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Introduction

What'’s the best way to distribute stuff?

» Stuff = medical services, energy, people,
» Some fundamental network problems:

1. Distribute stuff from a single source to many sinks

2. Distribute stuff from many sources to many sinks

3. Redistribute stuff between nodes that are both
sources and sinks

» Supply and Collection are equivalent problems
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River network models

Optimality:

» Optimal channel networks °!
» Thermodynamic analogy °!

versus...
Randomness:

» Scheidegger’s directed random networks
» Undirected random networks

Supply Networks
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Optimization approaches

Cardiovascular networks:

» Murray’s law (1926) connects branch radii at forks: [/

3_,3, .3
o ="y +1r

where ry = radius of main branch
and ry and r» are radii of sub-branches

» Calculation assumes Poiseuille flow

» Holds up well for outer branchings of blood networks
» Also found to hold for trees

» Use hydraulic equivalent of Ohm’s law:

Ap=¢Z<=V=IR

where Ap = pressure difference, ¢ = flux

Optimization approaches

Aside on Py,

» Work done = F - d = energy transferred by force F
» Power = rate work is done = F - v
» AP = Force per unit area

» & = Volume per unit time
= cross-sectional area - velocity

» So AP = Force - velocity

Supply Networks

Murray's law
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Optimization approaches

Cardiovascular networks:

» Fluid mechanics: Poiseuille impedance for smooth
flow in a tube of radius r and length /:

8nt
Z=—
wrt
where n = dynamic viscosity
» Power required to overcome impedance:

Pirg = PAp = $2Z

» Also have rate of energy expenditure in maintaining
blood:
P, metabolic = CI 26

where c is a metabolic constant.

Optimization approaches

Murray’s law:

» Total power (cost):

8nt
P = Pdrag + Pmetabolic = ¢27T7,’I:I4 + CI’ZE

» Observe power increases linearly with ¢
» But r’s effect is nonlinear:
» increasing r makes flow easier but increases
metabolic cost (as r?)

» decreasing r decrease metabolic cost but impedance
goes up (as r—*)

Supply Networks

Murray’s law
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Optimization Suppyfletworks Optimization

Murray’s law: Murray’s law:

Murray's law Murray's law

» Minimize P with respect to r: » So we now have:

8P_ 8 287]£ 2
ar ~ or <¢ ﬂ_r4—i—CI’ E)

& = krd

» Flow rates at each branching have to add up (else
our organism is in serious trouble...):

— 40?%1 | core— 0

where again 0 refers to the main branch and 1 and 2

» Rearrange/cancel/slap: refers to the offspring branches

, onrb » 6 » All of this means we have a groovy cube-law:
n 3 3 3
o =1 +1
where k = constant.
Frame 10/66 Frame 11/66
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Murray meets Tokunaga:
» ¢, = volume rate of flow into an order w vessel
segment Murray meets Tokunaga:
> Tokunaga picture: » Find R3 satisfies same equation as R, and R,
w1 (v is for volume):
O, =20, 1+ Y TkPu_k - -
k=1 Rr:Rn:RV:Rn

» Using ¢, = kr3 » |Is there more we could do here to constrain the

] Horton ratios and Tokunaga constants?

we

3_ 0,3 Z 3

ro = 2rw—1 + Tkrw—k
k=1

» Find Horton ratio for vessell radius R, = r,,/r,_1...

Frame 13/66 Frame 14/66
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Optimization

Murray meets Tokunaga:

> Isometry: V,, o< £3
» Gives

R} =R, =R,

» We need one more constraint...

» West et al (1997) "] achieve similar results following
Horton’s laws.

» So does Turcotte et al. (1998) ['%! using Tokunaga
(sort of).

Geometric argument

» Allometrically growing regions:

» Have d length scales which scale as
Liox VViwhereyy +v+...+vg=1.

» For isometric growth, v; = 1/d.

» For allometric growth, we must have at least two of
the {~;} being different

Supply Networks Geome‘tnc argument

» Consider one source supplying many sinks in a
d-dim. volume in a D-dim. ambient space.

Murray meets Tokunaga

» Assume sinks are invariant.
» Assume p = p(V).
» See network as a bundle of virtual vessels:

%%P\gﬁi

» Q: how does the number of sustainable sinks Nk
scale with volume V for the most efficient network
design?

» Or: what is the highest a for Ngjks oc V¢?
Frame 15/66
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» Best and worst configurations (Banavar et al.)

S

» Rather obviously:
min Vi ox > distances from source to sinks.
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Minimal network volume:

Real supply networks are close to optimal:

(@) © (d)

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (¢) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

(2006) Gastner and Newman [°/: “Shape and efficiency in
spatial distribution networks”

Minimal network volume:

For 0 < e < 1/2, approximate network volume by integral
over region:

mMin Vi o</ p||X]|1 2 dxX
Qq,p(V)

Insert question from assignment 2 (H)

o pv1+7max(1726)
For e > 1/2, find simply that

min Ve x pV

» So if supply lines can taper fast enough and without
limit, minimum network volume can be made
negligible.

Supply Networks

Geometric argument
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Geometric argument
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Minimal network volume:

Add one more element:

>

Vessel cross-sectional area may vary with distance
from the source.

Flow rate increases as cross-sectional area
decreases.

e.g., a collection network may have vessels tapering
as they approach the central sink.

Find that vessel volume v must scale with vessel
length ¢ to affect overall system scalings.

Consider vessel radius r o< (¢ + 1), tapering from
I = I'max Where € > 0.

> Gives v oc /1 72¢if e < 1/2
» Gives v ox 1 —¢=(2<=1) — 1 for large £ if e > 1/2
» Previously, we looked at ¢ = 0 only.

Geometric argument

ForO0<e<1/2:

>

v

v

v

MiN Vier oc p V1 H7max(1-2¢)

If scaling is isometric, we have ymax = 1/d:
min Vnet/iso X pv1+(1_2€)/d

If scaling is allometric, we have Ymax = vaio > 1/d:
and
min Vnet/allo X pV1+(1_25)’Yallo

Isometrically growing volumes require less network
volume than allometrically growing volumes:
min Vnet/iso

. —0asV —
min Vnet/allo

Supply Networks

Geometric argument
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http://www.uvm.edu/~pdodds/teaching/courses/2009-01UVM-303/docs/2009-01UVM-303assignment02.pdf

Supply Networks

Geometric argument

For0 <e<1/2:

> | min Ve o pV‘

» Network volume scaling is now independent of
overall shape scaling.

Limits to scaling

» Can argue that e must effectively be 0 for real
networks over large enough scales.

» Limit to how fast material can move, and how small
material packages can be.

» e.g., blood velocity and blood cell size.

Frame 24/66
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Blood networks

» Then P, the rate of overall energy use in Q, can at
most scale with volume as

Blood networks

PxpVxpMx M(d=1)/d

» For d = 3 dimensional organisms, we have

» Including other constraints may raise scaling
exponent to a higher, less efficient value.

Frame 27/66
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Blood networks

» Velocity at capillaries and aorta approximately
constant across body size!”: e = 0.

» Material costly = expect lower optimal bound of
Vit o pV(@+1)/d 10 be followed closely.

» For cardiovascular networks, d = D = 3.

» Blood volume scales linearly with blood volume [,
Vnet x V.

» Sink density must .-, decrease as volume increases:

poc V19,

» Density of suppliable sinks decreases with organism
size.

Recap:

» The exponent o = 2/3 works for all birds and
mammals up to 10-30 kg

» For mammals > 10-30 kg, maybe we have a new
scaling regime

» Economos: limb length break in scaling around 20 kg

» White and Seymour, 2005: unhappy with large
herbivore measurements. Find o« ~ 0.686 &= 0.014

Supply Networks

Blood networks

Frame 26/66

F Dae

Supply Networks

Blood networks

Frame 28/66

F Dae




River networks Supply Networks Many sources, many sinks Supply Networks

View river networks as collection networks. How do we distribute sources?

Many sources and one sink. » Focus on 2-d (results generalize to higher

vV v v Vv

e? dimensions)
Assume p is constant over time and ¢ = 0: » Sources = hospitals, post offices, pubs, ...
Vier o< pV(@1/d — constant x V/3/2 " Esguri;(:it())lr? rgeri?u"‘égg e cope wilh neven ourees
» Network volume grows faster than basin ‘volume’ » Obvious: if density is uniform then sources are best -
(really area). distributed uniformly
> It's all okay: » Which lattice is optimal? The hexagonal lattice
Landscapes are d=2 surfaces living in D=3 Q1: How big should the hexagons be?
dimension. » Q2: Given population density is uneven, what do we
» Streams can grow not just in width but in depth... do?
> If e > 0, Vie, Will grow more slowly but 3/2 appears to > We'll follow work by Stephan * %/ and by Gastner and
be confirmed from real data. Frame 30/66 Newman (2006) */ and work cited by them. Frame 32/66
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Solidifying the basic problem

» Given a region with some population distribution p,
most likely uneven.

» Given resources to build and maintain N facilities.

» Q: How do we locate these N facilities so as to
minimize the average distance between an
individual’'s residence and the nearest facility?

Facility location Facility location

From
Gastner and Newman (2006) [?!

» Approximately optimal location of 5000 facilities.

» Based on 2000 Census data.

Frame 33/66 Frame 34/66

» Simulated annealing + Voronoi tessellation.
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Optimal source allocation Supply etwerie Optimal source allocation SupplyRetnorks

é wol Size-density law:
§ 10°F D x [)2/3
f s » Why?

» Again: Different story to branching networks where
there was either one source or one sink.

» Now sources sinks are distributed throughout

sl il 4l vl 4l sl 4l
0.1 1 10 100 1000 10000

population density p (in km2)

From Gastner and Newman (2006) 12!

region...
» Optimal facility density D vs. population density p.
» Fitis D o p%88 with r2 = 0.94.
» Looking good for a 2/3 power...
Frame 35/66 Frame 37/66
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» Consider a region of area A and population P with a
single functional center that everyone needs to
access every day.

» Build up a general cost function based on time
expended to access and maintain center.

» Write average travel distance to center is d and
assume average speed of travel is v.

» Note that average travel distance will be on the
length scale of the region which is A'/2

» Average time expended per person in accessing
facility is therefore

» We first examine Stephan’s treatment (1977) (& °!

» “Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries”
(Science, 1977)

» Zipf-like approach: invokes principle of minimal effort.
» Also known as the Homer principle.

d/v=CcA?/v

where ¢ is an unimportant shape factor.

Frame 38/66 Frame 39/66
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Supply Networks

Optimal source allocation

» Next assume facility requires regular maintenance
(person-hours per day)

» Call this quantity =
» If burden of mainenance is shared then average cost
per person is 7/P.
» Replace P by pA where p is density.
» Total average time cost per person:
T =d/V+71/(pA) = gA' 2|V +7/(pA).
» Now Minimize with respect to A...
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Optimal source allocation

An issue:

» Maintenance (7) is assumed to be independent of
population and area (P and A)
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Optimal source allocation

» Differentiating...
orT 0 _
94 = o4 (OAEIT+7/(0A)

= c/(2VAY2 — 1 /(pA%) =0

» Rearrange:

A= (207 /cp)?/® x p2/3

» # facilities per unit area
Af‘l x P2/3

» Groovy...

Optimal source allocation

Stephan’s online book
“The Division of Territory in Society” is here (H).

Supply Networks
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Cartograms Supply etwerie Cartograms

Introduction
Optimal branching

Standard world map:

et = e

Cartogram of countries ‘rescaled’ by population:

Single Source

Diffusion-based cartograms:

Introduction

Optimal branching

2’\ \bu%«:d ‘47%‘? “ It
Py
Cartograms E; L o
PACIFIC "u!"BRAZ]‘L » )

References ECERN f.j.&‘ s i 5 ¥

/ fL = e
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ANTARCTICA
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Cartograms Cartograms

Introduction

Optimal branching

» |dea of cartograms is to distort areas to more

. Child mortality:
accurately represent some local density p (e.g.

. Single Source = — e Single Source
population). g, T -
» Many methods put forward—typically involve some ‘ i 1%
kind of physical analogy to spreading or repulsion. % 14

» Algorithm due to Gastner and Newman (2004) ") is
based on standard diffusion:

_ 9 _
ot

Cartograms Cartograms

References References

V2p 0.
» Allow density to diffuse and trace the movement of
individual elements and boundaries.

» Diffusion is constrained by boundary condition of

surrounding area having density p. Frame 47/66
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Cartograms

Cartograms

Greenhouse gas emissions:

L"_ -

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms

Refer
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Introduction

Optimal branching

Single Source

Cartograms

Ref
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Cartograms

Gross domestic product:

S

Cartograms

Spending on healthcare:

&.

Supply Networks

Introduction

Optimal branching

Single Source

Distributed
Sc

Cartograms
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Cartograms

People living with HIV:

- oS —— ===

Cartograms
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Size-density law

Cartograms

» Left: population density-equalized cartogram.
» Right: (population density)?/3-equalized cartogram.
» Facility density is uniform for p2/3 cartogram.

From Gastner and Newman (2006) 12!
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Cartograms

» The preceding sampling of Gastner & Newman’s
cartograms lives here ().

» A larger collection can be found at
worldmapper.org (8).

5]

Size-density law
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From Gastner and Newman (2006) 2!

» Cartogram’s Voronoi cells are somewhat hexagonal.
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Cartograms
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Size-density law

Deriving the optimal source distribution:
» Basic idea: Minimize the average distance from a
random individual to the nearest facility. !

» Assume given a fixed population density p defined on
a spatial region €.

» Formally, we want to find the locations of n sources
{Xq,...,Xn} that minimizes the cost function

F({F1,- %ah) = [ p(0)min[¥ - %%,

» Also known as the p-median problem.
» Not easy... in fact this one is an NP-hard problem. ['!

Frame 57/66
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Size-density law

Carrying on:

» The cost function is now
F=c / p(X)A(X)/2d% .
Q

» We also have that the constraint that Voronoi cells
divide up the overall area of Q: "7, A(X;) = Aq.
» Sneakily turn this into an integral constraint:
X n
QAKX)
» Within each cell, A(X) is constant.
» So... integral over each of the n cells equals 1.

Frame 59/66
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Size-density law

Approximations:

» For a given set of source placements {X;, ..., Xy},
the region 2 is divided up into Voronoi cells (&), one
per source.

» Define A(X) as the area of the Voronoi cell containing
X.

» As per Stephan’s calculation, estimate typical
distance from X to the nearest source (say /) as

GA(X)'/?

where ¢; is a shape factor for the jith Voronoi cell.
» Approximate c¢; as a constant c.

Size-density law
Now a Lagrange multiplier story:

» By varying {Xi, ..., X,}, minimize

G(A) = ¢ /Q (R)A(R)/2d% -\ <n— /Q )] d)?)

» Next compute §G/JA, the functional derivative (H) of
the functional G(A).

» This gives

/ [_ch()?)A()?)—W + A [A()?)]_Z] dx
Q
» Setting the integrand to be zilch, we have:

p(X) = 2 cTA(X)%/2,

Supply Networks
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Size-density law
Now a Lagrange multiplier story:

» Rearranging, we have
A(X) = (2xc™1)2/3p72/3,

» Finally, we indentify 1/A(X) as D(X), an
approximation of the local source density.

» Substituting D = 1/A, we have

o= ()"

» Normalizing (or solving for \):

[o()12/°

FlpEsa ~ POr

D(X)=n
Frame 61/66
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Global redistribution networks
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From Gastner and Newman (2006) [!
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Global redistribution networks
One more thing:

» How do we supply these facilities?
» How do we best redistribute mail? People?
» How do we get beer to the pubs?

» Gaster and Newman model: cost is a function of
basic maintenance and travel time:

Cmaint + 'VCtravel-

» Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance ¢; and number of legs to journey:

(1 = 0)jj + o(#hops).

» When 6 = 1, only number of hops matters.
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