space-time)
Measure the force of gravity
F(X)

Observe that Pe(F) ~ F~5/2,

\4

\4

v

Ingredients ['*!

Matter is concentrated in stars:
» F is distributed unevenly

» Probability of being a distance r from a single star at
X=0:
P,(r)dr o r2dr

v

Assume stars are distributed randomly in space
(oops?)

» Assume only one star has significant effect at X.
» Law of gravity:

F o r2
» invert:

roc F71/2
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Transformation
| 4
dF o d(r~2)
>
o r3dr
» invert:
dr « r*dF
>
o F3/24F
Transformation
Using ‘ roc F71/2 ‘ ‘ dr oc F~3/2dF ‘and Pr(r) o< r?
>
Pe(F)dF = P(r)dr
>
x P(F~'/2)F~3/24F
T 2
x (F12)" Fo2gF
>
= F1=8/24F
»
= F5/2dF

Gravity

Pe(F) = F5/2dF

>
v ="5/2
» Mean is finite
» Variance = o
» A wild distribution
» Random sampling of space usually safe

but can end badly...
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Caution!

v

v

v

\4

\{

PLIPLO = Power law in, power law out

Explain a power law as resulting from another
unexplained power law.
Yet another homunculus argument (E)...

Don’t do this!!! (slap, slap)
We need mechanisms!

Aggregation

vV vV.VvY v

v

v

Random walks represent additive aggregation
Mechanism: Random addition and subtraction
Compare across realizations, no competition.

Next: Random Additive/Copying Processes involving
Competition.

Widespread: Words, Cities, the Web, Wealth,
Productivity (Lotka), Popularity (Books, People, ...)
Competing mechanisms (trickiness)

Work of Yore

| 2

1924: G. Udny Yule!'l:

# Species per Genus

1926: Lotka [°):

# Scientific papers per author (Lotka’s law)
1953: Mandelbrot [©l:

Optimality argument for Zipf’s law; focus on
language.

1955: Herbert Simon 12 151

Zipf’s law for word frequency, city size, income,
publications, and species per genus.
1965/1976: Derek de Solla Price [% 171
Network of Scientific Citations.

1999: Barabasi and Albert !l

The World Wide Web, networks-at-large.
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Examples

Evidence for Zipf’s law...

un-normalized survival distribution

FIG. 1 (color online). (Color Online) Log-log plot of the
number of packages in four Debian Linux Distributions with
more than C in-directed links. The four Debian Linux
Distributions are Woody (19.07.2002) (orange diamonds),
Sarge (06.06.2005) (green crosses). Etch (15.082007) (blue
circles), Lenny (15.122007) (black+'s). The inset shows the
maximun likelihood estimate (MLE) of the exponent  together
with two boundaries defining its 95% confidence interval (ap-
proximately given by | = 2//i, where n is the number of data

points using in the MLE), as a function of the lower threshold.
The MLE has been modified from the standard Hill estimator to
take into account the discreteness of C.

1 10 100 1000 10000
incoming links C

Maillart et al., PRL, 2008:
“Empirical Tests of Zipf’'s Law Mechanism in Open Source
Linux Distribution””!

Essential Extract of a Growth Model

Random Competitive Replication (RCR):

1. Start with 1 element of a particular flavor at t = 1
2. Attime t =2,3,4,..., add a new element in one of

two ways:
» With probability p, create a new element with a new
flavor
» Mutation/Innovation

» With probability 1 — p, randomly choose from all
existing elements, and make a copy.
» Replication/Imitation

» Elements of the same flavor form a group

Random Competitive Replication

Example: Words in a text

» Consider words as they appear sequentially.
» With probability p, the next word has not previously

appeared
» Mutation/Innovation

» With probability 1 — p, randomly choose one word

from all words that have come before, and reuse this
word
» Replication/Imitation
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Random Competitive Replication

» Competition for replication between elements is
random

» Competition for growth between groups is not
random

Selection on groups is biased by size
Rich-gets-richer story

Random selection is easy

No great knowledge of system needed

vV v vy

Random Competitive Replication

» Steady growth of system: +1 element per unit time.

» Steady growth of distinct flavors at rate p
» We can incorporate

1. Element elimination
2. Elements moving between groups
3. Variable innovation rate p
4. Different selection based on group size
(But mechanism for selection is not as simple...)

Random Competitive Replication

Definitions:
> k; = size of a group i
» Nk(t) = # groups containing k elements at time t.

Basic question: How does Ni(t) evolve with time?

First: Z kN (t) = t = number of elements at time t
k
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Random Competitive Replication

Px(t) = Probability of choosing an element that belongs to
a group of size k:

» N(t) size k groups

» = kNk(t) elements in size k groups

» t elements overall

Random Competitive Replication

Ni(t), the number of groups with k elements, changes at
time t if
1. An element belonging to a group with k elements is
replicated
Ni(t+1) = Ng(t) — 1
Happens with probability (1 — p)kNk(t)/t

2. An element belonging to a group with kK — 1 elements
is replicated
Ni(t+1) = Ni(t) +1
Happens with probability (1 — p)(k — 1)Nk_1(t)/t

Random Competitive Replication

Special case for Ny (f):

1. The new element is a new flavor:
Ny(t+1) = Ny(t) +1
Happens with probability p

2. A unique element is replicated.
Ni(t+1)=Ni(t) -1
Happens with probability (1 — p) Ny /t
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Random Competitive Replication

Put everything together:

For k > 1:
(Nk(t+1)—Nk(t)>:(1_p) ((k—‘l)l\l‘(%m_k
For k =1:

(Ng(t+1) = Ny(t)) = p— (1 = p)1 - N1t(t)

Random Competitive Replication

Assume distribution stabilizes: N (t) = nxt

(Reasonabile for t large)

Drop expectations

Numbers of elements now fractional

Okay over large time scales

nk/p = the fraction of groups that have size k.

vV vVv.vYy vy

Random Competitive Replication

Stochastic difference equation:

)

t

(Nit+1) = Mt = (1) ( (k= Mt P )
becomes
N(t+1) =t =(1-p) ((k* 1)nk;‘t 7k”%t)

Nt il

nk(f+1—t):(1—p>(<k—1) ; ‘kT)

= = (1-p)((k— 1)1 — kny)

=1+ (1= p)k) = (1 - p)(k — 1)
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Random Competitive Replication

We have a simple recursion:

ne _ (k=1)(1-p)

M1 1+(1—pk

» Interested in k large (the tail of the distribution)
» Can be solved exactly.
Insert question from assignment 4 (&)

» To get at tail: Expand as a series of powers of 1/k
Insert question from assignment 4 (E8)

Random Competitive Replication

» We (okay, you) find

(2=p)
l ~ (1 = 1)(1751)
Nk—_1 k
>
(2—p)
Nk k—1\0=0
Nk_1 + k
»

_(2=p) .
Nk < k (=0 = k77

2—-p) 1
=ty

» Observe 2 < v < oo as p varies.
» For p ~ 0 (low innovation rate):

v~ 2
» Recalls Zipf's law: s, ~ r=«
(sr = size of the rth largest element)
» Wefounda=1/(y—1)
» ~ =2 corresponds to o = 1
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Random Competitive Replication

Power-Law
Mechanisms

Random Walk:
The First Return Proble
Examples

Variable
transformation

Words

Power-Law
Mechanisms

Random Walks
The First Return Problem

Variable
transformation

nt
mt+1)=mt=p—(1—p1- 2!

n=p—(1-p)n
» Rearrange:
n+0—p)nm=p

Random Competitive Replication

pt
Ny (t) = =—
So 1(1') nyt 5= P!
» Recall number of distinct elements = pt.
» Fraction of distinct elements that are unique (belong
to groups of size 1):
N(t)y 1
pt  2—p

(also = fraction of groups of size 1)
» For p small, fraction of unique elements ~ 1/2
Roughly observed for real distributions
p increases, fraction increases
Can show fraction of groups with two elements ~ 1/6
Model does well at both ends of the distribution
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From Simon’s introduction:

It is the purpose of this paper to analyse a class of
distribution functions that appear in a wide range of
empirical data—particularly data describing sociological,
biological and economoic phenomena.

Its appearance is so frequent, and the phenomena so
diverse, that one is led to conjecture that if these
phenomena have any property in common it can only be
a similarity in the structure of the underlying probability
mechanisms.

Evolution of catch phrases

More on Herbert Simon (1916—2001): D

» Political scientist

» Involved in Cognitive Psychology, Computer Science,

Public Administration, Economics, Management,
Sociology

» Coined ‘bounded rationality’ and ‘satisficing’

» Nearly 1000 publications

» An early leader in Artificial Intelligence, Information
Processing, Decision-Making, Problem-Solving,
Attention Economics, Organization Theory, Complex
Systems, And Computer Simulation Of Scientific
Discovery.

» Nobel Laureate in Economics

» We (roughly) see Zipfian exponent!'! of o = 1 for o From Simon [12: e
many real systems: city sizes, word distributions[E,]... Estimate pe = # unique words /# all words crowtn
» Corresponds to 0 (Krugman doesn't like it
.p T .( 9 . ) For Joyce’s Ulysses: pest ~ 0.115
» But still other mechanisms are possible...
» Must look at the details to see if mechanism makes N11 érzgg I\1I15(Z;3 N 4(,?32 N24(§§2
sense... more later. Sk ; 2 d : oy
=\ 4 Q \
=
A B Aoz B
“va 730f88 “va 77 of 88
Random Competitive Replication Vchaniams Evolution of catch phrases Viochaniams
We had one other equation: Random Walks > Yule’s paper (1924)[14): Random Waks
> Ny (8) o “A mathematical theory of evolution, based on the ;
(Ny(t+1) = Ni(t)) =p— (1 = p)1 - 1t Vansiormaton conclusions of Dr J. C. Willis, ER.S” Vansiormation
_ » Simon’s paper (1955) 12 s btn
> As before, set Ni(f) = nyt and drop expectations “On a class of skew distribution functions” (snore) o
> rowt
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Evolution of catch phrases

v

Derek de Solla Price was the first to study network
evolution with these kinds of models.

Citation network of scientific papers

Price’s term: Cumulative Advantage

Idea: papers receive new citations with probability
proportional to their existing # of citations

Directed network

Two (surmountable) problems:

1. New papers have no citations
2. Selection mechanism is more complicated

v

v

v

v Y

Evolution of catch phrases

» Robert K. Merton: the Matthew Effect (&)

» Studied careers of scientists and found credit flowed
disproportionately to the already famous

From the Gospel of Matthew:

“For to every one that hath shall be given...
(Wait! There’s more....)

but from him that hath not, that also which he
seemeth to have shall be taken away.

And cast the worthless servant into the outer

darkness; there men will weep and gnash their teeth.”

» (Hath = unit of purchasing power.)
» Matilda effect: (EH) women’s scientific achievements

are often overlooked

Evolution of catch phrases

Merton was a catchphrase machine:
1. self-fulfilling prophecy
2. role model
3. unintended (or unanticipated) consequences
4. focused interview — focus group
And just to be clear...

Merton’s son, Robert C. Merton, won the Nobel Prize for
Economics in 1997.

Power-Law
Mechanisms

Random Walks
The First Return Proble
Examples

Variable
transformation

PLI

Growth
Mechanisms

L O
UNIVERSITY |§|
4. Vervont 13|

> 80o0f 88

Power-Law
Mechanisms

Variable
transformation

Growth
Mechanisms

- o)
il UNIVERSITY |9|
A‘ o VERMONT 10}

D 810of88

Power-Law
Mechanisms

Random Walks
The First Return Proble
Examples

Variable
transformation
Basics
H

oltsmark's Distributi
PLIPLO

Growth
Me:

L O
UNIVERSITY QI
,ﬁ 4 VERMONT 1O}

Y 820f 88

Evolution of catch phrases

» Barabasi and Albert!"'—thinking about the Web

» Independent reinvention of a version of Simon and
Price’s theory for networks

» Another term: “Preferential Attachment”

» Considered undirected networks (not realistic but
avoids 0 citation problem)

» Still have selection problem based on size
(non-random)

» Solution: Randomly connect to a node (easy)
» + Randomly connect to the node’s friends (also easy)
» Scale-free networks = food on the table for physicists
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