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Optimal supply networks

What'’s the best way to distribute stuff?

» Stuff = medical services, energy, people,
» Some fundamental network problems:

1. Distribute stuff from a single source to many sinks

2. Distribute stuff from many sources to many sinks

3. Redistribute stuff between nodes that are both
sources and sinks

» Supply and Collection are equivalent problems
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Single source optimal supply

Basic Q for distribution/supply networks:

» How does flow behave given cost:
c=3_12
j

where
l; = current on link j
and
Z; = link j's impedance?
» Example: v = 2 for electrical networks.
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Single source optimal supply ey eere Single source optimal supply e

Introduction Introduction
(b) (c)
Optimal paths related to transport (Monge) problems:
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(a) v > 1: Braided (bulk) flow
(b) v < 1: Local minimum: Branching flow
(c) v < 1: Global minimum: Branching flow

Xia (2003) 127]
From Bohn and Magnasco °!
See also Banavar et al. [
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Introduction

GURE 3. A maple leaf Introduction
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Single source optimal supply

An immensely controversial issue...

» The form of river networks and blood networks:

optimal or not? 2% 2.5 4]

Two observations:

» Self-similar networks appear everywhere in nature

for single source supply/single sink collection.

» Real networks differ in details of scaling but

reasonably agree in scaling relations.

Optimization approaches

Supply Networks

Introduction
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Optimality:

River network models

» Optimal channel networks [/

» Thermodynamic analogy['®

VEersus...

Randomness:

» Scheidegger’s directed random networks

» Undirected random networks

Supply Networks

Introduction
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Optimization approaches

Cardiovascular networks: .
Cardiovascular networks:

» Murray’s law (1926) connects branch radii at

forks:[13. 12, 14] » Fluid mechanics: Poiseuille impedance (H) for

3 3 3 smooth flow in a tube of radius r and length ¢:
fo =1 +1
, . 8¢
where ry = radius of main branch Z = —a
T

and ry and r» are radii of sub-branches.

» See D’Arcy Thompson’s “On Growth and Form” for
background inspiration 20 211,

where 7 = dynamic viscosity (H) (units: ML= T—1).
» Power required to overcome impedance:

» Calculation assumes Poiseuille flow (H).
' Parag = ®Ap = d*Z.
» Holds up well for outer branchings of blood networks.
» Also found to hold for trees ' 10 111, » Also have rate of energy expenditure in maintaining
» Use hydraulic equivalent of Ohm’s law: blood:
P, metabolic = CI 2£
Ap=¢oZ<=V=IR _ _
Frame 12/86 where ¢ is a metabolic constant. Frame 13/86

where Ap = pressure difference, ¢ = flux. & Dac & Dac



http://en.wikipedia.org/wiki/Hagen-Poiseuille_equation
http://en.wikipedia.org/wiki/Hagen-Poiseuille_equation
http://en.wikipedia.org/wiki/Dynamic_viscosity
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Murray’s law:

Aside on Py, » Total power (cost):

» Work done = F - d = energy transferred by force F
» Power = P =rate workisdone = F - v
» Ap = Force per unit area

» & = Volume per unit time
= cross-sectional area - velocity

So »Ap = Force - velocity

8nl
P= Pdrag + Pmetabolic = ¢27T774 + Cr2€

» Observe power increases linearly with ¢
» But r’s effect is nonlinear:
» increasing r makes flow easier but increases
metabolic cost (as r?)
» decreasing r decrease metabolic cost but impedance
goes up (as r—*)

v

Frame 14/86 Frame 15/86
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Murray’s law: Murray’s law:

Murray’s law Murray's law

» Minimize P with respect to r:

(9P_8 287]€ 2
8[’_8I’<¢ 4+Cr£>

r

» So we now have:
& = kr’

» Flow rates at each branching have to add up (else
our organism is in serious trouble...):
8nl
:—4¢277r75+02r£=o by = Py + by
where again 0 refers to the main branch and 1 and 2

» Rearrange/cancel/slap: refers to the offspring branches

> cnr® 2.5 » All of this means we have a groovy cube-law:
n
B=r+r

where k = constant.

Frame 16/86 Frame 17/86
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Supply Networks

Optimization

Murray meets Tokunaga:

» &, = volume rate of flow into an order w vessel
segment

» Tokunaga picture:

w—1

b, =20, 1+ > TP, &
k=1

» Using ¢, = kr3

w—1
3 3 3
rw = 2rw—1 + Z Tkrw—k
k=1
» Find Horton ratio for vessel radius R, = r,,/r,_1...
Frame 19/86
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Optimization

Murray meets Tokunaga:

> Isometry: V,, o £3
» Gives

R} =R, =R,

» We need one more constraint...
» West et al (1997) [°° achieve similar results following
Horton’s laws.

» So does Turcotte et al. (1998) *?! using Tokunaga
(sort of).

Frame 21/86
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Optimization

Murray meets Tokunaga:

» Find R satisfies same equation as R, and R,
(v is for volume):

RP=R,=R,

» |s there more we could do here to constrain the
Horton ratios and Tokunaga constants?

Geometric argument

» Consider one source supplying many sinks in a
volume V d-dim. region in a D-dim. ambient space.

» Assume sinks are invariant.

» Assume p = p(V), i.e., p may vary with region’s
volume V.

» See network as a bundle of virtual vessels:

%%P\gﬁ@i

» Q: how does the number of sustainable sinks Nq;,ks
scale with volume V for the most efficient network
design?

» Or: what is the highest a for Ngjpks o< V¢?

Supply Networks

Murray meets Tokunaga

Frame 20/86
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Geometric argument SupplyNetwors Geometric argument -

» Allometrically growing regions:

» Best and worst configurations (Banavar et al.)

Geometric argument

V b Geometric argument
QV) o

L,

» Have d length scales which scale as

]
Liox VViwhereyy +v+...+vg=1.
» Rather obviously:
» For isometric growth, v; = 1/d. min Ve < > distances from source to sinks.
» For allometric growth, we must have at least two of
the {~;} being different Frame 24/86 Frame 25/86
& Dae & vae
Minimal network volume: Supply Networks Minimal network volume: Supply Networks

Add one more element:
Real supply networks are close to optimal:
(a)

» Vessel cross-sectional area may vary with distance
from the source.

Seomericagumert » Flow rate increases as cross-sectional area Seomenc et
decreases.

© (d)

» e.g., a collection network may have vessels tapering
as they approach the central sink.

» Find that vessel volume v must scale with vessel
length ¢ to affect overall system scalings.

» Consider vessel radius r o< (¢ + 1)~¢, tapering from
I = I'max Where € > 0.

> Gives v oc /1 2¢if e < 1/2
» Gives v ox 1 —¢=(2<=1) — 1 for large £ if e > 1/2
Frame 26/86 » Previously, we looked at ¢ = 0 only. Frame 27/86

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (¢) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

(2006) Gastner and Newman ©]: “Shape and efficiency in
spatial distribution networks”
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Supply Networks

Minimal network volume:

For 0 < e < 1/2, approximate network volume by integral
over region:

min Vnetoc/ o 17|12 d%
Qq,0(V)

Insert question 1, assignment 3 (H)

x PV1 +max(1—2€) where Ymax = miax Vi.

For e > 1/2, find simply that

min Ve o pV

» So if supply lines can taper fast enough and without
limit, minimum network volume can be made
negligible.

Frame 28/86
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Supply Networks

Geometric argument

Fore > 1/2:

> |min Voo o pV|

» Network volume scaling is now independent of
overall shape scaling.

Limits to scaling

» Can argue that e must effectively be 0 for real
networks over large enough scales.

» Limit to how fast material can move, and how small
material packages can be.

» e.g., blood velocity and blood cell size.

Frame 30/86

F Dae

Geometric argument

ForO0<e<1/2:

> | min Vi o pV/1Hmax(1-20)

» If scaling is isometric, we have ymax = 1/d:
min Vnet/iso X pv1+(1_26)/d

» If scaling is allometric, we have ymax = Yaio > 1/d:
and
MIN Vet /allo X pV1+(1—26)%m0

» Isometrically growing volumes require less network
volume than allometrically growing volumes:

min Vnet/iso

. —0asV —
min Vnet/allo

Blood networks

» Velocity at capillaries and aorta approximately
constant across body size *: ¢ = 0.

» Material costly = expect lower optimal bound of
Vit o pV(@+1)/d 10 be followed closely.

» For cardiovascular networks, d = D = 3.

» Blood volume scales linearly with blood volume "],
Vnet x V.

» Sink density must .-. decrease as volume increases:

po V19,

» Density of suppliable sinks decreases with organism
size.

Supply Networks
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http://www.uvm.edu/~pdodds/teaching/courses/2010-01UVM-303/docs/2010-01UVM-303assignment3.pdf
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» Then P, the rate of overall energy use in Q, can at
most scale with volume as

PxpVxpMx M(d=1)/d

Blood networks

» For d = 3 dimensional organisms, we have

» Including other constraints may raise scaling
exponent to a higher, less efficient value.

» Exciting bonus: Scaling obtained by the supply
network story and the surface-area law only match
for isometrically growing shapes.

Insert question 3, assignment 3 (H) Frame 33/86

F Dae

River n etWO rks Supply Networks

» View river networks as collection networks.
» Many sources and one sink.
> €?

» Assume p is constant over time and ¢ = O:
Vier o< pV@t1/d — constant x V/3/2

» Network volume grows faster than basin ‘volume’
(really area).

» It's all okay:
Landscapes are d=2 surfaces living in D=3
dimension.

» Streams can grow not just in width but in depth...

» If € > 0, Viee Will grow more slowly but 3/2 appears to
be confirmed from real data. Frame 36/86

F Dae

Recap:

The exponent o = 2/3 works for all birds and
mammals up to 10-30 kg

For mammals > 10-30 kg, maybe we have a new
scaling regime

» Economos: limb length break in scaling around 20 kg

White and Seymour, 2005: unhappy with large
herbivore measurements. Find o« ~ 0.686 &= 0.014

Many sources, many sinks

How do we distribute sources?

>

Focus on 2-d (results generalize to higher
dimensions)

» Sources = hospitals, post offices, pubs, ...

Key problem: How do we cope with uneven
population densities?

Obvious: if density is uniform then sources are best
distributed uniformly

Which lattice is optimal? The hexagonal lattice

Q1: How big should the hexagons be?

Q2: Given population density is uneven, what do we
do?

We'll follow work by Stephan!'® "%l Gastner and
Newman (2006) "), Um et al. 1°°/ and work cited by
them.

Supply Networks
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http://www.uvm.edu/~pdodds/teaching/courses/2010-01UVM-303/docs/2010-01UVM-303assignment3.pdf

Optimal source allocation Supply etwerie Optimal source allocation SupplyRetworks

Solidifying the basic problem

» Given a region with some population distribution p,
most likely uneven.

» Given resources to build and maintain N facilities.

» Q: How do we locate these N facilities so as to
minimize the average distance between an
individual’s residence and the nearest facility?

Facility location

Facility location

From Gastner and Newman (2006) "/

» Approximately optimal location of 5000 facilities.

» Based on 2000 Census data.

Frame 39/86 » Simulated annealing + Voronoi tessellation. Frame 40/86

F DA F DA

Optimal source allocation S Optimal source allocation Supply Networks
- ol
E ot Size-density law:
< 001
l; d >
g 10’35— D 8 p2/3
i » Again: Different story to branching networks where

i sl vl il ]
0.1 1 10 100 1000 10000
population density p (in km2)

there was either one source or one sink.

» Now sources & sinks are distributed throughout

region...
From Gastner and Newman (2006) 1!

» Optimal facility density D vs. population density p.
» Fitis D o p%88 with r2 = 0.94.
» Looking good for a 2/3 power...

Frame 41/86 Frame 43/86
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Optimal source allocation

» We first examine Stephan’s treatment (1977) '8 19l

» “Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries”
(Science, 1977)

» Zipf-like approach: invokes principle of minimal effort.
» Also known as the Homer principle.

Optimal source allocation

» Next assume facility requires regular maintenance
(person-hours per day)

Call this quantity 7

If burden of mainenance is shared then average cost
per person is 7/P where P = population.

Replace P by pA where p is density.
Total average time cost per person:

v

v

v

v

T =d/V+1/(pA) = gA'? /v + 7/ (pA).

v

Now Minimize with respect to A...

Supply Networks
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Optimal source allocation

» Consider a region of area A and population P with a
single functional center that everyone needs to
access every day.

» Build up a general cost function based on time
expended to access and maintain center.

» Write average travel distance to center as d and
assume average speed of travel is v.

» Assume isometry: average travel distance d will be
on the length scale of the region which is ~ A'/?

» Average time expended per person in accessing
facility is therefore

d/v=CcA?/v

where ¢ is an unimportant shape factor.

Optimal source allocation

» Differentiating...

or 0 -

oA = oA (427 7/(0A)
_ e g
- 2VAY2 pA?

» Rearrange:

» # facilities per unit area
A o 23

» Groovy...

Supply Networks
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Optimal source allocation

An issue:
» Maintenance (7) is assumed to be independent of

population and area (P and A)

Cartograms

Standard world map:

Supply Networks

Optimal source allocation

Supply Networks

Size-density law

Stephan’s online book
“The Division of Territory in Society” is here (H).

Size-density law

Frame 49/86
F DA

Frame 48/86
F DA
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Supply Networks Cartograms

Cartogram of countries ‘rescaled’ by population:
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http://www.ac.wwu.edu/~stephan/Book/contents.html

Supply Networks

Cartograms Supply etwerie Cartograms

Diffusion-based cartograms:

Introduction

Optimal branching

» |dea of cartograms is to distort areas to more
accurately represent some local density p (e.g.

population). = . — ‘\ml - Single Source
» Many methods put forward—typically involve some { y W e 1%
kind of physical analogy to spreading or repulsion. Sources A A - Y
» Algorithm due to Gastner and Newman (2004) ! is s ) 4 : ' v 3 e
based on standard diffusion:
Vzp _ g? -0 eerenee (- == BN -cicrcnces

» Allow density to diffuse and trace the movement of
individual elements and boundaries.

» Diffusion is constrained by boundary condition of

surrounding area having density p. Frame 53/86 Frame 54/86

Cartograms

Energy consumption:
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Introduction

Optimal branching

Single Source

Cartograms

References
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Cartograms

Gross domestic product:

S e
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Introduction

Optimal branching

Single Source

Cartograms

References
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Cartograms

Greenhouse gas emissions:

Supply Networks

Introduction

Optimal branching

Cartograms

Supply Networks

Introduction

Optimal branching

" Cartograms = N Cartograms
(_ @ i ~ References
Frame 57/86 Frame 58/86
& Dae & vae
S ly N k S ly N k
Cartograms uppy Networks Cartograms ey Networks
Introduction Introduction
Optimal branching Optimal branching
People living with HIV:
e & » The preceding sampling of Gastner & Newman’s
i T A cartograms lives here (H).
'»4 ‘\a .
{ y » A larger collection can be found at
L, ~ worldmapper.org (H).

5

Frame 59/86 Frame 60/86
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http://www-personal.umich.edu/~mejn/cartograms/
http://www.worldmapper.org/

Size-density law

» Left: population density-equalized cartogram.
» Right: (population density)?/3-equalized cartogram.
» Facility density is uniform for p2/3 cartogram.

From Gastner and Newman (2006) 1!

Size-density law

Deriving the optimal source distribution:

» Basic idea: Minimize the average distance from a
random individual to the nearest facility. !

» Assume given a fixed population density p defined on
a spatial region 2.

» Formally, we want to find the locations of n sources
{Xq,...,Xn} that minimizes the cost function

F(Fr,- %)) = [ p(R)min [ - %%,

» Also known as the p-median problem.
» Not easy... in fact this one is an NP-hard problem. !

» Approximate solution originally due to
Gusein-Zade [“!.

Supply Networks

Cartograms
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A reasonable derivation
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From Gastner and Newman (2006) !

» Cartogram’s Voronoi cells are somewhat hexagonal.

Size-density law

Approximations:

» For a given set of source placements {Xi, ..., Xn},
the region 2 is divided up into Voronoi cells (H), one
per source.

» Define A(X) as the area of the Voronoi cell containing
X.

» As per Stephan’s calculation, estimate typical
distance from X to the nearest source (say /) as

GA(X)'/?

where ¢; is a shape factor for the ith Voronoi cell.
» Approximate c¢; as a constant c.

Supply Networks

Cartograms

Frame 62/86

F Dae

Supply Networks

A reasonable derivation
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http://en.wikipedia.org/wiki/Voronoi_diagram

Supply Networks

Size-density law

Carrying on:

» The cost function is now
F=c / p(X)A(X)/2d% .
Q

» We also have that the constraint that Voronoi cells
divide up the overall area of Q: 37, A(X;) = Aq.
» Sneakily turn this into an integral constraint:
ax n
QAKX)
» Within each cell, A(X) is constant.

» So... integral over each of the n cells equals 1.
Frame 66/86
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Size-density law
Now a Lagrange multiplier story:
» Rearranging, we have
A(X) = (2xc™1)?2/3p72/3,

» Finally, we indentify 1/A(X) as D(X), an
approximation of the local source density.
» Substituting D = 1/A, we have

o~ ()"

» Normalizing (or solving for \):

2112/3
D(%) = nm x [o(R)PS.

Frame 68/86

F Dae

Size-density law
Now a Lagrange multiplier story:

» By varying {Xi, ..., X»}, minimize

G(A) = ¢ /Q P(R)A(R)!/2d% - (n— /Q AF)] d)?)

» Next compute §G/JA, the functional derivative (&) of
the functional G(A).

» This gives

/ [Ep(z)A(;e)*Wz ~ A AR)] ‘2} % =0.
q L2
» Setting the integrand to be zilch, we have:

p(X) =2xc TA(X)%/2.

Global redistribution networks
One more thing:

» How do we supply these facilities?
» How do we best redistribute mail? People?
» How do we get beer to the pubs?

» Gaster and Newman model: cost is a function of
basic maintenance and travel time:

Cmaint + 'VCtravel-

» Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance ¢; and number of legs to journey:

(1 = 0)jj + o(#hops).

» When 6 = 1, only number of hops matters.

Supply Networks

Frame 67/86
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Global redistribution
networks

Frame 70/86
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http://en.wikipedia.org/wiki/Functional_derivative

Global redistribution networks Supply etwerie Public versus private facilities Supply Hetwerie

505 Beyond minimizing distances:

T, Nashville,
LA A TN

e £ 14
O (g Q7 > New
: ( ﬁ.ﬁ“ York

» “Scaling laws between population and facility
densities” by Um et al., Proc. Natl. Acad. Sci.,
2009. [#°]

» Um et al. find empirically and argue theoretically that
the connection between facility and population

FL

=08

© Kansas City, MO i (@ =10 denSity
: 4 ; (e}
San ol S\ ". k neell?zg\r;:dwsmbuuon D X p
g v = v o iladelpiis i H Public versus Private
cisce, § e &, S it does not universally hold with o = 2/3. °
o “i! 7N S\ 4. d&‘- Los Angelex . . ey
e T » Two idealized limiting classes:

1. For-profit, commercial facilities: « = 1;
2. Pro-social, public facilities: « = 2/3.
» Um et al. investigate facility locations in the United
States and South Korea.

From Gastner and Newman (2006) |!

Frame 71/86

Frame 73/86
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H H HHH . H Supply Networks H H HHH . H Supply Networks
Public versus private facilities: evidence Public versus private facilities: evidence
US facility o (SE) R?
Ambulatory hospital 1.13(1) 0.93
A __ 10° B 10" Beauty care 1.08(1) 0.86
e < Laundry 1.05(1) 0.90
~ E Automotive repair 0.99(1) 0.92
E » = Private school 0.95(1) 0.82
=107 E10" Restaurant 0.93(1) 0.89 .
2, a Accommodation 0.89(1) 0.70 ROUgh transition
= Bank 0.88(1) 0.89 .
@ gt %10_3_ Gas station 0.86(1) 0.94 betweeln public
% qc_) Death care 0.79(1) 0.80 and pr|Vate at
> © * Fire station 0.78(3) 093, ~0.8
:T:) 10° ) N ) N ) 510_5 * Police station 0.71(6) 0.75 - 0
8 10—2 100 102 104 g 10_2 100 102 104 Public school 0.69(1) 0.87 ok )
population density p (in/km®)  population density p (in /km?) ol 0P e s
opulation densi INn /KM
pop yp Bank 1.18(2) 0.96 analysis is at
. . Public versus Private Parking place 1.13(2) 0.91 State/ rOVInCG Public versus Private
» Left plot: ambulatory hospitals in the U.S. * Primary clinic 1.09(2) 1.00 P :
* Hospital 0.96(5) 097 level; otherwise
> i . i i * University/college 0.93(9) 0.89
Right plot: public schools in the U.S. oerse oo 0% county level.
» Note: break in scaling for public schools. Transition * Secondary school 077(3) 0.8
* Primary school 0.77(3) 0.97
from o~ 2/3 ’[0 o = 1 around P ~ 100 Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
Frame 74/86 * Fire station 0.60(4) 0.93 Frame 75/86
* Public health center 0.09(5) 0.19
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Supply Networks

Public versus private facilities: evidence

Public versus Private

i ) T
A, C: ambulatory hospitals in the U.S.; B, D: public

schools in the U.S.; A, B: data; C, D: Voronoi diagram

from model simulation.
Frame 76/86
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Public versus private facilities: the story

» Proceeding as per the
Gastner-Newman-Gusein-Zade calculation, Um et al.
obtain:

D) — n LB/

- an[P(?)]Z/(ﬁJrz)d)—(» x [p(¥)]?/ 2,

» For 3 =0, a = 1: commercial scaling is linear.
» For 5 =1, a = 2/3: social scaling is sublinear.

» You can try this too:
Insert question 2, assignment 4 (H) .

Public versus Private

Frame 78/86

F Dae

Public versus private facilities: the story
So what’s going on?

» Social institutions seek to minimize distance of travel.

» Commercial institutions seek to maximize the
number of visitors.
» Defns: For the ith facility and its Voronoi cell V;,
define
» n; = population of the ith cell;
» (r;) = the average travel distance to the ith facility.
» s; = area of ith cell.
» Objective function to maximize for a facility (highly
constructed):

Vi = n,-(r,->ﬂ with 0 < 06<1.

» Limits:
» (3 = 0: purely commercial.
» (3 =1:purely social.
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