Lecture 2/25—Chapter 2

Linear Algebra
MATH 124, Fall, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont
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Solving AX = b:

» We (people + computers) solve systems of linear
equations by a systematic method of Elimination
followed by Back substitution
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Solving AX = b

» We (people + computers) solve systems of linear
equations by a systematic method of Elimination
followed by Back substitution

» Due to our man Gauss, hence Gaussian elimination.
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Solving AX = b:

» We (people + computers) solve systems of linear
equations by a systematic method of Elimination
followed by Back substitution

» Due to our man Gauss, hence Gaussian elimination.

» Our first example:

[y

—-X1 + 3X2 =
2X1 +  Xo
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Gaussian elimination:
Solving A% = b

Basic elimination rules (roughly):
1. Strategically, mechanically remove unwanted entries
by subtracting a multiple of a row from another.
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Gaussian elimination:

Basic elimination rules (roughly):

1. Strategically, mechanically remove unwanted entries
by subtracting a multiple of a row from another.

2. Swap rows if needed to create an ‘upper triangular
form’
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Gaussian elimination:

Basic elimination rules (roughly):
1. Strategically, mechanically remove unwanted entries
by subtracting a multiple of a row from another.

2. Swap rows if needed to create an ‘upper triangular
form’

e.g.

2X1 — Xo = —1: Xo = 3
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Gaussian elimination:

Solve:

2xy —3x =3
4x1 — SXo + X3 =7

2X1 — Xo —3x3 =5
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Gaussian elimination:

Summary:
Using row operations, we turned this problem:

2 -3 0 Xi 3
AX=b:|4 -5 1 X | =7
2 1 3| |x 5

into this problem:

[2 -3 0 7[x 3
UX=d: |0 1 1 o | = | 1
0O 0 -5 X3 0

and the latter is easy to solve using back substitution.
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Ch. 2: Lec. 2

Gaussian elimination:

Defn: -
The entries along U's main diagonal are the pivots of A. SeMAL=E
(The pivots are hidden—elimination finds them.)
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Gaussian elimination:

Defn: o
The entries along U’s main diagonal are the pivots of A. SOMREAY =S
(The pivots are hidden—elimination finds them.)

Defn:

A matrix with only zeros below the main diagonal is called
upper triangular. A matrix with only zeros above the main
diagonal is called lower triangular. We get from Ato U
and the latter is always upper triangular.
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Gaussian elimination:

Defn:
The entries along U’s main diagonal are the pivots of A.
(The pivots are hidden—elimination finds them.)

Defn:

A matrix with only zeros below the main diagonal is called
upper triangular. A matrix with only zeros above the main
diagonal is called lower triangular. We get from Ato U
and the latter is always upper triangular.

Defn:
Singular means a system has no unique solution.
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Gaussian elimination:

Defn:
The entries along U’s main diagonal are the pivots of A.
(The pivots are hidden—elimination finds them.)

Defn:

A matrix with only zeros below the main diagonal is called
upper triangular. A matrix with only zeros above the main
diagonal is called lower triangular. We get from Ato U
and the latter is always upper triangular.

Defn:
Singular means a system has no unique solution.

» It may have no solutions or infinitely many solutions.
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Gaussian elimination: on. #ibee2
Defn: Solving AX = b
The entries along U’s main diagonal are the pivots of A. |7 4
(The pivots are hidden—elimination finds them.)

Defn:
A matrix with only zeros below the main diagonal is called
upper triangular. A matrix with only zeros above the main
diagonal is called lower triangular. We get from Ato U
and the latter is always upper triangular.
Defn:
Singular means a system has no unique solution. ol
» It may have no solutions or infinitely many solutions. \Qf
» Singular = archaic way of saying ‘messed up. g L;, v
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Gaussian elimination:

Defn:
The entries along U’s main diagonal are the pivots of A.
(The pivots are hidden—elimination finds them.)

Defn:

A matrix with only zeros below the main diagonal is called
upper triangular. A matrix with only zeros above the main
diagonal is called lower triangular. We get from Ato U
and the latter is always upper triangular.

Defn:

Singular means a system has no unique solution.
» It may have no solutions or infinitely many solutions.
» Singular = archaic way of saying ‘messed up.

Truth:
If at least one pivot is zero, the matrix will be singular.
(but the reverse is not necessarily true).
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Gaussian elimination:
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The one true method:
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Gaussian elimination:

The one true method:

» We simplify A using elimination in the same way
every time.
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Gaussian elimination:

The one true method:

» We simplify A using elimination in the same way

every time.

» Eliminate entries one column at a time, moving left to

right, and down each column.
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Gaussian elimination:
Solving A% = b

» To eliminate entry in row j of jth column, subtract a
multiple ¢; of the jth row from /.
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Gaussian elimination:

» To eliminate entry in row j of jth column, subtract a
multiple ¢; of the jth row from /.

» For example:

2xy + 3% + —-2x3 + x4 = 1
X1 — 7X2 + 3X3 + X4 = 1
—X; — 3x -— X3 + 5x4 = -2
2X9 + Xo — 2x3 + 2x4 = O

Uy =1/2, 031 = —1/2, U4y =7
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Gaussian elimination:

» To eliminate entry in row j of jth column, subtract a
multiple ¢; of the jth row from /.

» For example:

2xy + 3% + —-2x3 + x4 = 1
X1 — X + 33 + x4 = 1
—X; — 3x -— X3 + 5x4 = -2
2X9 + Xo — 2x3 + 2x4 = O

Uy =1/2, 031 = —1/2, U4y =7
» Note: we cannot find /35 etc., until we are finished
with row 1. Pivots are hidden!
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Gaussian elimination: on. #ibee2
Solving AX = b
» To eliminate entry in row j of jth column, subtract a
multiple ¢; of the jth row from /.
» For example:
2xy + 3% + —-2x3 + x4 = 1
X1 — X + 33 + x4 = 1
—X; — 3x -— X3 + 5x4 = -2
2X9 + Xo — 2x3 + 2x4 = O
by =1/2,l31 = —1/2, lgy =7 Yy
» Note: we cannot find /35 etc., until we are finished \ i
with row 1. Pivots are hidden! /, L’ =
» Note: the denominator of each ¢; multiplier is the é’,
pivot in the jth column.
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