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Opt'mal Supply networks Supply Networks

Introduction

What'’s the best way to distribute stuff?

» Stuff = medical services, energy, people,
» Some fundamental network problems:

1. Distribute stuff from a single source to many sinks

2. Distribute stuff from many sources to many sinks

3. Redistribute stuff between nodes that are both
sources and sinks

» Supply and Collection are equivalent problems
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Rlver network mOdeIS Supply Networks

Introduction

Optimality:

» Optimal channel networks [°!
» Thermodynamic analogy '°/

versus...
Randomness:

» Scheidegger’s directed random networks
» Undirected random networks
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Opt'mlzatlon approaCheS Supply Networks

Cardiovascular networks:

» Murray’s law (1926) connects branch radii at forks: [*!

3_,3,,3
ro="ri+rn

where ry = radius of main branch
and ry and r, are radii of sub-branches

» Calculation assumes Poiseuille flow

» Holds up well for outer branchings of blood networks
» Also found to hold for trees

» Use hydraulic equivalent of Ohm’s law:

Ap=¢Z <= V=IR

where Ap = pressure difference, ¢ = flux
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Supply Networks

Optimization approaches

Cardiovascular networks:
» Fluid mechanics: Poiseuille impedance for smooth
flow in a tube of radius r and length ¢:
8nl
where n = dynamic viscosity
» Power required to overcome impedance:

Parag = PAp = d?Z

» Also have rate of energy expenditure in maintaining
blood:
P, metabolic = CI 2£

where ¢ is a metabolic constant. Frame 7/68
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Opt'mlzatlon approaCheS Supply Networks

Aside on Py,

Work done = F - d = energy transferred by force F
Power = rate work is done = F - v
AP = Force per unit area

¢ = Volume per unit time
= cross-sectional area - velocity

So ®AP = Force - velocity

vV v vy

v
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Supply Networks

Optimization approaches

Murray’s law:
» Total power (cost):

8n/

P = Pdrag + Pmetdbohc - (DZT + cr ﬁ

» Observe power increases linearly with ¢
» But r’s effect is nonlinear:
» increasing r makes flow easier but increases

metabolic cost (as r?)
» decreasing r decrease metabolic cost but impedance

goes up (as r=*)
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Optlmlzatlon Supply Networks

Murray’s law:

» Minimize P with respect to r:

P 9 <¢2877

ar = or w“”)

= —4¢2% +c2rt =0

» Rearrange/cancel/slap:

q)22017;;6:,(2,6
n

where k = constant.
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Supply Networks

Optimization

Murray’s law:

» So we now have:
® = krd

» Flow rates at each branching have to add up (else
our organism is in serious trouble...):
bg = 0 + b5

where again 0 refers to the main branch and 1 and 2
refers to the offspring branches

» All of this means we have a groovy cube-law:

3
o

_ .3, .3
=+
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Optlmlzatlon Supply Networks

Murray meets Tokunaga:

» &, = volume rate of flow into an order w vessel e
segment

» Tokunaga picture:

w—1

q)w = 2¢w71 + Z qu)wfk
k=1

» Using ¢, = kr3
w—1
=2+ > Tl
k=1

» Find Horton ratio for vessel radius R, = r,,/r,_1...
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Optlmlzatlon Supply Networks

cets Tokunaga

Murray meets Tokunaga:

» Find R? satisfies same equation as R, and R,
(v is for volume):

R:=R,=R,

» |s there more we could do here to constrain the
Horton ratios and Tokunaga constants?
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Supply Networks

Optimization

Murray meets Tokunaga:

» Isometry: V,, oc £3
» Gives

R}=R, =R,

» We need one more constraint...

» West et al (1997)'? achieve similar results following
Horton’s laws.

» So does Turcotte et al. (1998) "% using Tokunaga
(sort of).
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GeOmetrlC arg u ment Supply Networks

» Consider one source supplying many sinks in a
d-dim. volume in a D-dim. ambient space.

» Assume sinks are invariant.
» Assume p = p(V).
» See network as a bundle of virtual vessels:

» Q: how does the number of sustainable sinks N,ks
scale with volume V for the most efficient network
design?

» Or: what is the highest « for Ngjpxs o< V*?
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Geometric argument

» Allometrically growing regions:

L,

» Have d length scales which scale as
Lix Viwhere vy + 72+ ... +vq = 1.

» For isometric growth, v; = 1/d.

» For allometric growth, we must have at least two of
the {~;} being different

Supply Networks
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GeOmetrlC arg u ment Supply Networks

» Best and worst configurations (Banavar et al.)

» Rather obviously:
min Vi o Y distances from source to sinks.
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Minimal network volume:

Real supply networks are close to optimal:

() © (d

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c¢) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

(2006) Gastner and Newman [°/: “Shape and efficiency in
spatial distribution networks”

Supply Networks

Geometric argument
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Minimal network volume: Supply Networks

Add one more element:

>

» Gives v ox /126 if e < 1/2
» Gives voc 1 —¢~(@=1) — 1 forlarge £ if e > 1/2

Vessel cross-sectional area may vary with distance
from the source.

Flow rate increases as cross-sectional area
decreases.

e.g., a collection network may have vessels tapering
as they approach the central sink.

Find that vessel volume v must scale with vessel
length ¢ to affect overall system scalings.

Consider vessel radius r o« (¢ + 1), tapering from
r = Imax Where ¢ > 0.

» Previously, we looked at e = 0 only. Frame 21/68
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Minimal network volume: Supply Networks

For 0 < e < 1/2, approximate network volume by integral
over region:

min Vi oc/ p||X][172 dx
Qq,0(V)

Insert question from assignment 2 ()

x [)V1 +ymax(1—2¢)
For e > 1/2, find simply that

min Vi, o< pV

» So if supply lines can taper fast enough and without
limit, minimum network volume can be made
negligible.
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Supply Networks

Geometric argument

ForO0<e<1/2:

> | min Ve oc pV/1Hmax(1-2€)

» If scaling is isometric, we have ymax = 1/0:

min Vnet/iso X pv1+(1726)/d
» If scaling is allometric, we have ymax = Yano > 1/d:
and
; 1-+(1—2€) a0
min Vnet/allo X ,OV +( )
» Isometrically growing volumes require less network
volume than allometrically growing volumes:

min Vnet/iso

. —0asV -
min Vnet/allo
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Supply Networks

Geometric argument

ForO<e<1/2:

> | min Voo o< pV/|
» Network volume scaling is now independent of
overall shape scaling.

Limits to scaling

» Can argue that e must effectively be 0 for real
networks over large enough scales.

» Limit to how fast material can move, and how small
material packages can be.

» e.g., blood velocity and blood cell size.
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Blood networks Supply Networks

» Velocity at capillaries and aorta approximately
constant across body size!''l: ¢ = 0.

» Material costly = expect lower optimal bound of
Viet o pV(@+1)/9 10 be followed closely.

» For cardiovascular networks, d = D = 3.

» Blood volume scales linearly with blood volume !,
Vnet X V

» Sink density must .. decrease as volume increases:
poc V179,

» Density of suppliable sinks decreases with organism
size.
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Blood networks Supply Networks

» Then P, the rate of overall energy use in Q, can at
most scale with volume as

PxpVoxpMx M@-1/d

» For d = 3 dimensional organisms, we have

» Including other constraints may raise scaling
exponent to a higher, less efficient value.
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Recap Supply Networks

» The exponent a = 2/3 works for all birds and
mammals up to 10-30 kg

» For mammals > 10-30 kg, maybe we have a new
scaling regime
» Economos: limb length break in scaling around 20 kg

» White and Seymour, 2005: unhappy with large
herbivore measurements. Find o« ~ 0.686 + 0.014
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Supply Networks

River networks

» View river networks as collection networks.
» Many sources and one sink.

> €?

» Assume p is constant over time and € = 0:

Vit < pV1+1)/d — constant x V3/2

» Network volume grows faster than basin ‘volume’
(really area).

» It’s all okay:
Landscapes are d=2 surfaces living in D=3
dimension.

» Streams can grow not just in width but in depth...

» If e > 0, Vi Will grow more slowly but 3/2 appears to
be confirmed from real data. Frame 30/68
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Supply Networks

Many sources, many sinks

How do we distribute sources?
» Focus on 2-d (results generalize to higher
dimensions)
» Sources = hospitals, post offices, pubs, ...
» Key problem: How do we cope with uneven
population densities?

» Obvious: if density is uniform then sources are best
distributed uniformly

» Which lattice is optimal? The hexagonal lattice
Q1: How big should the hexagons be?

» Q2: Given population density is uneven, what do we
do?

» We'll follow work by Stephan® 9 and by Gastner and
Newman (2006) ! and work cited by them.
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Optimal source allocation Supply Networks

Solidifying the basic problem

» Given a region with some population distribution p,
most likely uneven.

» Given resources to build and maintain N facilities.

» Q: How do we locate these N facilities so as to

minimize the average distance between an
individual’s residence and the nearest facility?

Frame 33/68
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Optimal source allocation

Gastner and Newman (2006) °!

» Approximately optimal location of 5000 facilities.
» Based on 2000 Census data.

» Simulated annealing + Voronoi tessellation.

Supply Networks

Facility location

From

Frame 34/68
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Optimal source allocation Supply Networks

Facility location

facility density D (in km2)

0.1 1 10 100 1000 10000

population density p (in km2)

From Gastner and Newman (2006) [*!
» Optimal facility density D vs. population density p.
» Fitis D o p968 with r> = 0.94.
» Looking good for a 2/3 power...
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Optimal source allocation Supply Networks

Size-density law:

>

2/3

Dxp

» Why?
» Again: Different story to branching networks where
there was either one source or one sink.

» Now sources & sinks are distributed throughout
region...

Frame 37/68

F DA



Optimal source allocation Supply Networks

» We first examine Stephan’s treatment (1977) (¢ °!

» “Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries”
(Science, 1977)

» Zipf-like approach: invokes principle of minimal effort.
» Also known as the Homer principle.
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Supply Networks

Optimal source allocation

» Consider a region of area A and population P with a
single functional center that everyone needs to
access every day.

» Build up a general cost function based on time
expended to access and maintain center.

» Write average travel distance to center is d and
assume average speed of travel is v.

» Assume isometry: average travel distance d will be
on the length scale of the region which is ~ A'/?

» Average time expended per person in accessing
facility is therefore

d/v=CcA?)v

where c is an unimportant shape factor. Frame 39/65
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Supply Networks

Optimal source allocation

» Next assume facility requires regular maintenance
(person-hours per day)

» Call this quantity 7

» If burden of mainenance is shared then average cost
per person is 7/P.

» Replace P by pA where p is density.
» Total average time cost per person:

T =d/V+1/(pA) = gA'2 )V + 7/(pA).

» Now Minimize with respect to A...
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Optimal source allocation

» Differentiating...

oT 0 _

A= B <CA1/2/V+T/(pA)>
_ ¢ T _,
ToVAI2 T A2

» Rearrange:

» # facilities per unit area «
A71 O([)2/3

» Groovy...

Supply Networks
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Optimal source allocation Supply Networks

An issue:

» Maintenance (7) is assumed to be independent of
population and area (P and A)
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Optimal source allocation Supply Networks

Stephan’s online book
“The Division of Territory in Society” is here (F).
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Cartograms

Standard world map:

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms
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Supply Networks

Cartograms

Cartogram of countries ‘rescaled’ by population: Optimal branching

; C o _
v Single Source
NITED STATES| (. CHINA
=2
< ’
3 v : g (' 1nD1a
Nid
B
%
ATLANTIC Cartograms
OCEAN
INDIAN
OCEAN
References
ANTARCTICA
y
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Cartograms

Diffusion-based cartograms:

>

Idea of cartograms is to distort areas to more
accurately represent some local density p (e.qg.
population).

Many methods put forward—typically involve some
kind of physical analogy to spreading or repulsion.

Algorithm due to Gastner and Newman (2004) ' is
based on standard diffusion:

0

2 P

- — =0.
VP ot
Allow density to diffuse and trace the movement of

individual elements and boundaries.

Diffusion is constrained by boundary condition of
surrounding area having density p.

Supply Networks
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Cartograms

Child mortality:

— -l

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms
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Cartograms

Introduction
Optimal branching
Energy consumption:

" —— e Single Source

Cartograms

Referenc
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Cartograms

Gross domestic product:

( .

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms

Referenc
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Cartograms

Greenhouse gas emissions:

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms

Referenc
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Cartograms

Introduction

Optimal branching

Single Source

N Cartograms
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Cartograms

People living with HIV:

i

= S

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms
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Cartograms Supply Networks

» The preceding sampling of Gastner & Newman’s
cartograms lives here (/).

» A larger collection can be found at
worldmapper.org (H).

)
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Slze'den S|ty IaW Supply Networks

Cartograms

» Left: population density-equalized cartogram.
» Right: (population density)2/3-equalized cartogram.
» Facility density is uniform for p?/3 cartogram.

From Gastner and Newman (2006) |°!
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Supply Networks

Size-density law

- - I i | 3 " | 1
-8 0.1F |— p-median [ .
2 | ___ random population- ] ]
B 0.075F proportional

w2 . |
S i
E 0.05F
|

E 0.025 Cartograms

O L

s - ]

00 30 60 950 120 150 180

interior angle of Voronoi cell (degrees)

From Gastner and Newman (2006) 12!
» Cartogram’s Voronoi cells are somewhat hexagonal.

Frame 56/68
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Supply Networks

Size-density law

Deriving the optimal source distribution:

» Basic idea: Minimize the average distance from a
random individual to the nearest facility. |'!

» Assume given a fixed population density p defined on
a spatial region Q.

» Formally, we want to find the locations of n sources
{Xy,..., X} that minimizes the cost function

F(Fr,. %)) = [ oG min|x — 5 10%.

» Also known as the p-median problem.
» Not easy... in fact this one is an NP-hard problem. ['!
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Supply Networks

Size-density law

Approximations:

» For a given set of source placements {Xi, ..., Xn},
the region Q2 is divided up into Voronoi cells (&), one
per source.

» Define A(X) as the area of the Voronoi cell containing
X.

» As per Stephan’s calculation, estimate typical
distance from X to the nearest source (say /) as

GA(X)!/?

where c¢; is a shape factor for the ith Voronoi cell.
» Approximate c; as a constant c.
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Carrying on:

» The cost function is now
F = c/ p(X)A(X)/2d% .

Q

» We also have that the constraint that Voronoi cells
divide up the overall area of Q: Y7, A(X)) = Aq.
» Sneakily turn this into an integral constraint:
X n
QAKX)

» Within each cell, A(X) is constant.
» So... integral over each of the n cells equals 1.
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Supply Networks

Size-density law
Now a Lagrange multiplier story:

» By varying {Xi, ..., X, }, minimize

G(A) =c /Q p(X)A(X)1/2d% = A <n— /Q [AGX)] d)?)

» Next compute 6G/dA, the functional derivative (&) of
the functional G(A).

» This gives

[ [Soram 2 - aa) ] ax <o

» Setting the integrand to be zilch, we have:

p(X) = 2XcTA(X) %/,

Frame 61/68
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Size-density law Supply Networks
Now a Lagrange multiplier story:
» Rearranging, we have
A(X) = (2xc™1)2/3p723/3,

» Finally, we indentify 1/A(X) as D(X), an
approximation of the local source density.
» Substituting D = 1/A, we have
. c \2/3
D() = (50) -

» Normalizing (or solving for \):

2/3
D7) = B o I

Frame 62/68
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Global redistribution networks
One more thing:

» How do we supply these facilities?
» How do we best redistribute mail? People?
» How do we get beer to the pubs?

» Gaster and Newman model: cost is a function of
basic maintenance and travel time:

Cmaint + 'YCtravel-

Global redistribution
networks

» Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance /; and number of legs to journey:

(1 = 9)¢j + 6(#hops).

» When § = 1, only number of hops matters. Frame 64/68
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Global redistribution networks Supply Networks

3=05
., Nashville,
5 . TN

-

FL

 Kansas City, MO oy oo
i

Global redistribution
networks

From Gastner and Newman (2006) °!
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