Scale-Free Networks Complex Networks, CSYS/MATH 303, Spring, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

1/57 න**ද**ල

Outline

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Outline

Original model Introduction

Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

 Networks with power-law degree distributions have become known as scale-free networks.

 Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

 One of the seminal works in complex networks: Laszlo Barabási and Reka Albert, Science, 1999: "Emergence of scaling in random networks"^[2]

Somewhat misleading nomenclature...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Networks with power-law degree distributions have become known as scale-free networks.
- Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

- One of the seminal works in complex networks: Laszlo Barabási and Reka Albert, Science, 1999: "Emergence of scaling in random networks" ^[2]
- Somewhat misleading nomenclature...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Networks with power-law degree distributions have become known as scale-free networks.
- Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

- One of the seminal works in complex networks: Laszlo Barabási and Reka Albert, Science, 1999: "Emergence of scaling in random networks" ^[2]
- Somewhat misleading nomenclature...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Networks with power-law degree distributions have become known as scale-free networks.
- Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

- One of the seminal works in complex networks: Laszlo Barabási and Reka Albert, Science, 1999: "Emergence of scaling in random networks" ^[2]
- Somewhat misleading nomenclature...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universaity? Sublinear attachment kernels Superlinear attachment kernels

- Networks with power-law degree distributions have become known as scale-free networks.
- Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

- One of the seminal works in complex networks: Laszlo Barabási and Reka Albert, Science, 1999: "Emergence of scaling in random networks" ^[2]
- Somewhat misleading nomenclature...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Scale-free networks are not fractal in any sense.

- Usually talking about networks whose links are abstract, relational, informational, ... (non-physical)
- Primary example: hyperlink network of the Web
- Much arguing about whether or networks are 'scale-free' or not...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Scale-free networks are not fractal in any sense.
- Usually talking about networks whose links are abstract, relational, informational, ... (non-physical)
- Primary example: hyperlink network of the Web
- Much arguing about whether or networks are 'scale-free' or not...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Scale-free networks are not fractal in any sense.
- Usually talking about networks whose links are abstract, relational, informational, ... (non-physical)
- Primary example: hyperlink network of the Web
- Much arguing about whether or networks are 'scale-free' or not...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Scale-free networks are not fractal in any sense.
- Usually talking about networks whose links are abstract, relational, informational, ... (non-physical)
- Primary example: hyperlink network of the Web
- Much arguing about whether or networks are 'scale-free' or not...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Random networks: largest components

 $\gamma = 2.5$ $\langle k \rangle = 1.8$

 $\gamma = 2.5$ $\langle k \rangle = 2.05333$

 $\gamma = 2.5$ $\langle k \rangle = 1.66667$ $\begin{array}{l} \gamma = 2.5 \\ \langle k \rangle = 1.92 \end{array}$

 $\gamma = 2.5$ $\langle k \rangle = 1.6$

 $\gamma = 2.5$ $\langle k \rangle = 1.50667$

 $\gamma = 2.5$ $\langle k \rangle = 1.62667$

 $\begin{array}{l} \gamma = 2.5 \\ \langle k \rangle = 1.8 \end{array}$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

6/57

The big deal:

We move beyond describing of networks to finding mechanisms for why certain networks are the way they are.

A big deal for scale-free networks:

- How does the exponent γ depend on the mechanism?
- Do the mechanism details matter?

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

The big deal:

We move beyond describing of networks to finding mechanisms for why certain networks are the way they are.

A big deal for scale-free networks:

- How does the exponent γ depend on the mechanism?
- Do the mechanism details matter?

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

The big deal:

We move beyond describing of networks to finding mechanisms for why certain networks are the way they are.

A big deal for scale-free networks:

- How does the exponent γ depend on the mechanism?
- Do the mechanism details matter?

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Work that presaged scale-free networks

- 1924: G. Udny Yule^[9]:
 # Species per Genus
- 1926: Lotka^[4]:
 # Scientific papers per aut
- 1953: Mandelbrot^[5]): Zipf's law for word frequency through optimization

1955: Herbert Simon^[8, 10]: Zipf's law, city size, income, publications, and species per genus

► 1965/1976: Derek de Solla Price [6, 7]: Network of Scientific Citations

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Work that presaged scale-free networks

- 1924: G. Udny Yule^[9]: # Species per Genus
- 1926: Lotka^[4]:
 # Scientific papers per author
- ▶ 1953: Mandelbrot^[5]):

Zipf's law for word frequency through optimization

1955: Herbert Simon^[8, 10]: Zipf's law, city size, income, publications, and species per genus

► 1965/1976: Derek de Solla Price [6, 7]: Network of Scientific Citations

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Work that presaged scale-free networks

- 1924: G. Udny Yule^[9]: # Species per Genus
- 1926: Lotka^[4]:
 # Scientific papers per author
- 1953: Mandelbrot^[5]): Zipf's law for word frequency through optimization

1955: Herbert Simon^[8, 10]: Zipf's law, city size, income, publications, and species per genus

► 1965/1976: Derek de Solla Price [6, 7]: Network of Scientific Citations

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Work that presaged scale-free networks

- 1924: G. Udny Yule^[9]: # Species per Genus
- 1926: Lotka^[4]:
 # Scientific papers per author
- 1953: Mandelbrot^[5]): Zipf's law for word frequency through optimization
- ▶ 1955: Herbert Simon^[8, 10]:

Zipf's law, city size, income, publications, and species per genus

► 1965/1976: Derek de Solla Price [6, 7]: Network of Scientific Citations

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Work that presaged scale-free networks

- 1924: G. Udny Yule^[9]: # Species per Genus
- 1926: Lotka^[4]:
 # Scientific papers per author
- 1953: Mandelbrot^[5]): Zipf's law for word frequency through optimization
- ▶ 1955: Herbert Simon^[8, 10]:

Zipf's law, city size, income, publications, and species per genus

1965/1976: Derek de Solla Price [6, 7]: Network of Scientific Citations

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Outline

Original model Introduction Model details

Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Barabási-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).

- ▶ Step 1: start with *m*⁰ disconnected nodes.
- Step 2:
 - Growth—a new node appears at each time step t = 0, 1, 2,
 - Each new node makes *m* links to nodes already present.
 - 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.
- ▶ In essence, we have a rich-gets-richer scheme.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Barabási-Albert model = BA model.
- Key ingredients: Growth and Preferential Attachment (PA).
- Step 1: start with m₀ disconnected nodes.
- Step 2:
 - Growth—a new node appears at each time step t = 0, 1, 2,
 - Each new node makes *m* links to nodes already present.
 - 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.
- ▶ In essence, we have a rich-gets-richer scheme.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Barabási-Albert model = BA model.
- Key ingredients: Growth and Preferential Attachment (PA).
- Step 1: start with m₀ disconnected nodes.
- Step 2:
 - Growth—a new node appears at each time step t = 0, 1, 2,
 - Each new node makes *m* links to nodes already present.
 - 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.
- ▶ In essence, we have a rich-gets-richer scheme.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Barabási-Albert model = BA model.
- Key ingredients: Growth and Preferential Attachment (PA).
- Step 1: start with m₀ disconnected nodes.
- Step 2:
 - 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
 - Each new node makes *m* links to nodes already present.
 - 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.
- ▶ In essence, we have a rich-gets-richer scheme.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Barabási-Albert model = BA model.
- Key ingredients: Growth and Preferential Attachment (PA).
- Step 1: start with m₀ disconnected nodes.
- Step 2:
 - 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
 - Each new node makes *m* links to nodes already present.
 - 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.
- ▶ In essence, we have a rich-gets-richer scheme.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Barabási-Albert model = BA model.
- Key ingredients: Growth and Preferential Attachment (PA).
- Step 1: start with m₀ disconnected nodes.
- Step 2:
 - 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
 - 2. Each new node makes *m* links to nodes already present.
 - 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.
- ▶ In essence, we have a rich-gets-richer scheme.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Barabási-Albert model = BA model.
- Key ingredients: Growth and Preferential Attachment (PA).
- Step 1: start with m₀ disconnected nodes.
- Step 2:
 - 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
 - Each new node makes *m* links to nodes already present.
 - 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.
- ▶ In essence, we have a rich-gets-richer scheme.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Barabási-Albert model = BA model.
- Key ingredients: Growth and Preferential Attachment (PA).
- Step 1: start with m₀ disconnected nodes.
- Step 2:
 - 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
 - Each new node makes *m* links to nodes already present.
 - 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.
- ► In essence, we have a rich-gets-richer scheme.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Outline

Original model

Introduction Model details

Analysis

A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Definition: A_k is the attachment kernel for a node with degree k.

For the original model:

$$A_k = k$$

Definition: P_{attach}(k, t) is the attachment probability.
 For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=m}^{k_{\text{max}}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t and $N_k(t)$ is # degree k nodes at time t.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Definition: A_k is the attachment kernel for a node with degree k.
- For the original model:

$$A_k = k$$

Definition: P_{attach}(k, t) is the attachment probability.
 For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=m}^{k_{\text{max}}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t and $N_k(t)$ is # degree k nodes at time t.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Definition: A_k is the attachment kernel for a node with degree k.
- For the original model:

$$A_k = k$$

Definition: P_{attach}(k, t) is the attachment probability.
 For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=m}^{k_{\text{max}}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t and $N_k(t)$ is # degree k nodes at time t.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Definition: A_k is the attachment kernel for a node with degree k.
- For the original model:

$$A_k = k$$

- Definition: $P_{\text{attach}}(k, t)$ is the attachment probability.
- For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=m}^{k_{\text{max}}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t and $N_k(t)$ is # degree k nodes at time t.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Definition: A_k is the attachment kernel for a node with degree k.
- For the original model:

$$A_k = k$$

- Definition: $P_{\text{attach}}(k, t)$ is the attachment probability.
- For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=m}^{k_{\text{max}}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t and $N_k(t)$ is # degree k nodes at time t.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

BA model

- Definition: A_k is the attachment kernel for a node with degree k.
- For the original model:

$$A_k = k$$

- Definition: $P_{\text{attach}}(k, t)$ is the attachment probability.
- For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=m}^{k_{\text{max}}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t and $N_k(t)$ is # degree k nodes at time t.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

BA model

- Definition: A_k is the attachment kernel for a node with degree k.
- For the original model:

$$A_k = k$$

- Definition: $P_{\text{attach}}(k, t)$ is the attachment probability.
- For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=m}^{k_{\text{max}}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time *t* and $N_k(t)$ is # degree *k* nodes at time *t*.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

► When (N + 1)th node is added, the expected increase in the degree of node *i* is

$$E(k_{i,N+1}-k_{i,N})\simeq m\frac{k_{i,N}}{\sum_{j=1}^{N(t)}k_j(t)}.$$

- Assumes probability of being connected to is small.
- Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.
- Approximate $k_{i,N+1} k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)}$$

where $t = N(t) - m_0$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

► When (N + 1)th node is added, the expected increase in the degree of node *i* is

$$E(k_{i,N+1}-k_{i,N})\simeq m\frac{k_{i,N}}{\sum_{j=1}^{N(t)}k_j(t)}.$$

- Assumes probability of being connected to is small.
- Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.
- Approximate $k_{i,N+1} k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)}$$

where $t = N(t) - m_0$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

13/57 නq ලං

► When (N + 1)th node is added, the expected increase in the degree of node *i* is

$$E(k_{i,N+1}-k_{i,N})\simeq mrac{k_{i,N}}{\sum_{j=1}^{N(t)}k_j(t)}.$$

- Assumes probability of being connected to is small.
- Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.
- Approximate $k_{i,N+1} k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)}$$

where $t = N(t) - m_0$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

When (N + 1)th node is added, the expected increase in the degree of node *i* is

$$E(k_{i,N+1}-k_{i,N})\simeq mrac{k_{i,N}}{\sum_{j=1}^{N(t)}k_j(t)}.$$

- Assumes probability of being connected to is small.
- Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.
- Approximate $k_{i,N+1} k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)}$$

where
$$t = N(t) - m_0$$
.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

13/57 ୬ ବ ଦ

When (N + 1)th node is added, the expected increase in the degree of node *i* is

$$E(k_{i,N+1}-k_{i,N})\simeq mrac{k_{i,N}}{\sum_{j=1}^{N(t)}k_j(t)}.$$

- Assumes probability of being connected to is small.
- Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.
- Approximate $k_{i,N+1} k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)}$$

where $t = N(t) - m_0$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universaitly? Sublinear attachment kernels Superlinear attachment

References

13/57 ୬ ବ ଦ

 Deal with denominator: each added node brings m new edges.

$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow k_i(t) = c_i t^{1/2}.$$

• Next find c_i

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

14/57

 Deal with denominator: each added node brings m new edges.

$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow k_i(t) = c_i t^{1/2}.$$

• Next find c_i

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

14/57

 Deal with denominator: each added node brings m new edges.

$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = m \frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow k_i(t) = c_i t^{1/2}.$$

• Next find c_i

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

14/57

 Deal with denominator: each added node brings m new edges.

$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow k_i(t) = c_i t^{1/2}.$$

• Next find c_i

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

14/57

 Deal with denominator: each added node brings m new edges.

$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow k_i(t) = c_i t^{1/2}.$$

• Next find c_i

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

14/57

 Deal with denominator: each added node brings m new edges.

$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow \boxed{k_i(t) = c_i t^{1/2}}.$$

Next find c_i

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

14/57

 Deal with denominator: each added node brings m new edges.

$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow \boxed{k_i(t) = c_i t^{1/2}}.$$

• Next find
$$c_i$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

 Deal with denominator: each added node brings m new edges.

$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow \boxed{k_i(t) = c_i t^{1/2}}.$$

Next find c_i ...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

14/57

Know ith node appears at time

$$t_{i,\text{start}} = \begin{cases} i - m_0 & \text{for } i > m_0 \\ 0 & \text{for } i \le m_0 \end{cases}$$

So for *i* > *m*₀ (exclude initial nodes), we must have

$$k_i(t) = m\left(\frac{t}{t_{i,\text{start}}}\right)^{1/2}$$
 for $t \ge t_{i,\text{start}}$.

- All node degrees grow as t^{1/2} but later nodes have larger t_{l,start} which flattens out growth curve.
- Early nodes do best (First-mover advantage).

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Know ith node appears at time

$$t_{i,\text{start}} = \begin{cases} i - m_0 & \text{for } i > m_0 \\ 0 & \text{for } i \le m_0 \end{cases}$$

So for *i* > *m*₀ (exclude initial nodes), we must have

$$k_i(t) = m\left(\frac{t}{t_{i,\text{start}}}\right)^{1/2}$$
 for $t \ge t_{i,\text{start}}$.

All node degrees grow as t^{1/2} but later nodes have larger t_{l,start} which flattens out growth curve.

Early nodes do best (First-mover advantage).

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Know ith node appears at time

$$t_{i,\text{start}} = \begin{cases} i - m_0 & \text{for } i > m_0 \\ 0 & \text{for } i \le m_0 \end{cases}$$

So for *i* > *m*₀ (exclude initial nodes), we must have

$$k_i(t) = m\left(rac{t}{t_{i,\text{start}}}
ight)^{1/2}$$
 for $t \ge t_{i,\text{start}}$.

 All node degrees grow as t^{1/2} but later nodes have larger t_{i,start} which flattens out growth curve.
 Forth reader do heat (First meyor advantage)

Early nodes do best (First-mover advantage).

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Know ith node appears at time

$$t_{i,\text{start}} = \begin{cases} i - m_0 & \text{for } i > m_0 \\ 0 & \text{for } i \le m_0 \end{cases}$$

So for *i* > *m*₀ (exclude initial nodes), we must have

$$k_i(t) = m\left(rac{t}{t_{i,\text{start}}}
ight)^{1/2}$$
 for $t \ge t_{i,\text{start}}$.

- All node degrees grow as t^{1/2} but later nodes have larger t_{i,start} which flattens out growth curve.
- Early nodes do best (First-mover advantage).

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Know ith node appears at time

$$t_{i,\text{start}} = \begin{cases} i - m_0 & \text{for } i > m_0 \\ 0 & \text{for } i \le m_0 \end{cases}$$

So for *i* > *m*₀ (exclude initial nodes), we must have

$$k_i(t) = m\left(rac{t}{t_{i,\text{start}}}
ight)^{1/2}$$
 for $t \ge t_{i,\text{start}}$.

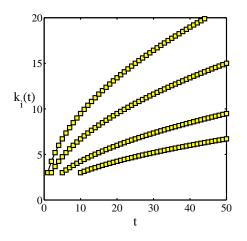
- All node degrees grow as t^{1/2} but later nodes have larger t_{i,start} which flattens out growth curve.
- Early nodes do best (First-mover advantage).

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment



► *m* = 3

h

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

16/57 නදල

- So what's the degree distribution at time t?
- Use fact that birth time for added nodes is distributed uniformly:

$$P(t_{i,\text{start}}) \mathrm{d}t_{i,\text{start}} \simeq \frac{\mathrm{d}t_{i,\text{start}}}{t+m_0}$$

► Using

$$k_i(t) = m\left(\frac{t}{t_{i,\text{start}}}\right)^{1/2} \Rightarrow t_{i,\text{start}} = \frac{m^2 t}{k_i(t)^2}.$$

and by understanding that later arriving nodes have lower degrees, we can say this:

$$\Pr(k_i < k) = \Pr(t_{i,\text{start}} > \frac{m^2 t}{k^2}).$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- So what's the degree distribution at time t?
- Use fact that birth time for added nodes is distributed uniformly:

$$P(t_{i,\text{start}}) \mathrm{d}t_{i,\text{start}} \simeq \frac{\mathrm{d}t_{i,\text{start}}}{t+m_0}$$

Using

$$k_i(t) = m\left(\frac{t}{t_{i,\text{start}}}\right)^{1/2} \Rightarrow t_{i,\text{start}} = \frac{m^2 t}{k_i(t)^2}.$$

and by understanding that later arriving nodes have lower degrees, we can say this:

$$\Pr(k_i < k) = \Pr(t_{i,\text{start}} > \frac{m^2 t}{k^2}).$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

- So what's the degree distribution at time t?
- Use fact that birth time for added nodes is distributed uniformly:

$$P(t_{i,\text{start}}) \mathrm{d}t_{i,\text{start}} \simeq \frac{\mathrm{d}t_{i,\text{start}}}{t+m_0}$$

Using

$$k_i(t) = m\left(\frac{t}{t_{i,\text{start}}}\right)^{1/2} \Rightarrow t_{i,\text{start}} = \frac{m^2 t}{k_i(t)^2}.$$

and by understanding that later arriving nodes have lower degrees, we can say this:

$$\mathbf{Pr}(k_i < k) = \mathbf{Pr}(t_{i,\text{start}} > \frac{m^2 t}{k^2}).$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- So what's the degree distribution at time t?
- Use fact that birth time for added nodes is distributed uniformly:

$$P(t_{i,\text{start}}) \mathrm{d}t_{i,\text{start}} \simeq \frac{\mathrm{d}t_{i,\text{start}}}{t+m_0}$$

Using

$$k_i(t) = m\left(\frac{t}{t_{i,\text{start}}}\right)^{1/2} \Rightarrow t_{i,\text{start}} = \frac{m^2 t}{k_i(t)^2}.$$

and by understanding that later arriving nodes have lower degrees, we can say this:

$$\mathbf{Pr}(k_i < k) = \mathbf{Pr}(t_{i,\text{start}} > \frac{m^2 t}{k^2}).$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Using the uniformity of start times:

$$\mathsf{Pr}(k_i < k) = \mathsf{Pr}(t_{i,\text{start}} > \frac{m^2 t}{k^2}) \simeq \frac{t - \frac{m^2 t}{k^2}}{t + m_0}.$$

▶ Differentiate to find **Pr**(*k*):

$$\mathbf{Pr}(k) = \frac{\mathrm{d}}{\mathrm{d}k} \mathbf{Pr}(k_i < k) = \frac{2m^2 t}{(t+m_0)k^3}$$

 $\sim 2m^2k^{-3}$ as $m \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Using the uniformity of start times:

$$\mathsf{Pr}(k_i < k) = \mathsf{Pr}(t_{i,\text{start}} > \frac{m^2 t}{k^2}) \simeq \frac{t - \frac{m^2 t}{k^2}}{t + m_0}.$$

Differentiate to find **Pr**(k):

$$\mathbf{Pr}(k) = \frac{\mathrm{d}}{\mathrm{d}k} \mathbf{Pr}(k_i < k) = \frac{2m^2 t}{(t+m_0)k^3}$$

$$\sim 2m^2k^{-3}$$
 as $m \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Using the uniformity of start times:

$$\mathbf{Pr}(k_i < k) = \mathbf{Pr}(t_{i,\text{start}} > \frac{m^2 t}{k^2}) \simeq \frac{t - \frac{m^2 t}{k^2}}{t + m_0}.$$

Differentiate to find **Pr**(k):

$$\mathbf{Pr}(k) = \frac{\mathrm{d}}{\mathrm{d}k} \mathbf{Pr}(k_i < k) = \frac{2m^2t}{(t+m_0)k^3}$$

$$\sim$$
 2 m^2k^{-3} as $m \rightarrow \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Using the uniformity of start times:

$$\mathbf{Pr}(k_i < k) = \mathbf{Pr}(t_{i,\text{start}} > \frac{m^2 t}{k^2}) \simeq \frac{t - \frac{m^2 t}{k^2}}{t + m_0}.$$

Differentiate to find **Pr**(k):

$$\mathbf{Pr}(k) = \frac{\mathrm{d}}{\mathrm{d}k} \mathbf{Pr}(k_i < k) = \frac{2m^2t}{(t+m_0)k^3}$$

$$\sim 2m^2k^{-3}$$
 as $m \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

18/57 ୬.୨.୧

- We thus have a very specific prediction of Pr(k) ~ k^{-γ} with γ = 3.
- Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- ▶ 2 < γ < 3: finite mean and 'infinite' variance (wild)
- In practice, γ < 3 means variance is governed by upper cutoff.
- $\gamma > 3$: finite mean and variance (mild)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- We thus have a very specific prediction of Pr(k) ~ k^{-γ} with γ = 3.
- Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- ▶ 2 < γ < 3: finite mean and 'infinite' variance (wild)
- In practice, γ < 3 means variance is governed by upper cutoff.
- ▶ γ > 3: finite mean and variance (mild)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausibl mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- We thus have a very specific prediction of Pr(k) ~ k^{-γ} with γ = 3.
- Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- ▶ 2 < γ < 3: finite mean and 'infinite' variance (wild)</p>
- In practice, γ < 3 means variance is governed by upper cutoff.
- > γ > 3: finite mean and variance (mild)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausibl mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- We thus have a very specific prediction of Pr(k) ~ k^{-γ} with γ = 3.
- Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- ▶ $2 < \gamma < 3$: finite mean and 'infinite' variance (wild)
- In practice, γ < 3 means variance is governed by upper cutoff.
- > γ > 3: finite mean and variance (mild)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausibl mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- We thus have a very specific prediction of Pr(k) ~ k^{-γ} with γ = 3.
- Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- ▶ $2 < \gamma < 3$: finite mean and 'infinite' variance (wild)
- In practice, γ < 3 means variance is governed by upper cutoff.

> γ > 3: finite mean and variance (mild)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausibl mechanism Bobustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- We thus have a very specific prediction of Pr(k) ~ k^{-γ} with γ = 3.
- Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- ▶ $2 < \gamma < 3$: finite mean and 'infinite' variance (wild)
- In practice, γ < 3 means variance is governed by upper cutoff.
- > γ > 3: finite mean and variance (mild)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausibl mechanism Bobustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- We thus have a very specific prediction of Pr(k) ~ k^{-γ} with γ = 3.
- Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- ▶ $2 < \gamma < 3$: finite mean and 'infinite' variance (wild)
- In practice, γ < 3 means variance is governed by upper cutoff.
- > γ > 3: finite mean and variance (mild)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausibl mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Degree distribution

- We thus have a very specific prediction of Pr(k) ~ k^{-γ} with γ = 3.
- Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- ▶ $2 < \gamma < 3$: finite mean and 'infinite' variance (wild)
- In practice, γ < 3 means variance is governed by upper cutoff.
- > γ > 3: finite mean and variance (mild)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausibl mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Examples

$\begin{array}{ll} \mathsf{WWW} & \gamma\simeq \mathsf{2.1} \text{ for in-degree} \\ \mathsf{WWW} & \gamma\simeq \mathsf{2.45} \text{ for out-degree} \\ \mathsf{Movie actors} & \gamma\simeq \mathsf{2.3} \\ \mathsf{Words} \mbox{ (synonyms)} & \gamma\simeq \mathsf{2.8} \end{array}$

The Internets is a different business...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernel

Examples

WWW	$\gamma \simeq$ 2.1 for in-degree
WWW	$\gamma \simeq$ 2.45 for out-degree
Movie actors	$\gamma\simeq$ 2.3
Words (synonyms)	$\gamma \simeq$ 2.8

The Internets is a different business...

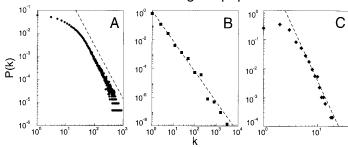
Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Real data



From Barabási and Albert's original paper^[2]:

Fig. 1. The distribution function of connectivities for various large networks. (**A**) Actor collaboration graph with N = 212,250 vertices and average connectivity $\langle k \rangle = 28.78$. (**B**) WWW, N = 325,729, $\langle k \rangle = 5.46$ (6). (**C**) Power grid data, N = 4941, $\langle k \rangle = 2.67$. The dashed lines have slopes (A) $\gamma_{actor} = 2.3$, (**B**) $\gamma_{www} = 2.1$ and (**C**) $\gamma_{power} = 4$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

21/57 නqල

Vary attachment kernel.

- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect γ?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- ► The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Vary attachment kernel.

Vary mechanisms:

1. Add edge deletion

- 2. Add node deletion
- 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect γ ?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- ► The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Supprinear attachment

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect γ?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- ► The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect γ ?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- ► The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect γ?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- ► The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect γ?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- ► The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment Superlinear attachment

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect γ?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- ► Q.: How does changing the model affect γ?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- ► The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect
 \$\gamma\$?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect
 \$\gamma\$?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- ► The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect
 \$\gamma\$?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- The answer is (surprisingly) yes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Outline

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Bobustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

23/57 ୬९९.୧~

Let's look at preferential attachment (PA) a little more closely.

- PA implies arriving nodes have complete knowledge of the existing network's degree distribution.
- ► For example: If P_{attach}(k) ∝ k, we need to determine the constant of proportionality.
- We need to know what everyone's degree is...
- ▶ PA is ∴ an outrageous assumption of node capability.
- But a very simple mechanism saves the day...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Let's look at preferential attachment (PA) a little more closely.
- PA implies arriving nodes have complete knowledge of the existing network's degree distribution.
- For example: If P_{attach}(k) ∝ k, we need to determine the constant of proportionality.
- We need to know what everyone's degree is...
- ▶ PA is :: an outrageous assumption of node capability.
- But a very simple mechanism saves the day...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

- Let's look at preferential attachment (PA) a little more closely.
- PA implies arriving nodes have complete knowledge of the existing network's degree distribution.
- ► For example: If P_{attach}(k) ∝ k, we need to determine the constant of proportionality.
- We need to know what everyone's degree is...
- ▶ PA is :: an outrageous assumption of node capability.
- But a very simple mechanism saves the day...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

- Let's look at preferential attachment (PA) a little more closely.
- PA implies arriving nodes have complete knowledge of the existing network's degree distribution.
- ► For example: If P_{attach}(k) ∝ k, we need to determine the constant of proportionality.
- We need to know what everyone's degree is...
- ▶ PA is :: an outrageous assumption of node capability.
- But a very simple mechanism saves the day...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

- Let's look at preferential attachment (PA) a little more closely.
- PA implies arriving nodes have complete knowledge of the existing network's degree distribution.
- ► For example: If P_{attach}(k) ∝ k, we need to determine the constant of proportionality.
- We need to know what everyone's degree is...
- ▶ PA is :: an outrageous assumption of node capability.
- But a very simple mechanism saves the day...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

24/57 ୬९୯

- Let's look at preferential attachment (PA) a little more closely.
- PA implies arriving nodes have complete knowledge of the existing network's degree distribution.
- ► For example: If P_{attach}(k) ∝ k, we need to determine the constant of proportionality.
- We need to know what everyone's degree is...
- ▶ PA is :: an outrageous assumption of node capability.
- But a very simple mechanism saves the day...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- Can also do this at random.
- We know that friends are weird...
- Assuming the existing network is random, we know probability of a random friend having degree k is

 $Q_k \propto k P_k$

So rich-gets-richer scheme can now be seen to work in a natural way. Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- Can also do this at random.
- We know that friends are weird...
- Assuming the existing network is random, we know probability of a random friend having degree k is

 $Q_k \propto k P_k$

So rich-gets-richer scheme can now be seen to work in a natural way. Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- Can also do this at random.
- We know that friends are weird...
- Assuming the existing network is random, we know probability of a random friend having degree k is

 $Q_k \propto k P_k$

So rich-gets-richer scheme can now be seen to work in a natural way. Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

25/57 ୬.୨.୧.୦

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- Can also do this at random.
- We know that friends are weird...
- Assuming the existing network is random, we know probability of a random friend having degree k is

 $Q_k \propto k P_k$

So rich-gets-richer scheme can now be seen to work in a natural way. Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- Can also do this at random.
- We know that friends are weird...
- Assuming the existing network is random, we know probability of a random friend having degree k is

$Q_k \propto k P_k$

So rich-gets-richer scheme can now be seen to work in a natural way.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- Can also do this at random.
- We know that friends are weird...
- Assuming the existing network is random, we know probability of a random friend having degree k is

$$Q_k \propto k P_k$$

So rich-gets-richer scheme can now be seen to work in a natural way. Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Outline

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

We've looked at some aspects of contagion on scale-free networks:

- 1. Facilitate disease-like spreading.
- 2. Inhibit threshold-like spreading.
- Another simple story concerns system robustness.

 Albert et al., Nature, 2000: "Error and attack tolerance of complex networks"

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- We've looked at some aspects of contagion on scale-free networks:
 - 1. Facilitate disease-like spreading.
 - 2. Inhibit threshold-like spreading.
- Another simple story concerns system robustness.

Albert et al., Nature, 2000:
 "Error and attack tolerance of complex networks"

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

27/57 නqල

- We've looked at some aspects of contagion on scale-free networks:
 - 1. Facilitate disease-like spreading.
 - 2. Inhibit threshold-like spreading.
- Another simple story concerns system robustness.
- Albert et al., Nature, 2000: "Error and attack tolerance of complex networks"

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- We've looked at some aspects of contagion on scale-free networks:
 - 1. Facilitate disease-like spreading.
 - 2. Inhibit threshold-like spreading.

Another simple story concerns system robustness.

 Albert et al., Nature, 2000: "Error and attack tolerance of complex networks"^[1]

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universaity? Sublinear attachment kernels Superlinear attachment

- We've looked at some aspects of contagion on scale-free networks:
 - 1. Facilitate disease-like spreading.
 - 2. Inhibit threshold-like spreading.
- Another simple story concerns system robustness.
- Albert et al., Nature, 2000: "Error and attack tolerance of complex networks"^[1]

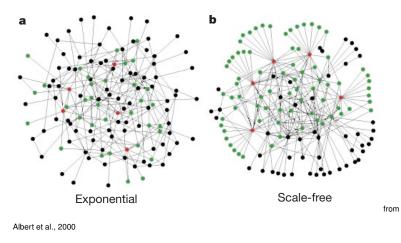
Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universaitly? Sublinear attachment kernels Superlinear attachment kernels

 Standard random networks (Erdős-Rényi) versus
 Scale-free networks



Scale-Free Networks

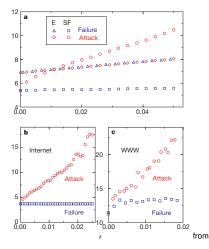
Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

28/57 ୬.୧.୧



Albert et al., 2000

- Plots of network diameter as a function of fraction of nodes removed
- Erdős-Rényi versus scale-free networks
- blue symbols = random removal
- red symbols = targeted removal (most connected first)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- Need to explore cost of various targeting schemes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- ▶ Need to explore cost of various targeting schemes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- ▶ Need to explore cost of various targeting schemes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - Physically larger nodes that may be harder to 'target'
 or subnetworks of smaller, normal-sized nodes.
- Need to explore cost of various targeting schemes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:

Physically larger nodes that may be harder to 'target'
 or subnetworks of smaller, normal-sized nodes.

Need to explore cost of various targeting schemes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- Need to explore cost of various targeting schemes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- Need to explore cost of various targeting schemes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- Need to explore cost of various targeting schemes.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Outline

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model

Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

31/57 නqල

Fooling with the mechanism:

2001: Redner & Krapivsky (RK)^[3] explored the general attachment kernel:

Pr(attach to node *i*) $\propto A_k = k_i^{\nu}$

where A_k is the attachment kernel and $\nu > 0$.

- RK also looked at changing the details of the attachment kernel.
- ▶ We'll follow RK's approach using rate equations (⊞).

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

32/57 නqල

Fooling with the mechanism:

2001: Redner & Krapivsky (RK)^[3] explored the general attachment kernel:

Pr(attach to node *i*) $\propto A_k = k_i^{\nu}$

where A_k is the attachment kernel and $\nu > 0$.

- RK also looked at changing the details of the attachment kernel.
- ▶ We'll follow RK's approach using rate equations (⊞).

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Fooling with the mechanism:

2001: Redner & Krapivsky (RK)^[3] explored the general attachment kernel:

Pr(attach to node *i*) $\propto A_k = k_i^{\nu}$

where A_k is the attachment kernel and $\nu > 0$.

- RK also looked at changing the details of the attachment kernel.
- ▶ We'll follow RK's approach using rate equations (⊞).

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Fooling with the mechanism:

2001: Redner & Krapivsky (RK)^[3] explored the general attachment kernel:

Pr(attach to node *i*) $\propto A_k = k_i^{\nu}$

where A_k is the attachment kernel and $\nu > 0$.

- RK also looked at changing the details of the attachment kernel.
- ▶ We'll follow RK's approach using rate equations (⊞).

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. The first term corresponds to degree *k* 1 nodes becoming degree *k* nodes.
- The second term corresponds to degree k nodes becoming degree k – 1 nodes.
- 3. Detail: $A_0 = 0$
- One node is added per unit time.
- 5. Seed with some initial network

(e.g., a connected pair)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- The first term corresponds to degree *k* − 1 nodes becoming degree *k* nodes.
- The second term corresponds to degree k nodes becoming degree k – 1 nodes.
- 3. Detail: $A_0 = 0$
- 4. One node is added per unit time.
- 5. Seed with some initial network

(e.g., a connected pair)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- The first term corresponds to degree *k* − 1 nodes becoming degree *k* nodes.
- The second term corresponds to degree k nodes becoming degree k – 1 nodes.
- 3. Detail: $A_0 = 0$
- One node is added per unit time.
- 5. Seed with some initial network

(e.g., a connected pair)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. The first term corresponds to degree *k* 1 nodes becoming degree *k* nodes.
- The second term corresponds to degree k nodes becoming degree k – 1 nodes.
- 3. Detail: A₀ = 0
- One node is added per unit time.
- 5. Seed with some initial network

(e.g., a connected pair)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- The first term corresponds to degree *k* − 1 nodes becoming degree *k* nodes.
- The second term corresponds to degree k nodes becoming degree k – 1 nodes.
- 3. Detail: A₀ = 0
- 4. One node is added per unit time.
- 5. Seed with some initial network

(e.g., a connected pair)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- The first term corresponds to degree *k* − 1 nodes becoming degree *k* nodes.
- The second term corresponds to degree k nodes becoming degree k – 1 nodes.
- 3. Detail: A₀ = 0
- 4. One node is added per unit time.
- 5. Seed with some initial network

(e.g., a connected pair)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- The first term corresponds to degree *k* − 1 nodes becoming degree *k* nodes.
- The second term corresponds to degree k nodes becoming degree k – 1 nodes.
- 3. Detail: $A_0 = 0$
- 4. One node is added per unit time.
- 5. Seed with some initial network (e.g., a connected pair)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Outline

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model

Analysis

Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

 $A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$

since one edge is being added per unit time.

Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

 $A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$

since one edge is being added per unit time.

Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where
$$A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$$
.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

 $A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$

since one edge is being added per unit time.

Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

• E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.

For $A_k = k$, we have

 $A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$

since one edge is being added per unit time.

Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.

Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.

Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.

Detail: we are ignoring initial seed network's edges.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

- As for BA method, look for steady-state growing solution: N_k = n_kt.
- We replace dN_k/dt with $dn_kt/dt = n_k$.
- ▶ We arrive at a difference equation:

$$n_k = \frac{1}{2t} \left[(k-1)n_{k-1}t - kn_k t \right] + \delta_{k1}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

- ► As for BA method, look for steady-state growing solution: N_k = n_kt.
- We replace dN_k/dt with $dn_kt/dt = n_k$.

▶ We arrive at a difference equation:

$$n_k = \frac{1}{2t} [(k-1)n_{k-1}t - kn_k t] + \delta_{k1}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

- ► As for BA method, look for steady-state growing solution: N_k = n_kt.
- We replace dN_k/dt with $dn_kt/dt = n_k$.

▶ We arrive at a difference equation:

$$n_k = \frac{1}{2t} [(k-1)n_{k-1}t - kn_k t] + \delta_{k1}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

- ► As for BA method, look for steady-state growing solution: N_k = n_kt.
- We replace dN_k/dt with $dn_kt/dt = n_k$.

▶ We arrive at a difference equation:

$$n_k = \frac{1}{2t} [(k-1)n_{k-1}t - kn_k t] + \delta_{k1}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

- As for BA method, look for steady-state growing solution: N_k = n_kt.
- We replace dN_k/dt with $dn_kt/dt = n_k$.
- We arrive at a difference equation:

$$n_k = \frac{1}{2t} \left[(k-1)n_{k-1}t - kn_k t \right] + \delta_{k1}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Rearrange and simply:

$$n_k = \frac{1}{2}(k-1)n_{k-1} - \frac{1}{2}kn_k + \delta_{k1}$$

$$\Rightarrow (k+2)n_k = (k-1)n_{k-1} + 2\delta_{k1}$$

Two cases:

 $k = 1 : n_1 = 2/3$ since $n_0 = 0$

$$k > 1: n_k = \frac{(k-1)}{k+2}n_{k-1}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

37/57 නqල

Rearrange and simply:

$$n_k = \frac{1}{2}(k-1)n_{k-1} - \frac{1}{2}kn_k + \delta_{k1}$$

$$\Rightarrow (k+2)n_k = (k-1)n_{k-1} + 2\delta_{k1}$$

Two cases:

 $k = 1 : n_1 = 2/3$ since $n_0 = 0$

$$k > 1: n_k = \frac{(k-1)}{k+2}n_{k-1}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

37/57 නqල

Rearrange and simply:

$$n_k = \frac{1}{2}(k-1)n_{k-1} - \frac{1}{2}kn_k + \delta_{k1}$$

$$\Rightarrow (k+2)n_k = (k-1)n_{k-1} + 2\delta_{k1}$$

Two cases:

k = 1: $n_1 = 2/3$ since $n_0 = 0$

$$k > 1: n_k = \frac{(k-1)}{k+2}n_{k-1}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Rearrange and simply:

$$n_k = \frac{1}{2}(k-1)n_{k-1} - \frac{1}{2}kn_k + \delta_{k1}$$

$$\Rightarrow (k+2)n_k = (k-1)n_{k-1} + 2\delta_{k1}$$

Two cases:

$$k = 1 : n_1 = 2/3$$
 since $n_0 = 0$

$$k > 1: n_k = \frac{(k-1)}{k+2}n_{k-1}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

37/57 නq ලං

• Now find n_k :

$$k > 1: n_k = \frac{(k-1)}{k+2}n_{k-1} = \frac{(k-1)}{k+2}\frac{(k-2)}{k+1}n_{k-2}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}n_{k-3}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}\frac{(k-4)}{k-1}n_{k-4}$$

$$\Rightarrow n_k = \frac{6}{k(k+1)(k+2)} n_1 = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

• Now find n_k :

$$k > 1: n_{k} = \frac{(k-1)}{k+2} n_{k-1} = \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} n_{k-2}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} n_{k-3}$$
$$(k-1) (k-2) (k-3) (k-4)$$

$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} \frac{(k-4)}{k-1} n_{k-4}$$

$$\Rightarrow n_k = \frac{6}{k(k+1)(k+2)} n_1 = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

• Now find n_k :

$$k > 1: n_k = \frac{(k-1)}{k+2}n_{k-1} = \frac{(k-1)}{k+2}\frac{(k-2)}{k+1}n_{k-2}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}n_{k-3}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}\frac{(k-4)}{k-1}n_{k-4}$$

$$\Rightarrow n_k = \frac{6}{k(k+1)(k+2)} n_1 = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

• Now find n_k :

$$k > 1: n_k = \frac{(k-1)}{k+2}n_{k-1} = \frac{(k-1)}{k+2}\frac{(k-2)}{k+1}n_{k-2}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}n_{k-3}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}\frac{(k-4)}{k-1}n_{k-4}$$

$$\Rightarrow n_{k} = \frac{6}{k(k+1)(k+2)}n_{1} = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

▶ Now find n_k :

$$k > 1: n_{k} = \frac{(k-1)}{k+2} n_{k-1} = \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} n_{k-2}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} n_{k-3}$$
$$= \frac{(k-1)}{k} \frac{(k-2)}{k+1} \frac{(k-3)}{k} \frac{(k-4)}{k} n_{k-3}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}\frac{(k-4)}{k-1}n_{k-4}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}\frac{(k-4)}{(k-1)}\frac{(k-5)}{(k-2)}\frac{(k-5)}{(k-2)}\frac{5}{(k-2)}\frac{4}{5}\frac{3}{6}\frac{2}{5}\frac{1}{4}n_{1}$$

 $\Rightarrow n_{k} = \frac{6}{k(k+1)(k+2)}n_{1} = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

• Now find n_k :

$$k > 1: n_{k} = \frac{(k-1)}{k+2} n_{k-1} = \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} n_{k-2}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} n_{k-3}$$
$$= \frac{(k-1)}{k-2} \frac{(k-3)}{k-3} \frac{(k-4)}{k-3} n_{k-3}$$

$$=\frac{1}{k+2}\frac{1}{k+1}\frac{1}{k}\frac{1}{k-1}\frac{1}{k-1}n_{k-4}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}\frac{(k-4)}{(k-1)}\frac{(k-5)}{(k-2)}\frac{(k-5)}{(k$$

 $\Rightarrow n_k = \frac{6}{k(k+1)(k+2)} n_1 = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

▶ Now find n_k :

$$k > 1: n_{k} = \frac{(k-1)}{k+2} n_{k-1} = \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} n_{k-2}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} n_{k-3}$$
$$(k-1) (k-2) (k-3) (k-4) n_{k-3}$$

$$=\frac{k+2}{k+2}\frac{k+1}{k+1}\frac{k}{k}\frac{k-1}{k-1}n_{k-4}$$

 $\Rightarrow n_k = \frac{6}{k(k+1)(k+2)} n_1 = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

• Now find n_k :

$$k > 1: n_{k} = \frac{(k-1)}{k+2} n_{k-1} = \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} n_{k-2}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} n_{k-3}$$
$$(k-1) (k-2) (k-3) = 0$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}\frac{(k-4)}{k-1}n_{k-4}$$

$$=\frac{(k-1)(k-2)(k-3)(k-4)(k-5)\cdots 54321}{(k-1)(k-2)\cdots 8787}n$$

 $\Rightarrow n_k = \frac{6}{k(k+1)(k+2)} n_1 = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernel

References

▶ Now find n_k :

$$k > 1: n_{k} = \frac{(k-1)}{k+2} n_{k-1} = \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} n_{k-2}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} n_{k-3}$$
$$(k-1) (k-2) (k-3) (k-4)$$

$$= \frac{(n-1)}{k+2} \frac{(n-2)}{k+1} \frac{(n-3)}{k} \frac{(n-4)}{k-1} n_{k-4}$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}\frac{(k-4)}{(k-1)}\frac{(k-5)}{(k-2)}\cdots\frac{5}{8}\frac{4}{7}\frac{3}{8}\frac{2}{5}\frac{1}{4}n$$

$$\Rightarrow n_{k} = \frac{6}{k(k+1)(k+2)} n_{1} = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

• Now find n_k :

$$k > 1: n_{k} = \frac{(k-1)}{k+2} n_{k-1} = \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} n_{k-2}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} n_{k-3}$$
$$(k-1) (k-2) (k-3) (k-4)$$

$$=\frac{(k-1)}{k+2}\frac{(k-2)}{k+1}\frac{(k-3)}{k}\frac{(k-4)}{k-1}n_{k-4}$$

$$=\frac{(k-1)(k-2)(k-3)(k-4)(k-5)\cdots 5/4}{k+2}\frac{(k-2)(k-3)(k-4)(k-5)\cdots 5/4}{(k-1)(k-2)\cdots 5/7}\frac{3}{6}\frac{3}{5}\frac{2}{4}n$$

$$\Rightarrow n_{k} = \frac{6}{k(k+1)(k+2)}n_{1} = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

• Now find n_k :

$$k > 1: n_{k} = \frac{(k-1)}{k+2} n_{k-1} = \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} n_{k-2}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} n_{k-3}$$
$$(k-1) (k-2) (k-3) (k-4)$$

$$= \frac{(k+1)}{k+2} \frac{(k+1)}{k+1} \frac{(k+1)}{k} \frac{(k+1)}{k-1} n_{k-4}$$

$$=\frac{(k-1)(k-2)(k-3)(k-4)(k-5)\cdots 5}{(k+1)(k-1)(k-1)(k-5)\cdots 8}\overline{7}\overline{8}\overline{7}\overline{8}\overline{7}\overline{4}^{n}$$

$$\Rightarrow n_{k} = \frac{6}{k(k+1)(k+2)}n_{1} = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Outline

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis

Universality?

Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment

Superlinear attachment kernels

As expected, we have the same result as for the BA model:

 $N_k(t) = n_k(t)t \propto k^{-3}$ for large k.

- Now: what happens if we start playing around with the attachment kernel A_k?
- Again, is the result $\gamma = 3$ <u>universal</u> (\boxplus)?
- Natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Redner/Krapivsky^[3]
- Keep A_k linear in k but tweak details.
- ▶ Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

As expected, we have the same result as for the BA model:

 $N_k(t) = n_k(t)t \propto k^{-3}$ for large k.

- Now: what happens if we start playing around with the attachment kernel A_k?
- Again, is the result $\gamma = 3$ <u>universal</u> (\boxplus)?
- Natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Redner/Krapivsky^[3]
- Keep A_k linear in k but tweak details.
- ▶ Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

As expected, we have the same result as for the BA model:

 $N_k(t) = n_k(t)t \propto k^{-3}$ for large k.

- Now: what happens if we start playing around with the attachment kernel A_k?
- Again, is the result $\gamma = 3$ <u>universal</u> (\boxplus)?
- Natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Redner/Krapivsky^[3]
- Keep A_k linear in k but tweak details.
- ▶ Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

As expected, we have the same result as for the BA model:

 $N_k(t) = n_k(t)t \propto k^{-3}$ for large k.

- Now: what happens if we start playing around with the attachment kernel A_k?
- Again, is the result $\gamma = 3$ <u>universal</u> (\boxplus)?
- Natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Redner/Krapivsky^[3]
- Keep A_k linear in k but tweak details.
- ▶ Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

As expected, we have the same result as for the BA model:

 $N_k(t) = n_k(t)t \propto k^{-3}$ for large k.

- Now: what happens if we start playing around with the attachment kernel A_k?
- Again, is the result $\gamma = 3$ <u>universal</u> (\boxplus)?
- Natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Redner/Krapivsky^[3]
- Keep A_k linear in k but tweak details.
- ▶ Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

As expected, we have the same result as for the BA model:

 $N_k(t) = n_k(t)t \propto k^{-3}$ for large k.

- Now: what happens if we start playing around with the attachment kernel A_k?
- Again, is the result $\gamma = 3$ <u>universal</u> (\boxplus)?
- Natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Redner/Krapivsky^[3]
- Keep A_k linear in k but tweak details.

▶ Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

As expected, we have the same result as for the BA model:

 $N_k(t) = n_k(t)t \propto k^{-3}$ for large k.

- Now: what happens if we start playing around with the attachment kernel A_k?
- Again, is the result $\gamma = 3$ <u>universal</u> (\boxplus)?
- Natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Redner/Krapivsky^[3]
- Keep A_k linear in k but tweak details.
- Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t$$
 for large t .

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

- We assume that $A = \mu t$
- We'll find µ later and make sure that our assumption is consistent.

• As before, also assume $N_k(t) = n_k t$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t$$
 for large t .

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

- We assume that $A = \mu t$
- We'll find µ later and make sure that our assumption is consistent.

• As before, also assume $N_k(t) = n_k t$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t$$
 for large t .

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

- We assume that $A = \mu t$
- We'll find µ later and make sure that our assumption is consistent.

• As before, also assume $N_k(t) = n_k t$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t$$
 for large t .

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

- We assume that $A = \mu t$
- We'll find µ later and make sure that our assumption is consistent.
- As before, also assume $N_k(t) = n_k t$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t$$
 for large t .

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

- We assume that $A = \mu t$
- We'll find µ later and make sure that our assumption is consistent.

• As before, also assume $N_k(t) = n_k t$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t$$
 for large t .

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

- We assume that $A = \mu t$
- We'll find µ later and make sure that our assumption is consistent.
- As before, also assume $N_k(t) = n_k t$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

For
$$A_k = k$$
 we had

$$n_k = \frac{1}{2} \left[(k-1)n_{k-1} - kn_k \right] + \delta_{k1}$$

This now becomes

$$n_k = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_k n_k \right] + \delta_{k1}$$

$$\Rightarrow (A_k + \mu)n_k = A_{k-1}n_{k-1} + \mu\delta_{k1}$$

► Again two cases:

$$k = 1: n_1 = \frac{\mu}{\mu + A_1}.$$

$$k > 1: n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

For
$$A_k = k$$
 we had

$$n_k = \frac{1}{2} \left[(k-1)n_{k-1} - kn_k \right] + \delta_{k1}$$

This now becomes

$$n_{k} = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_{k} n_{k} \right] + \delta_{k1}$$

$$\Rightarrow (\mathbf{A}_k + \mu)\mathbf{n}_k = \mathbf{A}_{k-1}\mathbf{n}_{k-1} + \mu\delta_{k1}$$

Again two cases:

$$k = 1: n_1 = \frac{\mu}{\mu + A_1}.$$

$$k > 1: n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernel

References

For
$$A_k = k$$
 we had

$$n_k = \frac{1}{2} \left[(k-1)n_{k-1} - kn_k \right] + \delta_{k1}$$

This now becomes

$$n_{k} = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_{k} n_{k} \right] + \delta_{k1}$$

$$\Rightarrow (\mathbf{A}_{k} + \mu)\mathbf{n}_{k} = \mathbf{A}_{k-1}\mathbf{n}_{k-1} + \mu\delta_{k1}$$

Again two cases:

$$k = 1: n_1 = \frac{\mu}{\mu + A_1}.$$

$$k > 1: n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

For
$$A_k = k$$
 we had

$$n_k = \frac{1}{2} \left[(k-1)n_{k-1} - kn_k \right] + \delta_{k1}$$

This now becomes

$$n_{k} = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_{k} n_{k} \right] + \delta_{k1}$$

$$\Rightarrow (\mathbf{A}_{k} + \mu)\mathbf{n}_{k} = \mathbf{A}_{k-1}\mathbf{n}_{k-1} + \mu\delta_{k1}$$

Again two cases:

$$k=1:n_1=\frac{\mu}{\mu+A_1}.$$

$$k > 1: n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

42/57 ৩৫.৫

For
$$A_k = k$$
 we had

$$n_k = \frac{1}{2} \left[(k-1)n_{k-1} - kn_k \right] + \delta_{k1}$$

This now becomes

$$n_{k} = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_{k} n_{k} \right] + \delta_{k1}$$

$$\Rightarrow (\mathbf{A}_{k} + \mu)\mathbf{n}_{k} = \mathbf{A}_{k-1}\mathbf{n}_{k-1} + \mu\delta_{k1}$$

Again two cases:

$$k=1:n_1=\frac{\mu}{\mu+A_1}.$$

$$k > 1: n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

42/57

• Dealing with the k > 1 case:

$$n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k} = n_{k-1} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$

$$= n_1 \frac{A_1}{A_k} \prod_{j=2}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

 $= n_1 \frac{A_1}{A_k} \left(1 + \frac{\mu}{A_1} \right) \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}}$

$$=rac{\mu}{A_k}\prod_{j=1}^krac{1}{1+rac{\mu}{A_j}} ext{ since } n_1=\mu/(\mu+A_1)$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

• Dealing with the k > 1 case:

$$n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k} = n_{k-1} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$

$$= n_1 \frac{A_1}{A_k} \prod_{j=2}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$= n_1 \frac{A_1}{A_k} \left(1 + \frac{\mu}{A_1} \right) \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$=rac{\mu}{A_k}\prod_{j=1}^krac{1}{1+rac{\mu}{A_j}} ext{ since } n_1=\mu/(\mu+A_1)$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

• Dealing with the k > 1 case:

$$n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k} = n_{k-1} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$

$$= n_{k-2} \frac{A_{k-2}}{A_{k-1}} \frac{1}{1 + \frac{\mu}{A_{k-1}}} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$

$$= n_1 \frac{A_1}{A_k} \prod_{j=2}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$= n_1 \frac{A_1}{A_k} \left(1 + \frac{\mu}{A_1} \right) \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$=rac{\mu}{A_k}\prod_{j=1}^krac{1}{1+rac{\mu}{A_j}} ext{ since } n_1=\mu/(\mu+A_1)$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

• Dealing with the k > 1 case:

$$n_{k} = n_{k-1} \frac{A_{k-1}}{\mu + A_{k}} = n_{k-1} \frac{A_{k-1}}{A_{k}} \frac{1}{1 + \frac{\mu}{A_{k}}}$$

$$= n_{k-2} \frac{A_{k-2}}{A_{k_1}} \frac{1}{1 + \frac{\mu}{A_{k-1}}} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$

$$= n_1 \frac{A_1}{A_k} \prod_{j=2}^{n} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$= n_1 \frac{A_1}{A_k} \left(1 + \frac{\mu}{A_1} \right) \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$=rac{\mu}{A_k}\prod_{j=1}^krac{1}{1+rac{\mu}{A_j}} ext{ since } n_1=\mu/(\mu+A_1)$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

• Dealing with the k > 1 case:

$$n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k} = n_{k-1} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$

$$= n_{k-2} \frac{A_{k-2}}{A_{k_1}} \frac{1}{1 + \frac{\mu}{A_{k-1}}} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$
$$= n_1 \frac{A_1}{A_k} \prod_{j=2}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$= n_1 \frac{A_1}{A_k} \left(1 + \frac{\mu}{A_1} \right) \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$= rac{\mu}{A_k} \prod_{j=1}^k rac{1}{1 + rac{\mu}{A_j}}$$
 since $n_1 = \mu/(\mu + A_1)$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

• Dealing with the k > 1 case:

$$n_{k} = n_{k-1} \frac{A_{k-1}}{\mu + A_{k}} = n_{k-1} \frac{A_{k-1}}{A_{k}} \frac{1}{1 + \frac{\mu}{A_{k}}}$$

$$= n_{k-2} \frac{A_{k-2}}{A_{k_1}} \frac{1}{1 + \frac{\mu}{A_{k-1}}} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$
$$= n_1 \frac{A_1}{A_k} \prod_{j=2}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$= n_1 \frac{A_1}{A_k} \left(1 + \frac{\mu}{A_1} \right) \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

 $= rac{\mu}{A_k} \prod_{j=1}^k rac{1}{1 + rac{\mu}{A_j}}$ since $n_1 = \mu/(\mu + A_1)$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

• Dealing with the k > 1 case:

$$n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k} = n_{k-1} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$

$$= n_{k-2} \frac{A_{k-2}}{A_{k_1}} \frac{1}{1 + \frac{\mu}{A_{k-1}}} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$
$$= n_1 \frac{A_1}{A_k} \prod_{j=2}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$= n_1 \frac{A_1}{A_k} \left(1 + \frac{\mu}{A_1} \right) \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}}$$

$$= rac{\mu}{A_k} \prod_{j=1}^k rac{1}{1 + rac{\mu}{A_j}}$$
 since $n_1 = \mu/(\mu + A_1)$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Time for pure excitement: Find asymptotic behavior of n_k given A_k → k as k → ∞.

► For large *k*:

$$n_{k} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_{j}}} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{A_{j}}{A_{j} + \mu}$$
$$= \frac{\mu}{A_{k}} \frac{A_{1}}{(A_{1} + \mu)} \frac{A_{2}}{(A_{2} + \mu)} \cdots \frac{k - 1}{(k - 1 + \mu)(k + \mu)}$$
$$\propto \frac{\Gamma(k)}{\Gamma(k + \mu + 1)} \sim \frac{\sqrt{2\pi}k^{k+1/2}e^{-k}}{\sqrt{2\pi}(k + \mu + 1)^{k+\mu+1+1/2}e^{-(k+\mu+1)}}$$
$$\propto k^{-\mu-1}$$

Since μ depends on A_k , details matter...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernel

References

44/57

Time for pure excitement: Find asymptotic behavior of n_k given A_k → k as k → ∞.

► For large k:

$$n_{k} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_{j}}} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{A_{j}}{A_{j} + \mu}$$
$$= \frac{\mu}{A_{k}} \frac{A_{1}}{(A_{1} + \mu)} \frac{A_{2}}{(A_{2} + \mu)} \cdots \frac{k - 1}{(k - 1 + \mu)} \frac{k}{(k + \mu)}$$
$$\propto \frac{\Gamma(k)}{\Gamma(k + \mu + 1)} \sim \frac{\sqrt{2\pi}k^{k+1/2}e^{-k}}{\sqrt{2\pi}(k + \mu + 1)^{k+\mu+1+1/2}e^{-(k+\mu+1)}}$$

 $\propto k^{-\mu-1}$

Since μ depends on A_k , details matter...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

44/57

Time for pure excitement: Find asymptotic behavior of n_k given A_k → k as k → ∞.

► For large k:

$$n_k = \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} = \frac{\mu}{A_k} \prod_{j=1}^k \frac{A_j}{A_j + \mu}$$

$$= \frac{\mu}{A_{1}} \frac{A_{1}}{(A_{1} + \mu)} \frac{A_{2}}{(A_{2} + \mu)} \cdots \frac{k - 1}{(k - 1 + \mu)} \frac{k}{(k + \mu)}$$

$$\propto \frac{\Gamma(k)}{\Gamma(k + \mu + 1)} \sim \frac{\sqrt{2\pi}k^{k + 1/2}e^{-k}}{\sqrt{2\pi}k^{k + 1/2}e^{-k}}$$

$$\Gamma(k + \mu + 1) = \sqrt{2\pi(k + \mu + 1)^{k + \mu + 1 + 1/2}} e^{-(k + \mu + 1)^{k + \mu}}$$

 $\propto k^{-\mu-1}$

Since μ depends on A_k , details matter...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

44/57

- Time for pure excitement: Find asymptotic behavior of n_k given A_k → k as k → ∞.
- ► For large k:

$$n_{k} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_{j}}} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{A_{j}}{A_{j} + \mu}$$
$$= \frac{\mu}{A_{k}} \frac{A_{1}}{(A_{1} + \mu)} \frac{A_{2}}{(A_{2} + \mu)} \cdots \frac{k - 1}{(k - 1 + \mu)} \frac{k}{(k + \mu)}$$
$$\propto \frac{\Gamma(k)}{\Gamma(k + \mu + 1)} \sim \frac{\sqrt{2\pi}k^{k + 1/2}e^{-k}}{\sqrt{2\pi}(k + \mu + 1)^{k + \mu + 1 + 1/2}e^{-(k + \mu + 1)}}$$

Since μ depends on A_k , details matter...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

44/57

Time for pure excitement: Find asymptotic behavior of n_k given A_k → k as k → ∞.

► For large k:

$$n_{k} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_{j}}} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{A_{j}}{A_{j} + \mu}$$
$$= \frac{\mu}{A_{k}} \frac{A_{1}}{(A_{1} + \mu)} \frac{A_{2}}{(A_{2} + \mu)} \cdots \frac{k - 1}{(k - 1 + \mu)} \frac{k}{(k + \mu)}$$
$$\propto \frac{\Gamma(k)}{\Gamma(k + \mu + 1)} \sim \frac{\sqrt{2\pi}(k + \mu + 1)^{k + \mu + 1 + 1/2} e^{-(k + \mu + 1)}}{\sqrt{2\pi}(k + \mu + 1)^{k + \mu + 1 + 1/2} e^{-(k + \mu + 1)}}$$

Since μ depends on A_k , details matter...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

44/57

Time for pure excitement: Find asymptotic behavior of n_k given A_k → k as k → ∞.

► For large k:

$$n_{k} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_{j}}} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{A_{j}}{A_{j} + \mu}$$
$$= \frac{\mu}{A_{k}} \frac{A_{1}}{(A_{1} + \mu)} \frac{A_{2}}{(A_{2} + \mu)} \cdots \frac{k - 1}{(k - 1 + \mu)} \frac{k}{(k + \mu)}$$
$$\propto \frac{\Gamma(k)}{\Gamma(k + \mu + 1)} \sim \frac{\sqrt{2\pi}k^{k + 1/2}e^{-k}}{\sqrt{2\pi}(k + \mu + 1)^{k + \mu + 1 + 1/2}e^{-(k + \mu + 1)}}$$

Since μ depends on A_k , details matter...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

Time for pure excitement: Find asymptotic behavior of n_k given A_k → k as k → ∞.

► For large k:

$$n_{k} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_{j}}} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{A_{j}}{A_{j} + \mu}$$
$$= \frac{\mu}{A_{k}} \frac{A_{1}}{(A_{1} + \mu)} \frac{A_{2}}{(A_{2} + \mu)} \cdots \frac{k - 1}{(k - 1 + \mu)} \frac{k}{(k + \mu)}$$
$$\propto \frac{\Gamma(k)}{\Gamma(k + \mu + 1)} \sim \frac{\sqrt{2\pi}k^{k + 1/2}e^{-k}}{\sqrt{2\pi}(k + \mu + 1)^{k + \mu + 1 + 1/2}e^{-(k + \mu + 1)}}$$
$$\propto \frac{k^{-\mu - 1}}{k^{2}}$$

► Since µ depends on A_k, details matter...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

44/57 ୬९୯

Time for pure excitement: Find asymptotic behavior of n_k given A_k → k as k → ∞.

For large k:

$$n_{k} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_{j}}} = \frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{A_{j}}{A_{j} + \mu}$$
$$= \frac{\mu}{A_{k}} \frac{A_{1}}{(A_{1} + \mu)} \frac{A_{2}}{(A_{2} + \mu)} \cdots \frac{k - 1}{(k - 1 + \mu)} \frac{k}{(k + \mu)}$$
$$\propto \frac{\Gamma(k)}{\Gamma(k + \mu + 1)} \sim \frac{\sqrt{2\pi}k^{k + 1/2}e^{-k}}{\sqrt{2\pi}(k + \mu + 1)^{k + \mu + 1 + 1/2}e^{-(k + \mu + 1)}}$$
$$\propto \frac{k^{-\mu - 1}}{k^{2}}$$

Since μ depends on A_k , details matter...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Now we need to find μ .

• Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$

- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- ▶ Now subsitute in our expression for *n_k*:

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- ▶ Now subsitute in our expression for *n_k*:

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- ▶ Now subsitute in our expression for *n_k*:

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment

kernels Superlinear attachment kernels

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t)A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- Now subsitute in our expression for n_k:

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels

Superlinear attachment kernels

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t)A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- Now subsitute in our expression for n_k:

$$\mu = \sum_{k=1}^{\infty} \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} A_k$$

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels

Superlinear attachment kernels

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t)A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- Now subsitute in our expression for n_k:

$$\mu = \sum_{k=1}^{\infty} \frac{\mu}{A_k} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}} A_k$$

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels

Superlinear attachment kernels

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t)A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- Now subsitute in our expression for n_k:

$$1\mu = \sum_{k=1}^{\infty} \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} A_k$$

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment

Superlinear attachment kernels

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t)A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- ▶ Now subsitute in our expression for *n_k*:

$$1\mu = \sum_{k=1}^{\infty} \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} A_k$$

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels

Superlinear attachment kernels

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t)A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- ▶ Now subsitute in our expression for *n_k*:

$$1\mu = \sum_{k=1}^{\infty} \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} A_k$$

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels

Superlinear attachment kernels

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t)A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- ▶ Now subsitute in our expression for *n_k*:

$$1\mu = \sum_{k=1}^{\infty} \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} A_k$$

- Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels

Superlinear attachment kernels

Amazingly, we can adjust A_k and tune γ to be anywhere in [2, ∞).

• $\gamma = 2$ is the lower limit since

$$\mu = \sum_{k=1}^{\infty} A_k n_k \sim \sum_{k=1}^{\infty} k n_k$$

must be finite.

Let's now look at a specific example of A_k to see this range of γ is possible.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Amazingly, we can adjust A_k and tune γ to be anywhere in [2, ∞).
- $\gamma = 2$ is the lower limit since

$$\mu = \sum_{k=1}^{\infty} A_k n_k \sim \sum_{k=1}^{\infty} k n_k$$

must be finite.

Let's now look at a specific example of A_k to see this range of γ is possible.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Amazingly, we can adjust A_k and tune γ to be anywhere in [2, ∞).
- $\gamma = 2$ is the lower limit since

$$\mu = \sum_{k=1}^{\infty} A_k n_k \sim \sum_{k=1}^{\infty} k n_k$$

must be finite.

Let's now look at a specific example of A_k to see this range of γ is possible.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

• Consider $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.

Find $\gamma = \mu + 1$ by finding μ .

• Expression for μ :

$$1 = \sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 = \frac{1}{1 + \frac{\mu}{A_1}} + \sum_{k=2}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

- Consider $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.
- Find $\gamma = \mu + 1$ by finding μ .
- Expression for μ :

$$1 = \sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 = \frac{1}{1 + \frac{\mu}{A_{1}}} + \sum_{k=2}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_{j}}}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

- Consider $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.
- Find $\gamma = \mu + 1$ by finding μ .
- Expression for µ:

$$1 = \sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 = \frac{1}{1 + \frac{\mu}{A_1}} + \sum_{k=2}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 - \frac{1}{1 + \frac{\mu}{A_1}} = \frac{1}{1 + \frac{\mu}{A_1}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$\frac{\frac{\mu}{\alpha}}{1+\frac{\mu}{\alpha}} = \frac{1}{1+\frac{\mu}{\alpha}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1+\frac{\mu}{A_j}} \text{ since } A_1 = \alpha$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

- Consider $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.
- Find $\gamma = \mu + 1$ by finding μ .
- Expression for µ:

$$1 = \sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 = \frac{1}{1 + \frac{\mu}{A_1}} + \sum_{k=2}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 - \frac{1}{1 + \frac{\mu}{A_1}} = \frac{1}{1 + \frac{\mu}{A_1}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$\frac{\frac{\mu}{\alpha}}{1+\frac{\mu}{\alpha}} = \frac{1}{1+\frac{\mu}{\alpha}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1+\frac{\mu}{A_j}} \text{ since } A_1 = \alpha$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment Kernels Superlinear attachment

References

- Consider $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.
- Find $\gamma = \mu + 1$ by finding μ .
- Expression for µ:

$$1 = \sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 = \frac{1}{1 + \frac{\mu}{A_1}} + \sum_{k=2}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 - \frac{1}{1 + \frac{\mu}{A_1}} = \frac{1}{1 + \frac{\mu}{A_1}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

- Consider $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.
- Find $\gamma = \mu + 1$ by finding μ .
- Expression for µ:

$$1 = \sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 = \frac{1}{1 + \frac{\mu}{A_1}} + \sum_{k=2}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$1 - \frac{1}{1 + \frac{\mu}{A_1}} = \frac{1}{1 + \frac{\mu}{A_1}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$

$$\frac{\frac{\mu}{\alpha}}{1+\frac{\mu}{\alpha}} = \frac{1}{1+\frac{\mu}{\alpha}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1+\frac{\mu}{A_j}} \text{ since } A_1 = \alpha$$

Scale-Free Networks

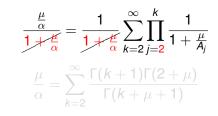
Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

Carrying on:



▶ Now use result that ^[3]

$$\sum_{k=2}^{\infty} \frac{\Gamma(a+k)}{\Gamma(b+k)} = \frac{\Gamma(a+2)}{(b-a-1)\Gamma(b+1)}$$

with a = 1 and $b = \mu + 1$.

$$\mu = \alpha \frac{\Gamma(3)}{(\mu + 1 - 1 - 1)\Gamma(2 + \mu)} \Gamma(2 + \mu)$$

$$\Rightarrow \mu(\mu - 1) = 2a$$

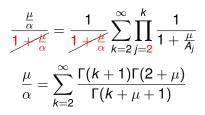
Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Carrying on:



▶ Now use result that ^[3]

$$\sum_{k=2}^{\infty} \frac{\Gamma(a+k)}{\Gamma(b+k)} = \frac{\Gamma(a+2)}{(b-a-1)\Gamma(b+1)}$$

with a = 1 and $b = \mu + 1$.

$$\mu = \alpha \frac{\Gamma(3)}{(\mu + 1 - 1 - 1)\Gamma(2 + \mu)} \Gamma(2 + \mu)$$

$$\Rightarrow \mu(\mu - 1) = 2a$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Carrying on:

$$\frac{\frac{\mu}{\alpha}}{1+\frac{\mu}{\alpha}} = \frac{1}{1+\frac{\mu}{\alpha}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1+\frac{\mu}{A_j}}$$
$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

▶ Now use result that ^[3]

$$\sum_{k=2}^{\infty} \frac{\Gamma(a+k)}{\Gamma(b+k)} = \frac{\Gamma(a+2)}{(b-a-1)\Gamma(b+1)}$$

with a = 1 and $b = \mu + 1$.

$$\mu = \alpha \frac{\Gamma(3)}{(\mu + 1 - 1 - 1)\Gamma(2 + \mu)} \Gamma(2 + \mu)$$

$$\Rightarrow \mu(\mu - 1) = 2lpha$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels

Carrying on:

$$\frac{\frac{\mu}{\alpha}}{1+\frac{\mu}{\alpha}} = \frac{1}{1+\frac{\mu}{\alpha}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1+\frac{\mu}{A_j}}$$
$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

▶ Now use result that ^[3]

$$\sum_{k=2}^{\infty} \frac{\Gamma(a+k)}{\Gamma(b+k)} = \frac{\Gamma(a+2)}{(b-a-1)\Gamma(b+1)}$$

with a = 1 and $b = \mu + 1$.

$$\mu = \alpha \frac{\Gamma(3)}{(\mu + 1 - 1 - 1)\Gamma(2 + \mu)} \Gamma(2 + \mu)$$

$$\Rightarrow \mu(\mu - 1) = 2a$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

Carrying on:

$$\frac{\frac{\mu}{\alpha}}{1+\frac{\mu}{\alpha}} = \frac{1}{1+\frac{\mu}{\alpha}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1+\frac{\mu}{A_j}}$$
$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

Now use result that ^[3]

$$\sum_{k=2}^{\infty} \frac{\Gamma(a+k)}{\Gamma(b+k)} = \frac{\Gamma(a+2)}{(b-a-1)\Gamma(b+1)}$$

with a = 1 and $b = \mu + 1$.

$$\mu = \alpha \frac{\Gamma(3)}{(\mu + 1 - 1 - 1)\Gamma(2 + \mu)} \Gamma(2 + \mu)$$
$$\Rightarrow \mu(\mu - 1) = 2\alpha$$

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernel

$$\mu(\mu-1)=2lpha \Rightarrow \mu=rac{1+\sqrt{1+8lpha}}{2}.$$

Since $\gamma = \mu + 1$, we have

 $\mathbf{0} \leq \alpha < \infty \Rightarrow \mathbf{2} \leq \gamma < \infty$

Craziness...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment

Superlinear attachment kernels

$$\mu(\mu-1)=2lpha \Rightarrow \mu=rac{1+\sqrt{1+8lpha}}{2}.$$

• Since $\gamma = \mu + 1$, we have

$$\mathbf{0} \leq \alpha < \infty \Rightarrow \mathbf{2} \leq \gamma < \infty$$

Craziness...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels

Superlinear attachment kernels

References

49/57 නදල

$$\mu(\mu-1)=2lpha \Rightarrow \mu=rac{1+\sqrt{1+8lpha}}{2}.$$

Since $\gamma = \mu + 1$, we have

$$\mathbf{0} \leq \alpha < \infty \Rightarrow \mathbf{2} \leq \gamma < \infty$$

Craziness...

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels

Superlinear attachment kernels

References

49/57 ୬९୯

Outline

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment Kernels Superlinear attachment

References

Rich-get-somewhat-richer:

 $A_k \sim k^{\nu}$ with $0 < \nu < 1$.

General finding by Krapivsky and Redner:^[3]

 $n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}$

- Stretched exponentials (truncated power laws).
- aka Weibull distributions.
- Universality: now details of kernel do not matter.
- Distribution of degree is universal providing $\nu < 1$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Rich-get-somewhat-richer:

 $A_k \sim k^{\nu}$ with $0 < \nu < 1$.

General finding by Krapivsky and Redner:^[3]

 $n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}$

- Stretched exponentials (truncated power laws).
- aka Weibull distributions.
- Universality: now details of kernel do not matter.
- Distribution of degree is universal providing $\nu < 1$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Rich-get-somewhat-richer:

 $A_k \sim k^{\nu}$ with $0 < \nu < 1$.

General finding by Krapivsky and Redner:^[3]

 $n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}$

- Stretched exponentials (truncated power laws).
- aka Weibull distributions.
- Universality: now details of kernel do not matter.
- Distribution of degree is universal providing $\nu < 1$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Rich-get-somewhat-richer:

 $A_k \sim k^{\nu}$ with $0 < \nu < 1$.

General finding by Krapivsky and Redner:^[3]

 $n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}$

- Stretched exponentials (truncated power laws).
- aka Weibull distributions.
- Universality: now details of kernel do not matter.
- Distribution of degree is universal providing $\nu < 1$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Rich-get-somewhat-richer:

 $A_k \sim k^{\nu}$ with $0 < \nu < 1$.

General finding by Krapivsky and Redner:^[3]

 $n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}$

- Stretched exponentials (truncated power laws).
- aka Weibull distributions.
- Universality: now details of kernel do not matter.
- Distribution of degree is universal providing $\nu < 1$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Rich-get-somewhat-richer:

 $A_k \sim k^{\nu}$ with $0 < \nu < 1$.

General finding by Krapivsky and Redner:^[3]

 $n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}$

- Stretched exponentials (truncated power laws).
- aka Weibull distributions.
- Universality: now details of kernel do not matter.
- Distribution of degree is universal providing $\nu < 1$.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Details:

For 1/2 < ν < 1:</p>

$$n_k \sim k^{-\nu} e^{-\mu \left(rac{k^{1-\nu}-2^{1-\nu}}{1-\nu}
ight)}$$

$$n_k \sim k^{-\nu} e^{-\mu rac{k^{1-
u}}{1-
u} + rac{\mu^2}{2} rac{k^{1-2
u}}{1-2
u}}$$

And for 1/(r + 1) < v < 1/r, we have r pieces in exponential.</p>

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Details:

For 1/2 < ν < 1:</p>

$$n_k \sim k^{-\nu} e^{-\mu \left(rac{k^{1-
u}-2^{1-
u}}{1-
u}
ight)}$$

$$n_k \sim k^{-\nu} e^{-\mu \frac{k^{1-\nu}}{1-\nu} + \frac{\mu^2}{2} \frac{k^{1-2\nu}}{1-2\nu}}$$

And for 1/(r + 1) < v < 1/r, we have r pieces in exponential.</p>

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Details:

For 1/2 < ν < 1:</p>

$$n_k \sim k^{-\nu} e^{-\mu \left(rac{k^{1-
u}-2^{1-
u}}{1-
u}
ight)}$$

• For
$$1/3 < \nu < 1/2$$
:

$$n_k \sim k^{-\nu} e^{-\mu \frac{k^{1-\nu}}{1-\nu} + \frac{\mu^2}{2} \frac{k^{1-2\nu}}{1-2\nu}}$$

And for 1/(r + 1) < ν < 1/r, we have r pieces in exponential.</p>

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Outline

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

Rich-get-much-richer:

 $A_k \sim k^{\nu}$ with $\nu > 1$.

- Now a winner-take-all mechanism.
- One single node ends up being connected to almost all other nodes.
- For v > 2, all but a finite # of nodes connect to one node.

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Rich-get-much-richer:

 $A_k \sim k^{\nu}$ with $\nu > 1$.

- Now a winner-take-all mechanism.
- One single node ends up being connected to almost all other nodes.
- For v > 2, all but a finite # of nodes connect to one node.

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Rich-get-much-richer:

 $A_k \sim k^{\nu}$ with $\nu > 1$.

- Now a winner-take-all mechanism.
- One single node ends up being connected to almost all other nodes.
- For v > 2, all but a finite # of nodes connect to one node.

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

Rich-get-much-richer:

 $A_k \sim k^{\nu}$ with $\nu > 1$.

- Now a winner-take-all mechanism.
- One single node ends up being connected to almost all other nodes.
- For v > 2, all but a finite # of nodes connect to one node.

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References I

- [1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. *Nature*, 406:378–382, July 2000. pdf (H)
- [2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–511, 1999. pdf (⊞)
- [3] P. L. Krapivsky and S. Redner. Organization of growing random networks. *Phys. Rev. E*, 63:066123, 2001. pdf (⊞)

[4] A. J. Lotka.

The frequency distribution of scientific productivity. *Journal of the Washington Academy of Science*, 16:317–323, 1926.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References II

[5] B. B. Mandelbrot. An informational theory of the statistical structure of languages.

In W. Jackson, editor, *Communication Theory*, pages 486–502. Butterworth, Woburn, MA, 1953.

[6] D. J. d. S. Price.

Networks of scientific papers. Science, 149:510–515, 1965. pdf (⊞)

[7] D. J. d. S. Price.

A general theory of bibliometric and other cumulative advantage processes.

J. Amer. Soc. Inform. Sci., 27:292–306, 1976.

[8] H. A. Simon.

On a class of skew distribution functions. *Biometrika*, 42:425-440, 1955. pdf (\boxplus)

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

56/57 ୬୦.୦

References III

🧯 [9] G. U. Yule.

A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. *Phil. Trans. B*, 213:21–, 1924.

📔 [10] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Scale-Free Networks

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

57/57 ୬९୯.୧