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Generalized contagion model Contagion

Introduction

Basic questions about contagion

» How many types of contagion are there?
» How can we categorize real-world contagions?

» Can we connect models of disease-like and social
contagion?
» Focus: mean field models.
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Mathematical Epidemiology (recap) Gontaglon
The standard SIR model ['%! Ineracton models
» = basic model of disease contagion
» Three states:
1. S = Susceptible
2. | = Infective/Infectious
3. R = Recovered or Removed or Refractory
» S(t)+ I(t) + R(t) =1
» Presumes random interactions (mass-action
principle)
» Interactions are independent (no memory)
» Discrete and continuous time versions
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Independent Interaction Models

Discrete time automata example:

Transition Probabilities:

[ for being infected given
contact with infected

r for recovery

p for loss of immunity

Independent Interaction models

Differential equations for continuous model

d

d
g =pIs—r

d
gR=r-0R

B, r, and p are now rates.
Reproduction Number Ry:

» Ry = expected number of infected individuals
resulting from a single initial infective

» Epidemic threshold: If Ry > 1, ‘epidemic’ occurs.

Contagion Independent Interaction Models

Independent
Interaction models

Original models attributed to

» 1920’s: Reed and Frost
» 1920’s/1930’s: Kermack and McKendrick /- -
» Coupled differential equations with a mass-action

principle
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Contagion Reproduction Number Ry
Independent
Interaction models DISCI’G’[G Vel’Sion:

» Set up: One Infective in a randomly mixing
population of Susceptibles

» Attime t = 0, single infective random bumps into a
Susceptible

» Probability of transmission = (3

» Attime t = 1, single Infective remains infected with
probability 1 — r

» Attime t = k, single Infective remains infected with
probability (1 — r)k
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Reproduction Number Ry Comagion Independent Interaction models Coneralzed

Contagion

. . ndependen Example of epidemic threshold: ndependen
D|SCrete version: :n?echtign r;odels 1 p p :n?ergctign r;odels
» Expected number infected by original Infective: B o8
8
Ro=8+(1-03+01—-r28+01—-r36+... £ 06
% 0.4
:5<1+(1—r)+(1—r)2+(1—r)3+...) L 02
1 % 1 Rz 3 4
“iaen :

» Continuous phase transition.

» Similar story for continuous model. » Fine idea from a simple model.
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Simple disease spreading models Comagion Granovetter's model (recap of recap) Comation

Contagion

» Action based on perceived behavior of others.

Independent

Interaction models 1 25 1
A B C
. 08 2 —~. 08 Interdependent
Valiant attempts to use SIR and co. elsewhere: i o6 o < 6 interaction mdels
» Adoption of ideas/beliefs (Goffman & Newell, £ - . oy 3
1964) [l o o 0
0 - 1 0 0.5 1 0 05 1
» Spread of rumors (Daley & Kendall, 1964, 1965) [* °! " q, o %
. . . . 1
» Diffusion of mngva’uons (Eliass, 196.9)[ ] , > Two states: S and |.
> gg;eaigg;e;natlcal behavior (Castillo-Chavez & » Recovery now possible (SIS).
9 » ¢ = fraction of contacts ‘on’ (e.g., rioting).
» Discrete time, synchronous update.
» This is a Critical mass model.
» Interdependent interaction model.
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Generalized

Some (of many) issues Contagion Generalized model Contagion

. . . . Basic ingredients:
» Disease models assume independence of infectious nterdepondent

events. interacion models » Incorporate memory of a contagious element !
» Population of N individuals, each in state S, I, or R.

Each individual randomly contacts another at each
time step.
¢ = fraction infected at time t
= probability of contact with infected individual
With probability p, contact with infective
leads to an exposure.

If exposed, individual receives a dose of size d
drawn from distribution f. Otherwise d = 0.

Generalized Model

» Threshold models only involve proportions:
3/10 =30/100.

» Threshold models ignore exact sequence of
influences

» Threshold models assume immediate polling.

» Mean-field models neglect network structure

» Network effects only part of story:
media, advertising, direct marketing.

v

v

v

v
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Generalized model—ingredients hi Generalized model—ingredients G

S=1

When D;; < df,
individual i recovers to state R with probability r.

» Individuals ‘remember’ last T contacts:

Generalized Model Generalized Model

t
Dij= > dt)
t'=t—T+1

» Infection occurs if individual /’s ‘threshold’ is

exceeded: Once in state R, individuals become susceptible again
Dy > df with probability p.
» Threshold d drawn from arbitrary distribution g at
t=0.
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Generalized

A visual explanation o Generalized mean-field model Cantaglon

Study SIS-type contagion first:

» Recovered individuals are immediately susceptible

agaln: Generalized Model
r=p=1.

Generalized Model

ét contact » receive
» infective —dose d >0

- 1_(% 1,p‘ receive

no dose

» Look for steady-state behavior as a function of
exposure probability p.

» Denote fixed points by ¢*.

1—rif Dy <d ]
1if Dy > de

Homogeneous version:

» All individuals have threshold d*

» All dose sizes are equal: d =1
Frame 17/63 Frame 18/63
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Homogeneous, one hit models: hi Homogeneous, one hit models: G
Fixed points forr <1, d*=1,and T = 1: Fixed points forr <1,d*=1,and T = 1:
» Set ¢; = o*:

" =po* + (1 —pg*)p* (1 —r)

» r < 1 means recovery is probabilistic.
» T =1 means individuals forget past interactions.

» d* = 1 means one positive interaction will infect an
individual.

» Evolution of infection level: =>1=p+(1—pp*)(1—r), ¢ #0,

bti1 = PPt + ¢r(1 —por) (1—71).

:>(D*—11—r{’p and ¢*:O

» Critical pointat p = pc =r.
» Spreading takes off if p/r > 1

» Find continuous phase transition as for SIR model.

c: Probability of not recovering. Frame 20/63 » Goodness: Matches R, = ﬁ/'y > 1 condition. Frame 21/63
& ©wac

a: Fraction infected between t and t + 1, independent of
past state or recovery.
b: Probability of being infected and not being reinfected.
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Simple homogeneous examples

Fixed pointsfor r =1, d*=1,and T > 1

» r = 1 means recovery is immediate.

» T > 1 means individuals remember at least 2
interactions.

» d* = 1 means only one positive interaction in past T
interactions will infect individual.

» Effect of individual interactions is independent from
effect of others.

» Call ¢* the steady state level of infection.
» Pr(infected) = 1 - Pr(uninfected):

¢*=1-(1-po")T.

Homogeneous, one hit models:
Fixed pointsforr < 1,d*=1,and T > 1

» Startwithr =1, d*=1,and T > 1 case we have
just examined:

¢*=1-(1-po")T.

» For r < 1, add to right hand side fraction who:

1. Did not receive any infections in last T time steps,
2. And did not recover from a previous infection.

» Define corresponding dose histories. Example:
H1 = { < dt—T—27df—T—1> 170707 s 7070}7
N —
TO’s

» With history Hy, probability of being infected (not
recovering in one time step) is 1 —r.

Generalized
Contagion
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Homogeneous, one hit models:
Fixed points forr =1, d*=1,and T > 1
» Closed form expression for ¢*:
" =1-(1—pp")T.

» Look for critical infection probability pe.
» As ¢* — 0, we see

¢*~pT¢" = pc=1/T.

» Again find continuous phase transition...
» Note: we can solve for p but not ¢*:

p=(¢)""1—(1 -]

Homogeneous, one hit models:
Fixed pointsforr <1,d*=1,and T > 1

» In general, relevant dose histories are:

Hm+1 :{-Hadffomf‘Ia1a0707"'707070707"'7070}'

mQ’s T O’s
» Overall probabilities for dose histories occurring:

P(H1) = po*(1 — pg*) (1 — 1),

P(Hmi1) = po (1= ps") ™+ (1 = )™

~~ ~~

a b c

a: Pr(infection T+ m+ 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
¢: Pr(no recovery in m chances)

Generalized
Contagion
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Homogeneous, one hit models:

Fixed pointsforr <1,d*=1,and T > 1

» Pr(recovery) = Pr(seeing no doses for at least T time
steps and recovering)

=1y P(Hrem)=rY_ ps (1 —pe*) (1 — )"
m=0 m=0

_ . Pl —pet)T
1= —pe*)(1—r)

» Fixed point equation:

r(1—pg*)’

Rl

Epidemic threshold:

Fixed points ford* =1, r<1,and T > 1

* r1—P¢*T *
> ¢ =1 i ¢
> QS*: 0.4
> pc=1/(T+7) o

0 VI R T T
p

» Example details: T=2&r=1/2=p,=1/3.

» Blue = stable, red = unstable, fixed points.

» 7 =1/r — 1 = characteristic recovery time = 1.

» T + 7 ~ average memory in system = 3.

>

Phase transition can be seen as a transcritical
bifurcation. ['"]

Generalized
Contagion
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Homogeneous, one hit models:

Fixed pointsforr <1,d*=1,and T > 1

» Fixed point equation (again):

¢)* — 1 _ r(1 — p¢*)T )
1= =pe*)(1 1)
» Find critical exposure probability by examining above
as ¢* — 0.
>
1 1
=  Pc

T T Tar
where 7 = mean recovery time for simple relaxation
process.

» Decreasing r keeps individuals infected for longer
and decreases pc.

Homogeneous, multi-hit models:

» All right: d* = 1 models correspond to simple
disease spreading models.

» What if we allow d* > 27

» Again first consider SIS with immediate recovery
(r=1)

» Also continue to assume unit dose sizes
(f(d) = 6(d —1)).

» To be infected, must have at least d* exposures in
last T time steps.

» Fixed point equation:
TT
* *\ [ o s\ T —i
¢ _,§<i)(p¢)(1 po*) .

» As always, ¢* = 0 works too.

Generalized
Contagion
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Homogeneous, multi-hit models:

Fixed pointsforr=1,d* >1,and T > 1

» Exactly solvable for small T.
» eg.,ford*=2T=3:

0.8
= 0.6

" 04

0.2

0.4 0.6 0.8 1
p

» Fixed point equation:
3p2¢*2(1 — pg*) + p3¢*°

» See new structure: see
a saddle node
bifurcation '] appear
as p increases.

> (pp, ¢") = (8/9,27/32).

» See behavior akin to output of Granovetter’'s
threshold model.

Fixed points forr =1, d* > 1,and T > 1

» T =24,d"=1,2,...23.

1

0.8

> d*=1—-d" > 1:

[NV NANAN
TR
LA NN
NRNANRN

(4 o
77T
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[ “‘\\“\\\‘
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S0

.
1 )
R
\ \
A ALY o
* * \ Ay (S ~
A Y

jump between
continuous phase
transition and
pure critical mass
model.

» Unstable curve for

H d* = 2 does not

1 hit ¢* = 0.

» See either simple phase transition or saddle-node
bifurcation, nothing in between.

Generalized
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Homogeneous version
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Homogeneous version
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Homogeneous, multi-hit models:

» Another example:

Critical Mass Models

1
0.8 ﬁy
|
* 0.6 e
¢ 4
0.4 S
0.2 MS%SG
%
GO 0.2 0.4 0.6 0.8 1
p

»r=1,0d"=3,T=12

Fixed points forr =1, d* > 1,and T > 1

Saddle-node bifurcation.

» Bifurcation points for example fixed T, varying d*:

08}
VAN
VAN
*
® 0.6 A
b 1 ,
! /
o /
[ / ’ ,
[ / ,
02b + // ’
Loy , //

vV VvV.v. v Vv
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Homogeneous version
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Fixed points for r <1, d* > 1,and T > 1

» For r < 1, need to determine probability of
recovering as a function of time since dose load last
dropped below threshold.

» Partially summed random walks:

t
Di(ty=">_ dt)

t=t—T+1

» Example for T = 24, d* = 14:
24 . . ; ;

OO 10 20 30 40 50 60 70 80

Fixed points for r <1, d* > 1,and T > 1
Example: T=3,d* =2

» Want to examine how dose load can drop below
threshold of d* = 2

Dn:2:>Dn+1:1

» Two subsequences do this:
{dh_2,dn_1,dn,dns 1} ={1,1,0,0}
and {dn_g, dn_1 , dn, dn+1 , dn+2} = {1 ,0,1,0, O}.

» Note: second sequence includes an extra 0 since
this is necessary to stay below d* = 2.

» To stay below threshold, observe acceptable
following sequences may be composed of any
combination of two subsequences:

a={0} and b={1,0,0}.

Generalized
Contagion
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Fixed points for r <1, d* > 1,and T > 1

» Define v, as fraction of individuals for whom D(t)
last equaled, and his since been below, their
threshold m time steps ago,

» Fraction of individuals below threshold but not
recovered:

21_r ’Ympa(ls)

m=1

» Fixed point equation:

s+ (7)ot = poy

i=d*

Fixed points for r <1, d* > 1,and T > 1

» Determine number of sequences of length m that
keep dose load below d* = 2.

» Nz = number of a = {0} subsequences.
» N = number of b= {1,0,0} subsequences.

m=~Nz-1+Np-3
Possible values for Np:

0,1,2,...{@]

where | -] means floor.
» Corresponding possible values for Nj:

m,m—3,m—6,...,m—3[gJ.

Generalized
Contagion
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Fixed points forr <1, d* > 1,and T > 1 o Fixed points for r <1, d* > 1,and T > 1 e

» Total number of allowable sequences of length m:

L’"Z“J Np + Na _“"Z/SJ m— 2k
No )~ k

Np=0 b k=0

» How many ways to arrange N, a’s and N, b's?
» Think of overall sequence in terms of subsequences:

{Z1,2,...,2n4N, }

» N3+ N, slots for subsequences.
» Choose positions of either a’s or b’s:

Na+ Np\  (Na+ Np
Na B Nb .

where kK = Np and we have used m = N; + 3N,.
> P(a) = (1 - p¢*) and P(b) = pg*(1 — pp*)?
» Total probability of allowable sequences of length m:

Lm/3]
xm(P,#") = > (’”;2")(1 = po™)" " (pe")".

k=0

» Notation: Write a randomly chosen sequence of a's

and b's of length m as DZ°.
Frame 40/63
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Fixed points forr <1, d* > 1,and T > 1 Cortagion. Fixed points forr <1, d*=2,and T = 3 Cortagion.
» Nearly there... must account for details of sequence -
i T *\ [ *\T—i
endings. RREG o =r(p.o%in) + 3 (] ) o) (1 - pon)T
» Three endings = Six possible sequences: =g« \!

where I'(p, ¢*; r) =
Dy = {1,1,0,0,D2°.} (P97 1)

Pi = (pg)*(1 — p&)>xm-1(P, )
D, = {1,1,0,0,D%", 1}

m—2

(1= 1) (Pe)2(1 = po)® + > (1 = r)™(pp)?(1 — pd)?x
P2 = (p$)*(1 — Pd)Pxm—2(P, 9) —
D = {1,1,0,0,D%°,.1,0}

Ps = (p9)*(1 = p&)’xm-3(p, ) [xm_1 + Xm-2 +2P6(1 = PP)Xm-3 + PA(1 — PY)*xm-a

D4 - {1707170a0a D;ay;ﬁz}

Py = (p6)(1 — p3)°xm-2(p, 9) and
Ds = {1,0,1,0,0,D0%°, 1} /3] o

Ps = (p¢)*(1 — p¢)*xm-3(p, ¢) o (m— > 1 g YK (1K
D = {1,0,1,0,0,0%°,,1,0} xm(p- ") kz_% PR AR

Frame 42/63

Ps = (p9)3(1 — po)* xm—-a(p: ¢) | AEEE
5 o Note: (1 —r)(p¢)?(1 — pe)? accounts for {1,0,1,0} sequence. o see




Fixed points for r <1, d* > 1,and T > 1

T=3d =2

» r=0.01,0.05,0.10,0.15,0.20,...,1.00.

What we have now:

» Two kinds of contagion processes:

1. Continuous phase transition: SIR-like.
2. Saddle-node bifurcation: threshold model-like.

» d* = 1: spreading from small seeds possible.
» d* > 1: critical mass model.
» Are other behaviors possible?

Generalized

Contagion Fixed pOintS fOI’ I’ < 1, dj< > 1, and T Z 1

Tr=2d =2

0.8 :
0.6 v
0.4

N
\ AN ~
.~ So
\ N ~.
0.2 . ~ ..
N N

» r=0.01,0.05,0.10,...,0.3820 + 0.0001.
» No spreading for r = 0.382.

Frame 43/63
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» Now allow for dose distributions (f) and threshold
distributions (g) with width.

» Key quantities:

o K
Py :/ dd* g(d")P [ S d> d* | wheret1 <k < T.
0 -
=

» Py = Probability that the threshold of
a randomly selected individual
will be exceeded by k doses.
> e.g.,
P; = Probability that one dose will exceed
the threshold of a random individual
= Fraction of most vulnerable individuals.
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Generalized model—heterogeneity, r = 1
Fixed point equation:

)
5 =3 () Pt = o)A

k=1

» Expand around ¢* = 0 to find when spread from
single seed is possible:

AT o

» Very good:
1. P; T is the expected number of vulnerables the initial
infected individual meets before recovering.
2. pPyT is .. the expected number of successful
infections (equivalent to Ry).

» Observe: p. may exceed 1 meaning no spreading
from a small seed.

|= pe=1/(TPy)]

Heterogeneous case

Example configuration:

» Dose sizes are lognormally distributed with mean 1
and variance 0.433.

» Memory span: T = 10.
» Thresholds are uniformly set at
1. d,=0.5
2.d.=16
3. d.=3
» Spread of dose sizes matters, details are not
important.

Generalized
Contagion

Heterogeneous version
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Heterogeneous case

Three universal classes

(p*

Generalized
Contagion

» Next: Determine slope of fixed point curve at critical
point pc.
» Expand fixed point equation around (p, ¢*) = (pc, 0).
» Find slope depends on (Py — P,/2) !
(see appendix).
» Behavior near fixed point depends on whether this
slope is
1. positive: Py > P, /2 (continuous phase transition)
2. negative: Py < P,/2 (discontinuous phase transition)
» Now find three basic universal classes of contagion
models...

Heterogeneous version

Frame 49/63
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I11. Critical mass

.
\
.

|. Epidemic threshold |I. Vanishing critical mass

1
0.8]
0.6

0.4
0.2

A
0 O-.2 0:4 OjG 0:8 10 02 04 06 0:8 10 02 04 06 08 1

p p p

0

P1 > P2/2, Pc = 1/(TP1) <1
Py < Po/2,pc=1/(TP1) < 1
P1 < P2/2, Pc = 1/(TP1) > 1

» Epidemic threshold:
» Vanishing critical mass:

» Pure critical mass:

Frame 51/63
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Heterogeneous case Contagion More complicated models Gontagion

Now allow r < 1:
1

1 7 ran
038 r N
9, \ !
(p* 08 Heterogeneous version ” “\ K_J A Heterogeneous version
04 0 / . ]
0 0.5 10 0.5 10 0.5 1
0.2 p
ok P yE—e—— ] » Due to heterogeneity in individual thresholds.
P » Three classes based on behavior for small seeds.
N _ » Same model classification holds: |, Il, and Ill.
» |I-1ll transition generalizes: pc = 1/[P1(T + 7)] where
T = 1/r = expected recovery time
» |-l transition less pleasant analytically.
Frame 52/63 Frame 53/63
& vae & vae
Hysteresis in vanishing critical mass models hi Discussion S

@,
0.5

Heterogeneous version

Frame 54/63
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» Memory is a natural ingredient.
» Three universal classes of contagion processes:

1. |. Epidemic Threshold
2. 1. Vanishing Critical Mass
3. lll. Critical Mass

» Dramatic changes in behavior possible.

» To change kind of model: ‘adjust’” memory, recovery,
fraction of vulnerable individuals (7, r, p, Py, and/or
Ps).

» To change behavior given model: ‘adjust’ probability
of exposure (p) and/or initial number infected (¢g).

Heterogeneous version

Frame 55/63
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Discussion P Details for Class |-l transition: P

<Z> — po*) Tk,

(k)P Z( Yo

j:

Single seed infects others if pPy(T + 7) > 1.
Key quantity: p. = 1/[P1(T + 7)]
If pc < 1 = contagion can spread from single seed.

Depends only on:

1. 1. System Memory (T + 7).
2. 2. Fraction of highly vulnerable individuals (P4).

» Details unimportant: Many threshold and dose

M~ I~ T~ 107~

vV vy VvV Yy

Appendix

T_

X

() (7)o,
=0
distributions give same Py. /m
» Most vulnerable/gullible population may be more = Z < > (T k) Pr(—1)™K(pg*)™,
important than small group of super-spreaders or =1 k=1 k
influentials. T
= Z Cm(pg™)
Frame 56/63 m=1 Frame 57/63
&F LA &F LA
Details for Class I-1l transition: Contagion Details for Class I-1l transition: Contagion

» Linearization gives
¢* ~ Cipg” + Cop3e™.

Appendix where Cy = TPi(=1/ps) and Co = (2)(—2P; + Po). i
» Using pc = 1/(TPy):

oo-crr () E ()
since i

(D <nTv:l/(<> B k!(TTl K)! (m —(Z)_I(kr)l— N

T! m!
mi(T — m)! k(] — k)!

- () (%)

. Ci T2P3
P~ Co2 ~5(P—pc) = (T—1)(P; — Pp/2) (P — Pc).

» Sign of derivative governed by Py — P, /2.

Frame 58/63
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