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Contagion

A confusion of contagions:

» |s Harry Potter some kind of virus?
» What about the Da Vinci Code?

» Does Sudoku spread like a disease?
» Religion?

» Democracy...?
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Contagion

Naturomorphisms

» “The feeling was contagious.”

» “The news spread like wildfire.”

» “Freedom is the most contagious virus known to

man.”

—Hubert H. Humphrey, Johnson’s vice president

“Nothing is so contagious as enthusiasm.”
—Samuel Taylor Coleridge
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Social contagion

Optimism according to Ambrose Bierce: (H)

The doctrine that everything is beautiful, including what is
ugly, everything good, especially the bad, and everything
right that is wrong. ... It is hereditary, but fortunately not
contagious.
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Social contagion

Eric Hoffer, 1902—1983

There is a grandeur in the uniformity of the mass. When
a fashion, a dance, a song, a slogan or a joke sweeps
like wildfire from one end of the continent to the other,
and a hundred million people roar with laughter, sway
their bodies in unison, hum one song or break forth in
anger and denunciation, there is the overpowering
feeling that in this country we have come nearer the
brotherhood of man than ever before.

» Hoffer () was an interesting fellow...
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The spread of fanaticism

Hoffer’'s acclaimed work: “The True Believer:
Thoughts On The Nature Of Mass Movements” (1951) I°/

Quotes-aplenty:

» “We can be absolutely certain only about things we
do not understand.”

» “Mass movements can rise and spread without belief
in a God, but never without belief in a devil.”

» “Where freedom is real, equality is the passion of the

masses. Where equality is real, freedom is the
passion of a small minority.”
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The collective...

“Never Underestimate
the Power of Stupid
People in Large
Groups.”

IDIOCY

NEver UNDERESTMATE THE P F Stupip PEOPLE 1 Larce Groues,

despair.com
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Contagion

Definitions

| 2

v

vV v.v Yy

(1) The spreading of a quality or quantity between
individuals in a population.

(2) A disease itself:
the plague, a blight, the dreaded lurgi, ...

from Latin: con = together with’ + tangere ‘to touch.
Contagion has unpleasant overtones...

Just Spreading might be a more neutral word

But contagion is kind of exciting...
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Examples of non-disease spreading: Conagion
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Contagions

Two main classes of contagion

1. Infectious diseases:

tuberculosis, HIV, ebola, SARS, influenza, ...

2. Social contagion:

fashion, word usage, rumors, riots, religion, ...
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Mathematical Epidemiology

The standard SIR model (¢!

» = basic model of disease contagion
» Three states:

1. S = Susceptible
2. | = Infective/Infectious
3. R = Recovered or Removed or Refractory

» S(t)+ I(t) + R(t) =1
» Presumes random interactions (mass-action
principle)

» Interactions are independent (no memory)
» Discrete and continuous time versions
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Mathematical Epidemiology

Original models attributed to

» 1920’s: Reed and Frost
» 1920’s/1930’s: Kermack and McKendrick [ 7 ©]

» Coupled differential equations with a mass-action
principle
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Independent Interaction models Conagion
Differential equations for continuous model Introduction

Simple disease
spreading models

iS = —-3IS+pR

ll =pBIS —rl
dt BIS —r
R l R References
GR=r7
0, r, and p are now rates. \
Reproduction Number Ry: = T
NS
» Ry = expected number of infected individuals .;,
resulting from a single initial infective oo
» Epidemic threshold: If Ry > 1, ‘epidemic’ occurs. .IMWI |

Do~ 17 of 67


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Reproduction Number Ry

Discrete version:
» Set up: One Infective in a randomly mixing
population of Susceptibles

» Attime t = 0, single infective random bumps into a
Susceptible

» Probability of transmission = 3

» Attime t = 1, single Infective remains infected with
probability 1 —r

» Attime t = k, single Infective remains infected with
probability (1 — r)k
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Reproduction Number Ry

Discrete version:

» Expected number infected by original Infective:

Ro=B+(1—-rB+(1—-r28+(1-rP®3+...

:6(1+(1—r)+(1—r)2+(1—r)3+...)

1

i—a-n

=/

For Sy initial infectives (1 — Sg = Ry immune):

Ro = SoB3/r
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Independent Interaction models Conagion
For the continuous version iniroducion
Simple disease
» Second equation: Sp;epadi“g models
] .
&I = BSl—rl

E_/ _ (IBS | r)l References

» Number of infectives grows initially if Y
BS(0) —r >0 = BS(0) > r = 5S(0)/r > 1 3,’ f \;’

S

=
» Same story as for discrete model. .wmm g
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Independent Interaction models

Example of epidemic threshold:

1
3 08
‘€ 06
c

.% 0.4
T 0.2

% 1 2 3
Ro

» Continuous phase transition.
» Fine idea from a simple model.
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Independent Interaction models Conagion

Introduction

Simple disease
spreading models

Many variants of the SIR model:

Model output

» SIS: susceptible-infective-susceptible

» SIRS: susceptible-infective-recovered-susceptible References
» compartment models (age or gender partitions)
>
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Disease spreading models

For novel diseases:

1. Can we predict the size of an epidemic?

2. How important is the reproduction number Ry?
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Ry and variation in epidemic sizes

R, approximately same for all of the following:

» 1918-19 “Spanish Flu” ~ 500,000 deaths in US
» 1957-58 “Asian Flu” ~ 70,000 deaths in US

» 1968-69 “Hong Kong Flu” ~ 34,000 deaths in US
» 2003 “SARS Epidemic” ~ 800 deaths world-wide
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Size distributions

Size distributions are important elsewhere:

earthquakes (Gutenberg-Richter law)

city sizes, forest fires, war fatalities

wealth distributions

‘popularity’ (books, music, websites, ideas)
Epidemics?

vV V. v v Y

Power laws distributions are common but not obligatory...
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Size distributions

Really, what about epidemics?

» Simply hasn't attracted much attention.

» Data not as clean as for other phenomena.
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Feeling lll in Iceland

Caseload recorded monthly for range of diseases in
Iceland, 1888-1990

0.03

Iceland: measles
normalized countf

o)
g 0.02

g
T 001

C-. l M .MAM.MMA.

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

Date

» Treat outbreaks separated in time as ‘novel’
diseases.
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Really not so good at all in Iceland

Epidemic size distributions N(S) for
Measles, Rubella, and Whooping Cough.

®IC 1 I 1 T

A B

NS

o kN w s g
o kN w s g
o BN ow s oo

0 0025 005 0075 01 0 0.02 004 006 0
S S

Spike near S = 0, relatively flat otherwise.
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Measles & Pertussis

75
75ﬂl - 1 [T @ 5 1
s /<— A 5 T
Z 10 5 =, 10
5 > z
= 4 10° 4 10" - — - X
=5 10° 10¢ 100 107 10 10° 10° 107 10% 10
3
Zz 3 W
2 2
: 1 i
Y 0
0 0.025 0.05 0.075 01 O 0.025 0.05 0.075

U] )

Insert plots:
Complementary cumulative frequency distributions:

N(V > W) oc W=+

Limited scaling with a possible break.
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Power law distributions

Measured values of ~:

v

v

v

v

v

measles: 1.40 (low V) and 1.13 (high V)
pertussis: 1.39 (low V) and 1.16 (high V)

Expect 2 < v < 3 (finite mean, infinite variance)
When v < 1, can’t normalize
Distribution is quite flat.
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Resurgence—example of SARS

Ao dealk
0 T
Jan 15,03

T
Dec 16,02

Feb 14,'03
Date of onset

Mar 16,03 Apr 15,03 May 15,03 Jun 14,703

» Epidemic slows...
then an infective moves to a new context.

» Epidemic discovers new ‘pools’ of susceptibles:
Resurgence.

» Importance of rare, stochastic events.
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The challenge

So... can a simple model produce

1. broad epidemic distributions
and

2. resurgence ?
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Size distributions o

Introduction

2000 Simple disease
s A R0:3 spreading models
§ i Slmple models
= typically produce
500 bimodal or unimodal
size distributions.
References

0
0 025 05 075 1

P
» This includes network models: Yy
random, small-world, scale-free, ... b %
» Exceptions: N <
1. Forest fire models &
2. Sophisticated metapopulation models =
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Burning through the population

Forest fire models: °!

» Rhodes & Anderson, 1996

» The physicist’s approach:
“if it works for magnets, it'll work for people...”

A bit of a stretch:
1. Epidemics = forest fires
spreading on 3-d and 5-d lattices.

2. Claim Iceland and Faroe Islands exhibit power law
distributions for outbreaks.

3. Original forest fire model not completely understood.
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Biological

Sophisticated metapopulation models Gontagion

Introduction

Simple disease
spreading models

» Community based mixing: Longini (two scales).

Eubank et al’s EpiSims/TRANSIMS—city
simulations.

Spreading through countries—Airlines: Germann et
al., Corlizza et al.

Vital work but perhaps hard to generalize from...

v

v

References

v

» = Create a simple model involving multiscale travel \
» Multiscale models suggested by others but not 5 i T
formalized (Bailey, Cliff and Haggett, Ferguson et al.) TN \\‘
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Size distributions

» Very big question: What is N?
» Should we model SARS in Hong Kong as spreading
in a neighborhood, in Hong Kong, Asia, or the world?

» For simple models, we need to know the final size
beforehand...
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Improving simple models

Contexts and Identities—Bipartite networks

[COHtEXtS]

d é ‘ : : [individuals |

unipartite
network

» boards of directors
» movies
» transportation modes (subway)
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Biological

Improving simple models Gontagion

Introduction

Idea for social networks: incorporate identity.

Simple disease
spreading models

Identity is formed from attributes such as:

Prediction

» Geographic location Tttt e
» Type of employment
> Age References

» Recreational activities

Groups are crucial...

N\ 7 p
» formed by people with at least one similar attribute ’ Y <
» Attributes < Contexts < Interactions < g=A
Networks. [ "] =
|} B
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Infer interactions/network from identities

occupation

education health care

high school
teacher

kindergarten

teacher doctor

a b c d

Distance makes sense in identity/context space.
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Generalized context space

geography

L5 LD e

occupation age

a b G d e

(Blau & Schwartz '], Simmel %!, Breiger?)
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A toy agent-based model

Geography—allow people to move between
contexts:
» Locally: standard SIR model with random mixing
» discrete time simulation
(3 = infection probability
» ~ = recovery probability
» P = probability of travel
>
| 4

v

Movement distance: Pr(d) « exp(—d/¢)
¢ = typical travel distance
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Model output

» Define P, = Expected number of infected individuals
leaving initially infected context.

» Need P, > 1 for disease to spread (independent of
Ro).

» Limit epidemic size by restricting frequency of travel
and/or range
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Model output

Varying &:

1
B -
0.8

06 T 9|
I/jr"

i 0.4 I/

-
e —T—I—I—# .

0.1 04 05 06
3

» Transition in expected final size based on typical
movement distance (sensible)

Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation models
Model output

Conclusions

Predicting social
catastrophe

References

UNIVERS[TY &
o VERMONT

Q> 49 of 67


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Model output

Varying Py:
;

R SR —

0.8 T

0.8 r,g——-"—-—il-""
=

0.4

02

» Transition in expected final size based on typical
number of infectives leaving first group (also
sensible)

» Travel advisories: ¢ has larger effect than P.
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Example model output: size distributions

1942 1 683 1
400 R0:3 400 R0:12
5 30 = 300
Z 200 Z 200
100 100

0
0 025 05 075 1 0 025 05 075 1
W W

» Flat distributions are possible for certain £ and P.
» Different Ry’s may produce similar distributions
» Same epidemic sizes may arise from different Ry’s
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Model output—resurgence

Standard model:

6000
g D
4000
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é 2000
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Model output—resurgence

Standard model with transport:

200

100

# New cases

500

1500
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The upshot

Simple multiscale population structure
+
stochasticity

leads to

resurgence
+
broad epidemic size distributions
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Conclusions

» For this model, epidemic size is highly unpredictable

» Model is more complicated than SIR but still simple

» We haven’t even included normal social responses
such as travel bans and self-quarantine.

» The reproduction number Ry is not terribly useful.

» Ry, however measured, is not informative about
1. how likely the observed epidemic size was,
2. and how likely future epidemics will be.
» Problem: Ry summarises one epidemic after the fact
and enfolds movement, the price of bananas,
everything.
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Conclusions

» Disease spread highly sensitive to population
structure

» Rare events may matter enormously
(e.g., an infected individual taking an international
flight)

» More support for controlling population movement
(e.g., travel advisories, quarantine)
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Conclusions

What to do:

» Need to separate movement from disease
» Ry needs a friend or two.

» Need Ry > 1 and Py > 1 and ¢ sulfficiently large
for disease to have a chance of spreading

More wondering:

» Exactly how important are rare events in disease
spreading?

» Again, what is N?
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Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:

» Adoption of ideas/beliefs (Goffman & Newell, 1964)
» Spread of rumors (Daley & Kendall, 1965)
» Diffusion of innovations (Bass, 1969)

» Spread of fanatical behavior (Castillo-Chavez &
Song, 2003)

» Spread of Feynmann diagrams (Bettencourt et al.,
2006)
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Predicting social catastrophe isn’t easy... Conagion
“Greenspan Concedes Error on Regulation” Introduction

Simple disease

» ...humbled Mr. Greenspan admitted that he had put | s7eacino modeis

Background

too much faith in the self-correcting power of free
markets ...

» “Those of us who have looked to the self-interest of
lending institutions to protect shareholders’ equity,
myself included, are in a state of shocked disbelief”

» Rep. Henry A. Waxman: “Do you feel that your
ideology pushed you to make decisions that you wish

you had not made?” ~ -
» Mr. Greenspan conceded: “Yes, I've found a flaw. | @‘
don’t know how significant or permanent it is. But I've = '
been very distressed by that fact.” =
L [
New York Times, October 23, 2008 () | el
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Economics, Schmeconomics

Alan Greenspan (September 18, 2007):

“I've been dealing with these big
mathematical models of forecasting the
economy ...

If | could figure out a way to determine
whether or not people are more fearful
or changing to more euphoric,

| don’t need any of this other stuff.

| could forecast the economy better than ntte://uikipedia.org
any way | know.”

Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation models
Model output

Coni

Predicting social catastrophe

UNIVERS[TY | |
o VERMONT

Q> 620f 67


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://wikipedia.org

Economics, Schmeconomics

Greenspan continues:

“The trouble is that we can’t figure that out. I've been in
the forecasting business for 50 years. I'm no better than |
ever was, and nobody else is. Forecasting 50 years
ago was as good or as bad as it is today. And the reason
is that human nature hasn’t changed. We can’t improve
ourselves.”

Jon Stewart:

“You just bummed the @*# out of me.”

wildbluffmedia.com

» From the Daily Show (F) (September 18, 2007)

» The full inteview is here (t).
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Economics, Schmeconomics o
Introduction
JameS K Galbralth Simple disease

spreading models

NYT But there are at least 15,000 professional
economists in this country, and you’re saying only
two or three of them foresaw the mortgage crisis?
[JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics,
which claims to be a science? [JKG] It's an
enormous blot on the reputation of the profession.
There are thousands of economists. Most of them

teach. And most of them teach a theoretical B -

framework that has been shown to be fundamentally @‘

useless. g
=

From the New York Times, 11/02/2008 () S
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