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Some large questions concerning network
contagion:
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For a given spreading mechanism on a given
network, what'’s the probability that there will be
global spreading?

. If spreading does take off, how far will it go?
. How do the details of the network affect the

outcome?

. How do the details of the spreading mechanism
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What if the seed is one or many nodes?
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Contagion models

Some large questions concerning network
contagion:

1.

For a given spreading mechanism on a given
network, what'’s the probability that there will be
global spreading?

. If spreading does take off, how far will it go?
. How do the details of the network affect the

outcome?

. How do the details of the spreading mechanism

affect the outcome?

. What if the seed is one or many nodes?

Next up: We’'ll look at some fundamental kinds of
spreading on generalized random networks.
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Spreading mechanisms

e

™

B uninfected
B infected

» General spreading
mechanism:
State of node i depends
on history of i and i’s
neighbors’ states.
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Spreading mechanisms

B uninfected
B infected

» General spreading
mechanism:
State of node i depends
on history of i and i’s
neighbors’ states.

» Doses of entity may be
stochastic and
history-dependent.

» May have multiple,

interacting entities
spreading at once.
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» For random networks, we know local structure is
pure branching.
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Spreading on Random Networks

» For random networks, we know local structure is
pure branching.

» Successful spreading is .. contingent on single
edges infecting nodes.

Success Failure:

—
» Focus on binary case with edges and nodes either
infected or not.
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» We need to find: -
r = the average # of infected edges that one random [ e
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Contagion condition

» We need to find:
r = the average # of infected edges that one random
infected edge brings about.

» Define 5y as the probability that a node of degree k

is infected by a single infected edge.
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Contagion condition Contagion

» We need to find: _ _
r = the average # of infected edges that one random [t
infected edge brings about.

» Define 5y as the probability that a node of degree k
is infected by a single infected edge.
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r = the average # of infected edges that one random [t
infected edge brings about.
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Contagion condition Contagion

» We need to find:

r = the average # of infected edges that one random [t
infected edge brings about.

» Define 5y as the probability that a node of degree k
is infected by a single infected edge.

>
o
kP
r=>y_ — - B (k=1)
pard (k) ~~ ——
- ~~ Prob. of # outgoing
prob. of infection infected

connecting to
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a degree k node
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Contagion condition

» Our contagion condition is then:

» Case 1:

o0

=y

k=0

—1 kPk

If Bk =1

then

(k(k = 1))
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Contagion condition Contagion

Basic Contagion
Models

» Our contagion condition is then:

i _1kPk > 1.

k=0

» Case 1: If B =1 then

po KECT)

(k)

» Good: This is just our giant component condition
again.
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Contagion condition

» Case2: Ifgx=0<1

r=>3

then
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(k)
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» Case2: If g =<1 then

(k(k=1))
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r=>3

» A fraction (1-3) of edges do not transmit infection.
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» A fraction (1-3) of edges do not transmit infection.
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but critical value of (k) is increased.
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» Case2: If g =<1 then Basic Contagion

(k(k=1))

k) > 1.

r=>3
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Contagion condition Contagion

» Case2: If g =<1 then Basic Contagion

Models

(k(k=1))

k) > 1.

r=>3

v

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component case
but critical value of (k) is increased.

Aka bond percolation.
Resulting degree distribution P;:

Pk_ﬂkz<> B) kP,

We can show Fp/(x) = Fp(Bx + 1 — ). Frame 8/58

F DA
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Contagion condition

» Cases 3,4, 5, .... Now allow 3, to depend on k

» Asymmetry: Transmission along an edge depends
on node’s degree at other end.

» Possibility: gk increases with k... unlikely.
» Possibility: Bk is not monotonic in k... unlikely.
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Contagion condition

v

v

v

v

v

Cases 3,4, 5, ... Now allow 3 to depend on k

Asymmetry: Transmission along an edge depends
on node’s degree at other end.

Possibility: gk increases with k... unlikely.
Possibility: Gk is not monotonic in k... unlikely.
Possibility: 3¢ decreases with k... hmmm.
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Cases 3,4, 5, ... Now allow 3 to depend on k

Asymmetry: Transmission along an edge depends
on node’s degree at other end.

Possibility: gk increases with k... unlikely.
Possibility: Gk is not monotonic in k... unlikely.
Possibility: 3¢ decreases with k... hmmm.

Bk \, is a plausible representation of a simple kind of
social contagion.
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Contagion condition

» Cases 3,4, 5, .... Now allow 3, to depend on k

vV V. v Y

Asymmetry: Transmission along an edge depends
on node’s degree at other end.

Possibility: gk increases with k... unlikely.
Possibility: Gk is not monotonic in k... unlikely.
Possibility: 3¢ decreases with k... hmmm.

Bk \, is a plausible representation of a simple kind of
social contagion.

The story:
More well connected people are harder to influence.

Contagion

Social Contagion

Models

Frame 9/58

F DA



Contagion condition Contagion

> Example: Bk = 1/k Social Contagion
Models

Frame 10/58

F DA



Contagion condition Contagion

> Example: Bk = 1/k Social Contagion
Models
>
B YR ST
k=1

Frame 10/58

F DA



Contagion condition

» Example: gk = 1/k.
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Contagion condition

» Example: gk = 1/k.

B > (k—1)kPx , > (k — 1)kPx
D D A D

k=P (-1 1
LK R

» Since r is always less than 1, no spreading can
occur for this mechanism.
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Contagion condition

» Example: gk = 1/k.

B > (k—1)kPx , > (k — 1)kPx
D D A D

k=P (-1 1
LK R

» Since r is always less than 1, no spreading can
occur for this mechanism.

» Decay of j is too fast.
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Contagion condition

v

v

v
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Example: gx = 1/k.

Y Y
k=P (-1 1
=0 kK

Since r is always less than 1, no spreading can
occur for this mechanism.

Decay of g is too fast.
Result is independent of degree distribution.
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where 0 < ¢ < 1 is a threshold and H is the
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» Infection only occurs for nodes with low degree.
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Contagion condition

» Example: Bx = H(} — ¢)
where 0 < ¢ < 1is a threshold and H is the
Heaviside function.
» Infection only occurs for nodes with low degree.
» Call these nodes vulnerables:
they flip when only one of their friends flips.
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Contagion condition

» Example: Bx = H(} — ¢)
where 0 < ¢ < 1 is a threshold and H is the Social Contagion
Heaviside function. oder

» Infection only occurs for nodes with low degree.

» Call these nodes vulnerables:
they flip when only one of their friends flips.
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Contagion

Contagion condition

» Example: Bx = H(} — ¢)
where 0 < ¢ < 1 is a threshold and H is the Social Contagion
Heaviside function. Models

» Infection only occurs for nodes with low degree.

» Call these nodes vulnerables:
they flip when only one of their friends flips.

>

B . (k — 1)kPy B 2. (k — 1)kPy 1
r—;<k> ﬁk—;<k> H(— — ¢)

5]
= (k= 1)kPx where |- | means floor.

(k)

ik
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Contagion condition

» The contagion condition:
15
¢ (k

k=1

kPk

> 1.
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Contagion condition

» The contagion condition:

1]
B (k —1)kPg
r= ; 0 1

» As ¢ — 1, all nodes become resilient and r — 0.
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Contagion condition

» The contagion condition:

» As ¢ — 1, all nodes become resilient and r — 0.

» As ¢ — 0, all nodes become vulnerable and the
contagion condition matches up with the giant
component condition.
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Contagion condition

» The contagion condition:

» As ¢ — 1, all nodes become resilient and r — 0.

» As ¢ — 0, all nodes become vulnerable and the
contagion condition matches up with the giant
component condition.

» Key: If we fix ¢ and then vary (k), we may see two
phase transitions.
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Contagion condition

» The contagion condition:

1
L‘” (k kPk -

k=1

» As ¢ — 1, all nodes become resilient and r — 0.

» As ¢ — 0, all nodes become vulnerable and the
contagion condition matches up with the giant
component condition.

» Key: If we fix ¢ and then vary (k), we may see two
phase transitions.
» Added to our standard giant component transition,

we will see a cut off in spreading as nodes become
more connected.
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SOClal Contag|on Contagion

Some important models (recap from CSYS 300)

» Tipping models—Schelling (1971) (& 2. 10I
» Simulation on checker boards.
» |dea of thresholds.

» Threshold models—Granovetter (1978) !
» Herding models—Bikhchandani et al. (1992) "2
» Social learning theory, Informational cascades,...

Frame 14/58

F DA



Threshold model on a network Gontagion

Original work:

“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 "%
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“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 "%

» Mean field Granovetter model — network model
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Threshold model on a network Gontagion

Original work:

“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 "%

» Mean field Granovetter model — network model
» Individuals now have a limited view of the world
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» Interactions between individuals now represented by
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Threshold model on a network Gontagion
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Interactions between individuals now represented by
a network

Network is sparse

Individual i has k; contacts

Influence on each link is reciprocal and of unit weight
Each individual i has a fixed threshold ¢;
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v

Interactions between individuals now represented by
a network

Network is sparse

Individual i has k; contacts

Influence on each link is reciprocal and of unit weight
Each individual i has a fixed threshold ¢;
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Threshold model on a network Gontagion

v

Interactions between individuals now represented by
a network

Network is sparse

Individual i has k; contacts

Influence on each link is reciprocal and of unit weight
Each individual i has a fixed threshold ¢;

Individuals repeatedly poll contacts on network
Synchronous, discrete time updating

vV vV vV VvY
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Threshold model on a network Gontagion

vV V.V vV v VY

Interactions between individuals now represented by
a network

Network is sparse

Individual i has k; contacts

Influence on each link is reciprocal and of unit weight
Each individual i has a fixed threshold ¢;

Individuals repeatedly poll contacts on network
Synchronous, discrete time updating

Individual i becomes active when
fraction of active contacts a; > ¢;k;
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Threshold model on a network

vV V.V vV v VY

Contagion

Interactions between individuals now represented by
a network

Network is sparse

Individual i has k; contacts

Influence on each link is reciprocal and of unit weight
Each individual i has a fixed threshold ¢;

Individuals repeatedly poll contacts on network
Synchronous, discrete time updating

Individual i becomes active when
fraction of active contacts a; > ¢;k;

Activation is permanent (Sl)
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Threshold model on a network Gontagion

t=1

0

» All nodes have threshold ¢ = 0.2.
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Threshold model on a network

t=1 t=2

\O \O
’

» All nodes have threshold ¢ = 0.2.
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Threshold model on a network Gontagion

AT

» All nodes have threshold ¢ = 0.2.
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» Recall definition: individuals who can be activated by
just one contact being active are vulnerables.

» The vulnerability condition for node i: 1/k; > ¢;.
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The mOSt gun|b|e Contagion

Vulnerables:
» Recall definition: individuals who can be activated by
just one contact being active are vulnerables.
» The vulnerability condition for node i: 1/k; > ¢;.
» Means # contacts k; < [1/¢;].
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The mOSt gun|b|e Contagion

Vulnerables:

» Recall definition: individuals who can be activated by
just one contact being active are vulnerables.
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Vulnerables:
» Recall definition: individuals who can be activated by
just one contact being active are vulnerables.
» The vulnerability condition for node i: 1/k; > ¢;.
» Means # contacts k; < [1/¢;].

» Key: For global cascades on random networks, must
have a global component of vulnerables!'?!

» For a uniform threshold ¢, our contagion condition
tells us when such a component exists:

3]
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Cascades on random networks

1

b » Top curve: final fraction
°e e infected if successful.
08 Y » Middle curve: chance of
oe \\ starting a global
Wb spreading event
02 S\ (cascade).
-i‘ o
0 S » Bottom curve: fractional
1 2 3 4 5 6 .
3 size of vulnerable
12
(nb. z = (k) subcomponent. ['?]

» Cascades occur only if size of vulnerable
subcomponent > 0.

» System is robust-yet-fragile just below upper
boundary %4 1]

» ‘Ignorance’ facilitates spreading. Frame 19/58
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Cascades on random networks

50

2 a0
@ .
- I » Time taken for cascade
e = to spread through
g, — network. ['?]

, | » Two phase transitions.
(n.b., z= (k)

» Largest vulnerable component = critical mass.

» Now have endogenous mechanism for spreading
from an individual to the critical mass and then
beyond.
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Granovetter’s Threshold model—recap

» Assumes deterministic Aol neworks
response functions

» ¢, =threshold of an
individual.

» f(¢.) = distribution of
thresholds in a population.

» F(¢.) = cumulative

oz 04 0608t distribution = [ o —o F(¢.)d¢,

» ¢; = fraction of people ‘rioting
at time step t.

o o o
S« N © < B

Prob(activation)

o
N

o

Frame 24/58

F DA




Social Sciences—Threshold models Contagion

All-to-all networks

» Attime t + 1, fraction rioting = fraction with ¢, < ¢x.

Frame 25/58

F DA



Social Sciences—Threshold models Contagion

All-to-all networks

» Attime t + 1, fraction rioting = fraction with ¢, < ¢x.
| 4

bt
Ser1 = /0 F(g.)dds = F(6:)|2 = F(or)

Frame 25/58

F DA



Social Sciences—Threshold models Contagion

All-to-all networks

» Attime t + 1, fraction rioting = fraction with ¢, < ¢x.
| 4

bt
Ser1 = /0 F(g.)dds = F(6:)|2 = F(or)

» = lterative maps of the unit interval [0, 1].
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Action based on perceived behavior of others.
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» Two states: S and |
» Recover now possible (SIS)
» ¢ = fraction of contacts ‘on’ (e.g., rioting)

» Discrete time, synchronous update (strong
assumption!)

» This is a Critical mass model
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» Example of single stable state model
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Social Sciences—Threshold models Contagion

Implications for collective action theory:

All-to-all networks

1. Collective uniformity #- individual uniformity
2. Small individual changes = large global changes

Next:

» Connect mean-field model to network model.
» Single seed for network model: 1/N — 0.

» Comparison between network and mean-field model
sensible for vanishing seed size for the latter.

Frame 28/58
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Three key pieces to describe analytically:

1. The fractional size of the largest subcomponent of
vulnerable nodes, Syy.-
2. The chance of starting a global spreading event,
Ptrig = Strig-
3. The expected final size of any successful spread, S.
» n.b., the distribution of S is almost always bimodal.
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Threshold contagion on random networks

» First goal: Find the largest component of vulnerable
nodes.

» Recall that for finding the giant component’s size, we
had to solve:

Fr(x) = xFp (F,(x)) and Fy(x) = xFgr (Fy(x))

» We'll find a similar result for the subset of nodes that
are vulnerable.

» This is a node-based percolation problem.

» For a general monotonic threshold distribution f(¢), a
degree k node is vulnerable with probability

1/k
B = /0 F(6)do .
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» Everything now revolves around the modified
generating function:

Fo™ (x) = > BrPix".
k=0
» Generating function for friends-of-friends distribution
is related in same way as before:

% F[(Jvuln) (X)

F,gvuln) (X) — .
S ()t
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almost the same...
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Threshold contagion on random networks

» Functional relations for component size g.f.'s are
almost the same...

Févuln) (X) —1_ F/(Jvuln)(.l ) —I-XF'S-,VUIH) (Févuln) (X))
—_——
central node
is not
vulnerable

vuln vuln vuln vuln
FOUm(x) = 1= FR (1) +xFR ™ (F{ (x))
—_——
first node
is not
vulnerable

» Can now solve as before to find Syum = 1 — £ (1).
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» Second goal: Find probability of triggering largest
vulnerable component.

» Assumption is first node is randomly chosen.

» Same set up as for vulnerable component except
now we don’t care if the initial node is vulnerable or
not: .

FLe)(x) = xFp (F{™(x))

F‘SVUIH)(X) —1_ F;)(-I) + XF,(?vuln) <F‘SVUIH)(X))

> Solve as before 1o find Py = Sirig = 1 — FI8(1).
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» Third goal: Find expected fractional size of spread.
» Not obvious even for uniform threshold problem.

» Difficulty is in figuring out if and when nodes that
need > 2 hits switch on.

» Problem solved for infinite seed case by Gleeson and
Cahalane:
“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007. [

» Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008. °!
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Idea:

» Randomly turn on a fraction ¢g of nodes attime t =0

» Capitalize on local branching network structure of
random networks (again)

» Now think about what must happen for a specific
node i/ to become active at time t:

e { = 0:iis one of the seeds (prob = ¢g)

e {=1:jwas not a seed but enough of /’s friends
switched on at time t = 0 so that /’s threshold is now
exceeded.

e [ = 2: enough of /’s friends and friends-of-friends
switched on at time t = 0 so that /’s threshold is now
exceeded.

e { = n: enough nodes within n hops of i/ switched on

at t = 0 and their effects have propagated to reach /. (i
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Contagion

Expected size of spread

Notes:
» Calculations are possible nodes do not become
inactive.

» Not just for threshold model—works for a wide range
of contagion processes.

» We can analytically determine the entire time
evolution, not just the final size.

» We can in fact determine Pr(node of degree k
switches on at time ).

» Asynchronous updating can be handled too.
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Pleasantness:
» Taking off from a single seed story is about
expansion away from a node.

» Extent of spreading story is about contraction at a
node.
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» Notation: Pr(node i becomes active at time t) = ¢; ;.

» Notation: 3k = Pr (a degree k node becomes active
if j neighbors are active).
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Expected size of spread

v

Notation: Pr(node i becomes active at time t) = ¢; ;.

Notation: 8k = Pr (a degree k node becomes active
if j neighbors are active).

Our starting point: ¢; o = ¢o.
(") 04(1 — ¢0)k~ = Pr (j of node /'s k; neighbors
were seeded at time t = 0).

Probability node i was a seed at t = 0 is ¢ (as
above).

v

v

v

v
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Expected size of spread

» Notation: Pr(node i becomes active at time t) = ¢; ;.

» Notation: 3k = Pr (a degree k node becomes active
if j neighbors are active).

» Our starting point: ¢; o = ¢o.
> ()41 = ¢0)i~J = Pr (j of node /'s k; neighbors
were seeded at time t = 0).

» Probability node i was aseed att =0 is ¢ (as
above).

» Probability node j was notaseed at t =0is (1 — ¢p).
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Expected size of spread

» Notation: Pr(node i becomes active at time t) = ¢; ;.

» Notation: 3k = Pr (a degree k node becomes active
if j neighbors are active).

» Our starting point: ¢; o = ¢o.
> ()41 = ¢0)i~J = Pr (j of node /'s k; neighbors
were seeded at time t = 0).

» Probability node i was aseed att =0 is ¢ (as
above).

» Probability node j was notaseed at t =0is (1 — ¢p).
» Combining everything, we have:

x

i1 = o+ (1—c0) ) </>¢é(1 — $0)" By
=0

F DA
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» For general t, we need to know the probability an
edge coming into node i at time t is active.
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Expected size of spread

» For general t, we need to know the probability an
edge coming into node i at time t is active.

» Notation: call this probability 6;.
» We already know 6y = ¢y.
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Expected size of spread

» For general t, we need to know the probability an
edge coming into node i at time t is active.

» Notation: call this probability 6;.
» We already know 6y = ¢y.
» Story analogous to t = 1 case:

ki
it+1 = ¢o + (1 — ¢o) Z( )911—90}( By

j=0

Frame 43/58

F DA




Contagion

Expected size of spread

» For general t, we need to know the probability an
edge coming into node i at time t is active.

» Notation: call this probability 6;.
» We already know 6y = ¢y.
» Story analogous to t = 1 case:

ki

K\ i i
Gitt1 =0+ (1 - CbO)Z <j>etj(1 — 0057 Bj.

j=0
» Average over all nodes to obtain expression for ¢, 1:
00 k Kk ) _
Gt = do+(1—00) Y Pk <j>9t/(1 — 00"y
k=0  j=0

Frame 43/58
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Expected size of spread

» For general t, we need to know the probability an
edge coming into node i at time t is active.

Notation: call this probability 6;.

v

» We already know 6y = ¢y.
» Story analogous to t = 1 case:
ki ki . )
Bigr1 = do+ (1 - o) Y ( /)0{ (1= 60) By
j=0

v

Average over all nodes to obtain expression for ¢, 1:

0o K k . .
Gt41 = do + (1 — ¢o) Z sz (/)9{(1 — 00) 7 By.

k=0  j=0
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So we need to compute 6... Frame 43/58
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Expected size of spread

» For general t, we need to know the probability an
edge coming into node i at time t is active.

Notation: call this probability 6;.

v

» We already know 6y = ¢y.
» Story analogous to t = 1 case:
ki ki . )
Bigr1 = do+ (1 - o) Y ( /)0{ (1= 60) By
j=0

v

Average over all nodes to obtain expression for ¢, 1:

0o K k . .
Gt41 = do + (1 — ¢o) Z sz (/)9{(1 — 00) 7 By.

k=0  j=0

v

So we need to compute 6;... massive excitement... Frame 43/58
F A




Expected size of spread Contagion

First connect 6, to 6;:

> 01 = do+

VS KPR (K= oy ket
(1 ¢o)z<k>j_zo< j )90(1 6o) Brj

k=1

> % = Ry = Pr (edge connects to a degree k node).

> >4 piece gives Pr(degree node k activates) of its
neighbors k — 1 incoming neighbors are active.

» ¢o and (1 — ¢p) terms account for state of node at
time t = 0.

Frame 44/58
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Expected size of spread Contagion

First connect 6, to 6;:

> 01 = do+

VS KPR (K= oy ket
(1 ¢o)z<k>j_zo< j )90(1 6o) Brj

k=1

> % = Ry = Pr (edge connects to a degree k node).

> >4 piece gives Pr(degree node k activates) of its
neighbors k — 1 incoming neighbors are active.

» ¢o and (1 — ¢p) terms account for state of node at
time t = 0.
» See this all generalizes to give 0;,¢ in terms of 6;...

Frame 44/58
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Expected size of spread

Two pieces:

1. 041 = go+

with 0o = ¢p.
2. ¢t1 = dot+

o0

(1 — o)
K

k
sz

=0 j=0

Contagion

)9 (1 =)y

()9’1—9t“ﬁk

Frame 45/58
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Comparison between theory and simulations

1 » Pure random networks

15((a)
with simple threshold
0 responses
N 05 » R = uniform threshold
5 (our ¢,); z = average
degree; p = ¢;q = 0;
0 0 N = 10°.
0 0.1 R 0.2 0.3
1 > ¢pg=1073,0.5x 1072,
. | I and 1072
05 o » Cascade window is for
| ¢ = 1072 case.
KR , 8 &8 10 » Sensible expansion of
window as
From Gleeson and Cahalane [/ .Cascade %o
increases.

Frame 46/58
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NOteS. Contagion

» Retrieve cascade condition for spreading from a
single seed in limit ¢g — O.

Theory

Frame 47/58
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NOteS. Contagion

» Retrieve cascade condition for spreading from a
single seed in limit ¢g — O.

» Depends on map 6;.1 = G(6+; ¢o).
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Notes:
» Retrieve cascade condition for spreading from a
single seed in limit ¢g — O.
» Depends on map 0;1 = G(6;; ¢o).

» First: if self-starters are present, some activation is
assured:
= kP,
G(0: o) = > Wfﬁko > 0.

k=1

meaning Gxo > 0 for at least one value of k > 1.
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Contagion

Notes:

» Retrieve cascade condition for spreading from a
single seed in limit g — O.

» Depends on map 0;1 = G(6;; ¢o).

» First: if self-starters are present, some activation is
assured:

. kP
G(0; do) = > <T;(ﬁk0 > 0.
k=1

meaning Gxo > 0 for at least one value of k > 1.

» If # = 0 is a fixed point of G (i.e., G(0; ¢¢) = 0) then
spreading occurs if

o0

Z kPkﬁ;q > 1.

Insert question from assignment 6 (&) Frame 47/58

F DA
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Notes:

In words:

» If G(0; ¢p) > 0, spreading must occur because some
nodes turn on for free.

Contagion

Theory
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Notes:
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nodes turn on for free.

» If G has an unstable fixed point at § = 0, then
cascades are also always possible.
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Notes:
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» If G(0; ¢p) > 0, spreading must occur because some
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» If G has an unstable fixed point at § = 0, then
cascades are also always possible.

Non-vanishing seed case:

» Cascade condition is more complicated for ¢g > 0.
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In words:
» If G(0; ¢p) > 0, spreading must occur because some
nodes turn on for free.

» If G has an unstable fixed point at § = 0, then
cascades are also always possible.

Non-vanishing seed case:

» Cascade condition is more complicated for ¢g > 0.

» If G has a stable fixed point at # = 0, and an unstable
fixed point for some 0 < 6, < 1, then for 6y > 6.,
spreading takes off.
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Notes:

In words:

» If G(0; ¢p) > 0, spreading must occur because some
nodes turn on for free.

» If G has an unstable fixed point at § = 0, then
cascades are also always possible.

Non-vanishing seed case:

» Cascade condition is more complicated for ¢g > 0.

» If G has a stable fixed point at # = 0, and an unstable
fixed point for some 0 < 6, < 1, then for 6y > 6.,
spreading takes off.

» Tricky point: G depends on ¢g, S0 as we change ¢,

we also change G.
Frame 48/58

F DA
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General fixed point story:

1 1 1
S > £ : S e
o [<] 5] L
] g I |
3 - 3 3
< L < <
0 0 & o L
0 1 0 1 0 1
o, o, )

» Given 6p(= ¢p), 6 Will be the nearest stable fixed
point, either above or below.
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] g I |
3 - 3 3
< L < <
0 0 & o L
0 1 0 1 0 1
o, o, )

» Given 6p(= ¢p), 6 Will be the nearest stable fixed
point, either above or below.

» n.b., adjacent fixed points must have opposite
stability types.
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General fixed point story:

1 1 1

0 0 & o L
0 1 0 1 0 1
0 0 0

G0 o)

=G(6,
b1 = G(0y; &

O
[ (6 o)

» Given 6p(= ¢p), 6 Will be the nearest stable fixed
point, either above or below.

» n.b., adjacent fixed points must have opposite
stability types.

» Important: Actual form of G depends on ¢y.

Frame 49/58
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General fixed point story:

G0 o)

=G(6,
b1 = G(0y; &

O
0,

1 1 1
0 & 0 <

0, 0, 6,

» Given 6p(= ¢p), 6 Will be the nearest stable fixed
point, either above or below.

» n.b., adjacent fixed points must have opposite
stability types.

» Important: Actual form of G depends on ¢y.

» So choice of ¢g dictates both G and starting
point—can’t start anywhere for a given G.

Frame 49/58

F DA
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Comparison between theory and simulations

» Now allow thresholds to
be distributed according
05 to a Gaussian with
mean R.

» R=0.2,0.362, and
0 0.38; 0 =0.2.

0 2 4 6 8 10

From Gleeson and Cahalane [/
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» Now allow thresholds to
be distributed according
05 to a Gaussian with
mean R.

» R=0.2,0.362, and
0 0.38; 0 =0.2.
; > ¢ = 0 but some nodes

o : have thresholds < 0 so
05 ; effectively ¢g > 0.

0 2 4 6 8 10

From Gleeson and Cahalane [/
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0 2 4 6 8 10

From Gleeson and Cahalane [/

Now allow thresholds to
be distributed according
to a Gaussian with

mean R.
R=0.2,0.362, and
0.38; 0 =0.2.

¢o = 0 but some nodes
have thresholds < 0 so
effectively ¢g > 0.

Now see a (nasty)
discontinuous phase
transition for low (k).

Frame 50/58
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Comparison between theory and simulations

1

©0.5

From Gleeson and Cahalane [°!

Contagion

» Plots of stability points
for 011 = G(0+; ¢o).

» n.b.: 0 is not a fixed
point here: 5 =0
always takes off.

» Top to bottom: R =
0.35, 0.371, and 0.375.
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From Gleeson and Cahalane [°!

Contagion

» Plots of stability points
for 011 = G(0+; ¢o).

» n.b.: 0is not a fixed
point here: 5 =0
always takes off.

» Top to bottom: R =
0.35, 0.371, and 0.375.

» n.b.: higher values of 6
for (b) and (c) lead to
higher fixed points of G.
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Comparison between theory and simulations

1

©0.5

From Gleeson and Cahalane [°!

Contagion

Plots of stability points
for 011 = G(0+; ¢o).
n.b.: 0 is not a fixed
point here: 5 =0
always takes off.
Top to bottom: R =
0.35, 0.371, and 0.375.
n.b.: higher values of 6y
for (b) and (c) lead to
higher fixed points of G.
Saddle node
bifurcations appear and
merge (b and c).

Frame 51/58
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Spreadarama Gontagion

Bridging to single seed case:

» Consider largest vulnerable component as initial set
of seeds.

Frame 52/58

F DA



Spreadarama Gontagion

Bridging to single seed case:

» Consider largest vulnerable component as initial set
of seeds.

» Not quite right as spreading must move through
vulnerables.

Frame 52/58

F DA



Contagion

Spreadarama

Bridging to single seed case:

» Consider largest vulnerable component as initial set
of seeds.

» Not quite right as spreading must move through
vulnerables.

» But we can usefully think of the vulnerable
component as activating at time t = 0 because order
doesn’t matter.

Frame 52/58

F DA




Spreadarama Gontagion

Bridging to single seed case:

» Consider largest vulnerable component as initial set
of seeds.

» Not quite right as spreading must move through
vulnerables.

» But we can usefully think of the vulnerable
component as activating at time t = 0 because order
doesn’t matter.

» Rebuild ¢; and 6; expressions...

Frame 52/58
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Spreadarama Gontagion

Two pieces modified for single seed:

1. 91‘+1 = evuln +

0o kPkk 1
- vuln ZWZ( >9j 1 _et)k 1_jﬁkj
k=1 j=0

with 8y = 6,un = Pr an edge leads to the giant
vulnerable component (if it exists).

2. ¢t+1 = Vuln +

1 - vu]n)ZPkZ </>91 1 _91)k /ﬁkj

k=0 /=0

Frame 53/58
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Time-dependent solutions Contagion

Synchronous update
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» Done: Evolution of ¢; and 6; given exactly by the
maps we have derived.
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» Update nodes with probability «.

Frame 54/58

F DA



Time-dependent solutions Contagion

Synchronous update
» Done: Evolution of ¢; and 6; given exactly by the
maps we have derived.
Asynchronous updates

» Update nodes with probability «.
» As o — 0, updates become effectively independent.

Frame 54/58

F DA



Time-dependent solutions Contagion

Synchronous update
» Done: Evolution of ¢; and 6; given exactly by the
maps we have derived.
Asynchronous updates

» Update nodes with probability «.
» As o — 0, updates become effectively independent.
» Now can talk about ¢(t) and ().
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Time-dependent solutions Contagion

Synchronous update

» Done: Evolution of ¢; and 6; given exactly by the
maps we have derived.

Asynchronous updates

» Update nodes with probability «.

» As o — 0, updates become effectively independent.
» Now can talk about ¢(t) and 6(t).

» More on this later...

Frame 54/58

F DA
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