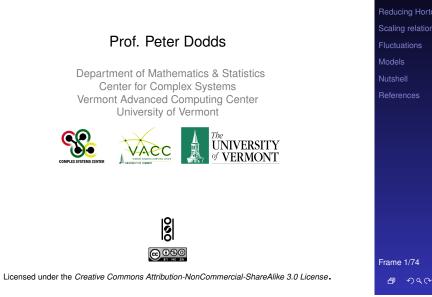
Branching Networks II Complex Networks, CSYS/MATH 303, Spring, 2010



Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- *R_n*, *R_a*, *R_ℓ*, and *R_s* versus *T*₁ and *R_T*. One simple redundancy: *R_ℓ* = *R_s*.
 Insert question 2, assignment 2 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga → Horton^[18, 19, 20, 9, 2]

Branching

Networks II

Branching

Networks II

Reducing Horton

Horton ⇔

Tokunaga

Models

Nutshell

References

Frame 3/74

B 990

lorton ⇔

Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations

Branching

Fluctuations Models Nutshell References

Let us make them happy

We need one more ingredient: Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:
 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$\rho_{\rm dd} \simeq rac{\sum {
m stream segment lengths}}{{
m basin area}} = rac{\sum_{\omega=1}^{\Omega} n_\omega \bar{s}_\omega}{a_\Omega}$$

Networks II Horton ⇔

Branching

Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 4/74

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:
- $\omega = 3$ $\omega = 3$ $\omega = 4$ $\omega = 4$ $\omega = 4$ $\omega = 4$ $\omega = 4$
- Running into another stream of order ω and generating a stream of order ω + 1...
 2n_{ω+1} streams of order ω do this
- Running into and being absorbed by a
 - stream of higher order $\omega' > \omega$...
 - $n'_{\omega}T_{\omega'-\omega}$ streams of order ω do this

Finding other Horton ratios

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance 1/p_{dd}.
- For an order ω stream segment, expected length is

$$ar{s}_{\omega} \simeq
ho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k
ight)$$

• Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

More with the happy-making thing

Putting things together:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

- Use Tokunaga's law and manipulate expression to create R_n's.
- ▶ Insert question 3, assignment 2 (⊞)
- Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Branching

Networks I

Branching

Networks II

Reducing Horton

Scaling relations

Horton ⇔

Tokunaga

Models

Nutshell

References

Branching

Networks II

Horton ⇔

Tokunaga

Fluctuations

Frame 5/74

Models

Horton and Tokunaga are happy

Altogether then:

- $\Rightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$
- ► Recall R_ℓ = R_s so

$$R_{\ell} = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Horton ⇔ Tokunaga Reducing Horto Scaling relations Fluctuations Models Nutshell

References

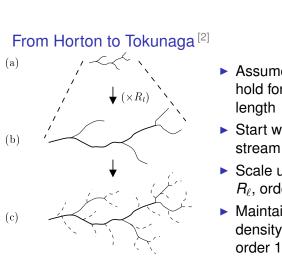
Frame 8/74

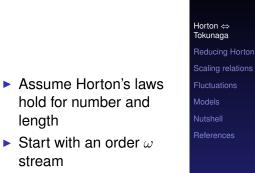
Horton and Tokunaga are happy

Some observations:

- R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions.^[3, 4]

Horton and Tokunaga are friends





- Scale up by a factor of *R*_ℓ, orders increment
- Maintain drainage density by adding new order 1 streams

Horton	and	Tokunaga	aro	hanny
	anu	Tokunaya	are	парру

The other way round

► Note: We can invert the expressions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

Branching

Networks II

Horton ⇔

Tokunaga

Fluctuations

References

Frame 9/74

B 990

Branching

Networks II

Frame 11/74

B 9900

Models

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

 $R_T = R_\ell$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)...

> Frame 10/74 日 つくへ

Branching

Networks I

Reducing Horton

Horton ⇔ Tokunaga

Models

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga are friends

... and in detail:

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1} = (R_{\ell}-1)\left(\sum_{i=1}^{k} T_i + 1\right).$$

For large ω, Tokunaga's law is the solution—let's check...

Frame 12/74

ন্দ ৩৭৫

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$
$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$
$$\simeq (R_{\ell} - 1) T_1 \frac{R_{\ell}^{k}}{R_{\ell} - 1} = T_1 R_{\ell}^{k} \quad \dots \text{ yep.}$$

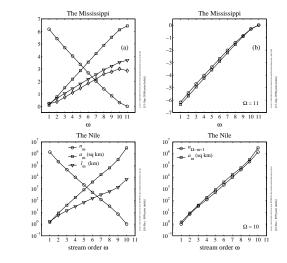
Measuring Horton ratios is tricky:

- How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Branching

Horton's laws of area and number:



- In right plots, stream number graph has been flipped vertically.
- Highly suggestive that $R_n \equiv R_a$...

Branching

Networks II

Reducing Horton

Nutshell

References

Mississippi:

ω range	R _n	R _a	R_ℓ	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2,7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3 , 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4,6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5 , 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Networks II lorton ⇔ okunaga

Branching

Reducing Horton Scaling relations Fluctuations

lutshell

Frame 16/74

ମ୍ବ ୬୯୯

Amazon:

				-	
ω range	R _n	R _a	R_ℓ	R_s	R_a/R_n
[2,3]	4.78	4.71	2.47	2.08	0.99
[2,5]	4.55	4.58	2.32	2.12	1.01
[2,7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3 , 7]	4.35	4.49	2.20	2.10	1.03
[4,6]	4.38	4.54	2.22	2.18	1.03
[5,6]	4.38	4.62	2.22	2.21	1.06
[6,7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Reducing Horton's laws:

Continued ...

$$\begin{aligned} \mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ &= \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \\ &\sim \mathbf{R}_n^{\Omega-1} \bar{\mathbf{s}}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow \end{aligned}$$

• So, a_{Ω} is growing like R_n^{Ω} and therefore:

 $R_n \equiv R_a$

Branching Networks II
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
Frame 17/74
- 🗗 - ৩৭.৫

Branching

Networks II

Reducing Horton

Nutshell

Frame 19/74

a 900

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

- a_Ω ∝ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

Frame 18/74 日 のへへ

Branching Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Nodels Nutshell References

Reducing Horton's laws:

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- ▶ Insert question 4, assignment 2 (⊞)

Branching Networks II

Reducing Horton Scaling relations Fluctuations Models Nutshell

Frame 20/74

Equipartitioning:

Intriguing division of area:

- \blacktriangleright Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$\mathsf{R}_n\equiv \mathsf{R}_a\Rightarrow \boxed{\mathsf{n}_\omegaar{a}_\omega=\mathsf{const}}$$

Reason:

 $n_\omega \propto (R_n)^{-\omega}$ $\bar{a}_{\omega} \propto (R_a)^{\omega} \propto n_{\omega}^{-1}$

Scaling laws

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}.$
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Reducing Horton

Branching

Branching

Networks II

lorton ⇔

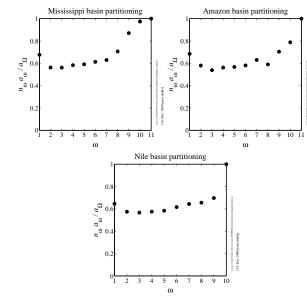
Models

References

Frame 23/74

B 990

Equipartitioning: Some examples:



Reducing Horton Scaling relations Models Nutshell References

Frame 22/74

Scaling laws

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Tokunaga

Branching

Networks I

Reducing Horton Scaling relations Fluctuations

Models Jutshell References

Scaling laws

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Scaling laws

Finding $\gamma:$

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*)=P(\ell>\ell_*)=\int_{\ell=\ell_*}^{\ell_{\mathsf{max}}}P(\ell)\mathrm{d}\ell$$

$$P_{>}(\ell_*) = 1 - P(\ell < \ell_*)$$

Also known as the exceedance probability.

Scaling laws

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- ► Next: place stick between teeth. Bite stick. Proceed.

Frame 26/74

Finding γ :

Scaling laws

- The connection between P(x) and P_>(x) when P(x) has a power law tail is simple:
- Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\max}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\max}} \frac{\ell^{-\gamma} d\ell}{d\ell}$$
$$= \frac{\ell^{-\gamma+1}}{-\gamma+1} \Big|_{\ell=\ell_*}^{\ell_{\max}}$$

 $\propto \ell_*^{-\gamma+1}$ for $\ell_{max} \gg \ell_*$

Branching Networks II

Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 28/74

ମ୍ବ ଏବ୍

Frame 27/74

ন ৩৫৫

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Branching

Networks II

Frame 25/74

B 990

Branching

Branching Networks II

Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Scaling laws

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length > l_{*}
- ► Assume some spatial sampling resolution Δ
- \blacktriangleright Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ► Approximate P_>(ℓ_{*}) as

$$P_{>}(\ell_{*}) = rac{N_{>}(\ell_{*};\Delta)}{N_{>}(0;\Delta)}$$

where $N_>(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

► Use Horton's law of stream segments: s_ω/s_{ω-1} = R_s...

Scaling laws

Finding γ :

► We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'})(ar{s}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(rac{R_s}{R_n}
ight)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega \omega'.$
- Sum is now from ω" = 0 to ω" = Ω − ω − 1 (equivalent to ω' = Ω down to ω' = ω + 1)

Scaling laws

Branching

Networks II

Scaling relations

Models

References

Frame 29/74

日 りへで

Branching

Networks II

Reducing Horton Scaling relations

Tokunaga

Fluctuations

Models

Nutshell

References

Frame 31/74

Finding γ :

• Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- ► Δ's cancel
- Denominator is $a_{\Omega}\rho_{dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Branching

Networks II

Tokunaga Reducing Horton

Scaling relations

Scaling laws

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}
ight)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}
ight)^{\omega''}$$

• Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using
$$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Scaling laws

Finding γ :

► Nearly there:

$$P_>(\ell_\omega) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

- \blacktriangleright Need to express right hand side in terms of $\ell_{\omega}.$
- Recall that $\ell_{\omega} \simeq \overline{\ell}_1 R_{\ell}^{\omega-1}$.

 $\ell_\omega \propto {\it R}_\ell^\omega = {\it R}_s^\omega = {\it e}^{\omega \ln {\it R}_s}$

Scaling laws

Finding γ :

And so we have:

 $\gamma = \ln R_n / \ln R_s$

Proceeding in a similar fashion, we can show

 $\tau = 2 - \ln R_s / \ln R_n = 2 - 1 / \gamma$

Insert question 5, assignment 2 (⊞)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Branching Networks II	
Horton ⇔ Tokunaga	
Reducing Horton	
Scaling relations	
Fluctuations	
Models	
Nutshell	
References	
Frame 33/74	

► Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$
$$\propto \ell_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$
$$= \ell_{\omega}^{-(\ln R_n - \ln R_s)/\ln R_s}$$
$$= \ell_{\omega}^{-\ln R_n/\ln R_s + 1}$$
$$= \ell_{\omega}^{-\gamma + 1}$$

Branching Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Scaling laws

Hack's law: [6]

- Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$\ell_\omega \propto {\it R}^\omega_{\it s}$$
 and ${\it a}_\omega \propto {\it R}^\omega_{\it n}$

 $\ell \propto a^h$

Observe:

$$\ell_\omega \propto oldsymbol{e}^{\omega \ln R_s} \propto ig(oldsymbol{e}^{\omega \ln R_n}ig)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s / \ln R_n} \propto a_{\omega}^{\ln R_s / \ln R_n} \Rightarrow h = \ln R_s / \ln R_n$$

Reducing Horton Scaling relations Fluctuations Models Nutshell References

Branching Networks II

日 りへで

Branching

Networks II

Frame 34/74

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

Nutshell

Frame 36/74

Connecting exponents Only 3 parameters are independent: e.g., take d, R_n , and R_s

scaling relation/parameter: ^[2]
d
$T_1 = R_n - R_s - 2 + 2R_s/R_n$
$R_T = R_s$
R _n
$R_a = R_n$
$R_\ell = R_s$
$h = \log \frac{R_s}{\log R_n}$
D = d/h
H = d/h - 1
$ au = 2 - \mathbf{h}$
$\gamma = 1/h$
$\beta = 1 + h$
$arphi = oldsymbol{d}$

Equipartitioning

What about

$${\it P}({\it a}) \sim {\it a}^{- au}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{- au+1}
eq ext{const}$$

?

- ▶ *P*(*a*) overcounts basins within basins...
- while stream ordering separates basins...

Equipartitioning reexamined: Recall this story:

Branching

Networks II

Reducing Horton

Scaling relations

Tokunaga

Models Nutshell

References

Frame 37/74

Branching

Networks II

Reducing Horton

Scaling relations

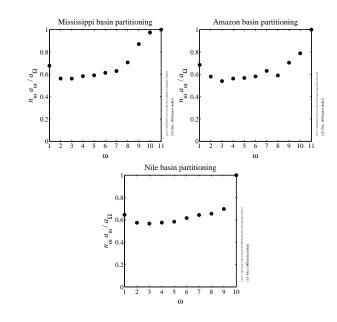
Models

Nutshell

References

Frame 39/74

日 りへで



Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 38/74 日 のへで

Fluctuations

Moving beyond the mean:

 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_s$$

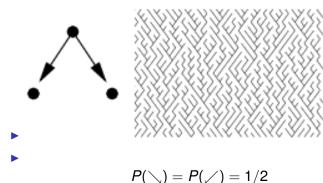
- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- ► See into the heart of randomness...

Branching Networks II

Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

A toy model—Scheidegger's model

Directed random networks^[11, 12]



- Flow is directed downwards
- Useful and interesting test case—more later...

How well does overall basin fit internal pattern?

Actual length = 4920 km

Predicted Mean length

Predicted Std dev =

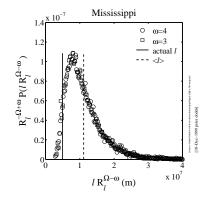
Actual length/Mean length = 44 %

(at 1 km res)

= 11100 km

5600 km

Okay.



Branching

Networks II

Reducing Horton

Tokunaga

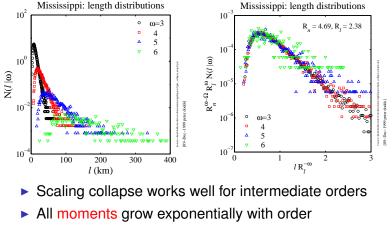
Fluctuations

References

Models

Generalizing Horton's laws

 $\bullet \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow \mathcal{N}(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$



Frame 42/74

日 りへで

Branching

Networks II

Reducing Horton

Fluctuations

Nutshell

Generalizing Horton's laws

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

basin:	ℓ_{Ω}	$ar{\ell}_{\Omega}$	σ_ℓ	$\ell/ar{\ell}_{\Omega}$	$\sigma_\ell/ar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	а	$ar{a}_\Omega$	σ_{a}	$a/ar{a}_{\Omega}$	$\sigma_{a}/ar{a}_{\Omega}$
Mississippi	а 2.74	ā _Ω 7.55	σ _a 5.58	a/\bar{a}_{Ω} 0.36	σ_a/\bar{a}_Ω 0.74
Mississippi Amazon			~	,	•
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74 0.89
Amazon Nile	2.74 5.40 3.08	7.55 9.07 0.96	5.58 8.04 0.79	0.36 0.60 3.19	0.74 0.89 0.82

Horton ⇔ Tokunaga Reducing Horto

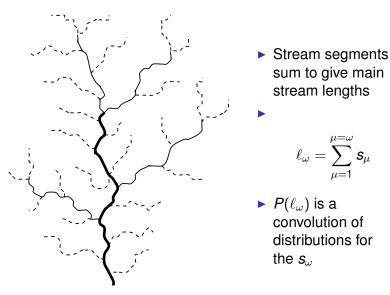
Branching

Networks II

Fluctuations Models

Nutshell References

Combining stream segments distributions:



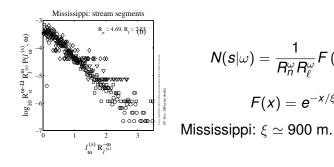
Networks II sum to give main Fluctuations Models References $\ell_{\omega} = \sum s_{\mu}$ Frame 45/74

Branching

Generalizing Horton's laws

• Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$\mathsf{N}(\ell|\omega) = \mathsf{N}(s|1) * \mathsf{N}(s|2) * \cdots * \mathsf{N}(s|\omega)$$



$$\mathsf{N}(s|\omega) = rac{1}{R_n^\omega R_\ell^\omega} F\left(s/R_\ell^\omega
ight)$$
 $F(x) = e^{-x/\xi}$

Frame 46/74 **日** りへで

Branching

Networks II

Horton ⇔ Tokunaga

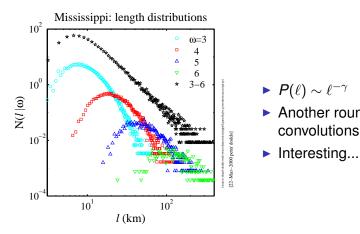
Fluctuations

Nutshell

References

Generalizing Horton's laws

Next level up: Main stream length distributions must combine to give overall distribution for stream length



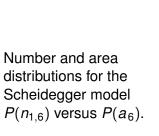
Branching Networks II **Reducing Horton** Fluctuations Models Nutshell References Another round of Frame 47/74

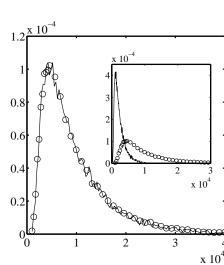
日 うくで

convolutions^[3]

日 りへで

Generalizing Horton's laws





Branching Networks II

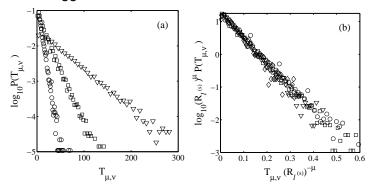
Tokunaga Reducing Horton Scaling relations Fluctuations Nutshell

References

Frame 48/74

Generalizing Tokunaga's law

Scheidegger:



- Observe exponential distributions for $T_{\mu,\nu}$
- ▶ Scaling collapse works using *R_s*

Generalizing Tokunaga's law

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$egin{aligned} P_t(z) &= rac{1}{\xi_t} e^{-z/\xi_t}. \ P(s_\mu) &\Leftrightarrow P(T_{\mu,
u}) \end{aligned}$$

- Exponentials arise from randomness.
- Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

Branching

Networks II

Reducing Horton

Fluctuations

Models

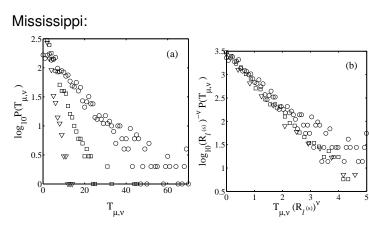
Nutshell

References

Frame 51/74

日 りへで

Generalizing Tokunaga's law



Same data collapse for Mississippi...

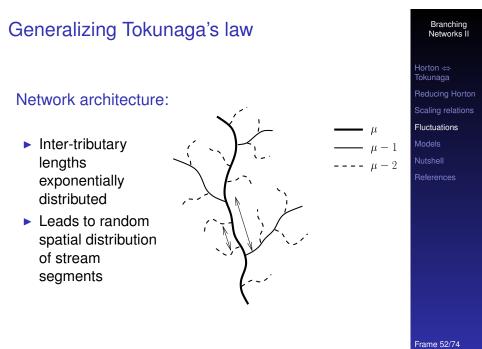
Branching

Networks II

Reducing Horton

Fluctuations

References



Generalizing Tokunaga's law

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order µ stream segment terminating is constant:

$$ilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- $\blacktriangleright \Rightarrow$ random spatial distribution of stream segments

Generalizing Tokunaga's law

Now deal with thing:

$$P(s_{\mu}, T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu,\nu} - 1}$$

Set (x, y) = (s_µ, T_{µ,ν}) and q = 1 − p_ν − p̃_µ, approximate liberally.

Obtain

$$P(x,y) = Nx^{-1/2} \left[F(y/x) \right]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

Branching Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 55/74

B 990

Branching

Networks II

Reducing Horton

lorton ⇔

Fluctuations

References

Frame 53/74

日 りへで

Models

Generalizing Tokunaga's law

 Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu, \nu}) = ilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}} p_{
u}^{T_{\mu,
u}} (1 - p_{
u} - ilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

where

• p_{ν} = probability of absorbing an order ν side stream

• \tilde{p}_{μ} = probability of an order μ stream terminating

- Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Branching

Networks I

Reducing Horton

Scaling relations

Fluctuations

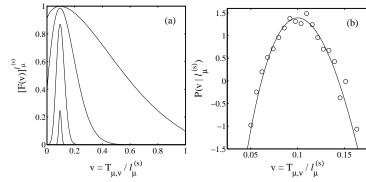
Nutshell

References

Generalizing Tokunaga's law

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Branching

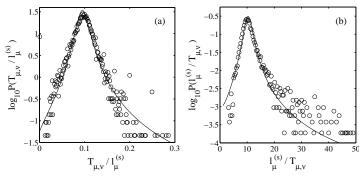
Networks II

Frame 56/74

Generalizing Tokunaga's law

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

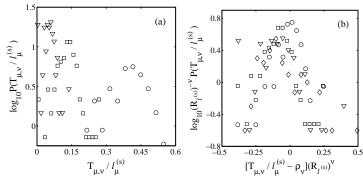
Scheidegger:



Generalizing Tokunaga's law

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Mississippi:



Branching

Networks II

Reducing Horton

Tokunaga

Fluctuations

References

Frame 59/74

P

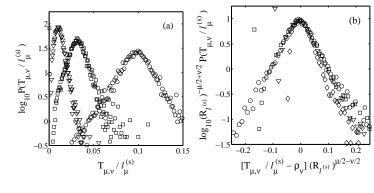
୬୯୯

Models

Generalizing Tokunaga's law

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Nutshell References

Branching

Networks II

Reducing Horton

Scaling relations

Fluctuations

Frame 58/74

Models

Random subnetworks on a Bethe lattice^[13]

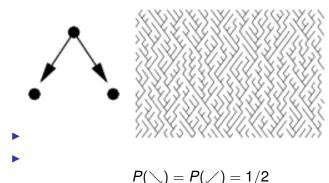
- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- So let's move on...

Branching Networks II

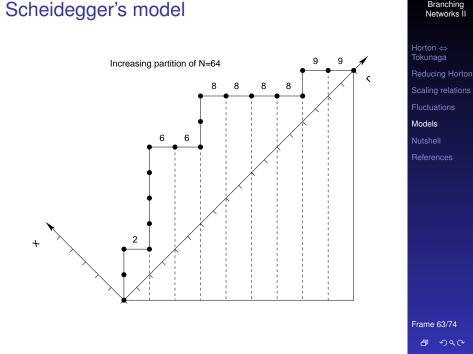
Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Scheidegger's model

Directed random networks^[11, 12]



 Functional form of all scaling laws exhibited but exponents differ from real world^[15, 16, 14]

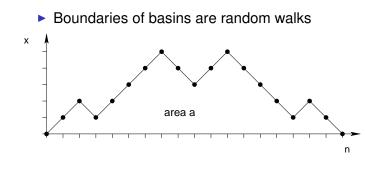


Branching Networks II lorton ⇔ Reducing Horton Fluctuations Models References Frame 61/74 a 900

Branching

A toy model—Scheidegger's model

Random walk basins:



Branching Networks II

Frame 62/74 **日** りへで

Scheidegger's model

Prob for first return of a random walk in (1+1)dimensions (from CSYS/MATH 300):

 $P(n) \sim rac{1}{2\sqrt{\pi}} n^{-3/2}.$

and so $P(\ell) \propto \ell^{-3/2}$.

• Typical area for a walk of length n is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- R_n and R_ℓ have not been derived analytically.

Branching Networks II

Tokunaga Models Nutshell References

Frame 64/74

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al.^[10]

• Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d}ec{r} \ (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

Nutshell

Branching networks II Key Points:

- ► Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ► Can take R_n, R_ℓ, and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only *h* = ln *R*_ℓ / ln *R_n* and *d* are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 65/74

B 990

Branching

Networks II

Reducing Horton

Tokunaga

Fluctuations

Models

Nutshell

References

Frame 67/74

Branching

Networks II

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5–0.7	1.0–1.2
$h \Rightarrow \ell \propto a^h$ (F	lack's law)	•

 $d \Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity).

References I

- [1] H. de Vries, T. Becker, and B. Eckhardt. Power law distribution of discharge in ideal networks. *Water Resources Research*, 30(12):3541–3543, December 1994.
 [2] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. *Physical Review E*, 59(5):4865–4877, 1999. pdf (⊞)
- [3] P. S. Dodds and D. H. Rothman.
 Geometry of river networks. II. Distributions of component size and number.
 Physical Review E, 63(1):016116, 2001. pdf (⊞)
- [4] P. S. Dodds and D. H. Rothman.
 Geometry of river networks. III. Characterization of component connectivity.
 Physical Review E, 63(1):016117, 2001. pdf (田)

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Branching

Networks I

ন ৩৫৫

Frame 68/74

Branching Networks II

Reducing Horton

Scaling relations

Models

Nutshell

References

References II

[5] N. Goldenfeld.

Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics.

Addison-Wesley, Reading, Massachusetts, 1992.

[6] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

[7] J. W. Kirchner.

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. *Geology*, 21:591–594, July 1993.

References IV

[11] A. E. Scheidegger.
A stochastic model for drainage patterns into an
intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967.

- [12] A. E. Scheidegger. *Theoretical Geomorphology*. Springer-Verlag, New York, third edition, 1991.
- [13] R. L. Shreve.
 Infinite topologically random channel networks.
 Journal of Geology, 75:178–186, 1967.
- [14] H. Takayasu.

Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563–2565, December 1989.

orton ⇔ okunaga
educing Hortor
caling relations
luctuations
lodels
utshell
eferences

Frame 71/74

B 990

Branching

Networks II

Reducing Horton

lorton ⇔

Fluctuations

Models

Nutshell

References

Frame 69/74

B 990

Branching

Networks II

 [8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar. Universality classes of optimal channel networks. *Science*, 272:984–986, 1996. pdf (⊞)

[9] S. D. Peckham.

New results for self-similar trees with applications to river networks.

Water Resources Research, 31(4):1023–1029, April 1995.

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.

Frame 70/74

Branching

Networks II

Reducing Horton

Models

References

References V

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. *Physical Review A*, 37(8):3110–3117, April 1988.

[16] M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection. *Physical Review A*, 39(8):4345–4347, April 1989.

[17] D. G. Tarboton, R. L. Bras, and
 I. Rodríguez-Iturbe.
 Comment on "On the fractal dimension of stream

networks" by Paolo La Barbera and Renzo Rosso. *Water Resources Research*, 26(9):2243–4, September 1990. Horton ⇔ Tokunaga Reducing Hortol Scaling relations Fluctuations Models Nutshell References

Branching

Networks II

Frame 72/74

References VI

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. *Geophysical Bulletin of Hokkaido University*, 15:1–19, 1966.

[19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978.

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 73/74

日 りへで

Branching

References VII

[21] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Branching

Networks II

Frame 74/74

🗗 ୬୯୯