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Basic idea:

» Random networks with arbitrary degree distributions
cover much territory but do not represent all
networks.

» Moving away from pure random networks was a key
first step.

» We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.

» Node attributes may be anything, e.g.:

1. degree
2. demographics (age, gender, etc.)
3. group affiliation

» We speak of mixing patterns, correlations, biases...

» Networks are still random at base but now have more
global structure.

» Build on work by Newman [% 4],
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General mixing between node categories g

» Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

» Consider networks with directed edges.

General mixing

e —Pr an edge connects a node of type
we to a node of type v

a, = Pr(an edge comes from a node of type 1)

b, = Pr(an edge leads to a node of type v)

» Write E = [e,,], @ = [a,], and b = [b,].
» Requirements:

Zem,: 1, Zem,:a“, andZeW:bl,.
wv v 1
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Assortativity and

NOteS. Mixing

» Varying e,, allows us to move between the following:

General mixing

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0if p#vand >_ e, =1.

2. Uncorrelated networks (as we have studied so far)
For these we must have independence: e, = a,b,.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.

» Disassortative networks can be hard to build and
may require constraints on the e,,, .

» Basic story: level of assortativity reflects the degree
to which nodes are connected to nodes within their
group.
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Correlation coefficient: il

» Quantify the level of assortativity with the following General mixing
assortativity coefficient [

o 2o 20 Buby  TrE —[|E?[]y
1-22,a.by 1—IE2|l4

where || - ||1 is the 1-norm = sum of a matrix’s entries.
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Correlation coefficient: il

» Quantify the level of assortativity with the following General mixing
assortativity coefficient [

o 2o 20 Buby  TrE —[|E?[]y
1-22,a.by 1—IE2|l4

where || - ||1 is the 1-norm = sum of a matrix’s entries.

» TrE is the fraction of edges that are within groups.

» ||E?||; is the fraction of edges that would be within
groups if connections were random.

» 1 — ||E?||; is a normalization factor 0 fya, = 1.
» When Tre,, = 1,we have r =1. v
» When e,, = a,b,, we have r =0. v
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» r = —1 is inaccessible if three or more types are
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Correlation coefficient: il

NOteSZ General mixing

» r = —1 is inaccessible if three or more types are
presents.

» Disassortative networks simply have nodes
connected to unlike nodes—no measure of how
unlike nodes are.

» Minimum value of r occurs when all links between
non-like nodes: Tre,,, = 0.

> 2
Bl
min —

1= [1E2[]

where —1 < ry;, < 0.

Frame 8/26

F DA



Scalar quantities

» Now consider nodes defined by a scalar integer
quantity.

Assortativity and
Mixing

Assortativity by
degree

Frame 9/26

F DA


http://en.wikipedia.org/wiki/Correlation#Non-parametric_correlation_coefficients

Scalar quantities
» Now consider nodes defined by a scalar integer
quantity.
» Examples: age in years, height in inches, number of
friends, ...

Assortativity and
Mixing

Assortativity by
degree

Frame 9/26

F DA


http://en.wikipedia.org/wiki/Correlation#Non-parametric_correlation_coefficients

Scalar quantities
» Now consider nodes defined by a scalar integer
quantity.

» Examples: age in years, height in inches, number of
friends, ...

» ey = Pr arandomly chosen edge connects a node
with value j to a node with value k.

Assortativity and
Mixing

Assortativity by
degree

Frame 9/26

F DA


http://en.wikipedia.org/wiki/Correlation#Non-parametric_correlation_coefficients

Scalar quantities
» Now consider nodes defined by a scalar integer
quantity.
» Examples: age in years, height in inches, number of
friends, ...

» ey = Pr arandomly chosen edge connects a node
with value j to a node with value k.

» a; and by are defined as before.

Assortativity and
Mixing

Assortativity by
degree

Frame 9/26

F DA


http://en.wikipedia.org/wiki/Correlation#Non-parametric_correlation_coefficients

Scalar quantities

» Now consider nodes defined by a scalar integer
quantity.

» Examples: age in years, height in inches, number of
friends, ...

» ey = Pr arandomly chosen edge connects a node
with value j to a node with value k.

» a; and by are defined as before.

» Can now measure correlations between nodes
based on this scalar quantity using standard
Pearson correlation coefficient (H):

Assortativity and
Mixing

Assortativity by
degree

Frame 9/26

F DA


http://en.wikipedia.org/wiki/Correlation#Non-parametric_correlation_coefficients

Scalar quantities Ao ing
» Now consider nodes defined by a scalar integer
quantity.
» Examples: age in years, height in inches, number of Nssertativiyiby
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» ey = Pr arandomly chosen edge connects a node
with value j to a node with value k.

» a; and by are defined as before.

» Can now measure correlations between nodes
based on this scalar quantity using standard
Pearson correlation coefficient (H):
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Scalar quantities Ao ing
» Now consider nodes defined by a scalar integer
quantity.
» Examples: age in years, height in inches, number of Nssertativiyiby
friends, ... degree

» ey = Pr arandomly chosen edge connects a node
with value j to a node with value k.

» a; and by are defined as before.

» Can now measure correlations between nodes
based on this scalar quantity using standard
Pearson correlation coefficient (H):

e > jk) k(e — ajbx) _ (k) — (lalk)p
720 Ve = %/ (k) — (K13
» This is the observed normalized deviation from Frame 9/26

randomness in the product jk. o Bae


http://en.wikipedia.org/wiki/Correlation#Non-parametric_correlation_coefficients
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» Now define ey with a slight twist: degree

6r — P an edge connects a degree j + 1 node
k= to a degree k + 1 node
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N and a node of out-degree k

» Useful for calculations (as per Ry)
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Degree-degree correlations

>

Natural correlation is between the degrees of
connected nodes.

Now define ej with a slight twist:

6r — P an edge connects a degree j + 1 node
k= to a degree k + 1 node

an edge runs between a node of in-degree j
=P
and a node of out-degree k

» Useful for calculations (as per Ry)
» Important: Must separately define Py as the {ej}

contain no information about isolated nodes.

Directed networks still fine but we will assume from
here on that ey = e;.

)

Assortativity and
Mixing

Assortativity by
degree

Frame 10/26

F DA



Degree-degree correlations g

» Notation reconciliation for undirected networks:

o _ 2jkd k(e — FiRk)
- >

Assortativity by
degree

where, as before, Ry is the probability that a
randomly chosen edge leads to a node of degree
k+1,and

2
0% = ZFR,- - [Zjﬁj] .
j j
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Degree-degree correlations

Error estimate for r:

» Remove edge i and recompute r to obtain r;.
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Error estimate for r: pasoratvity by

» Remove edge i and recompute r to obtain r;.

» Repeat for all edges and compute using the
jackknife method (8) ]

o2 => (r—r?

i
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Degree-degree correlations g

Error estimate for r: pasoratvity by

» Remove edge i and recompute r to obtain r;.

» Repeat for all edges and compute using the
jackknife method (8) ]

o2 => (r—r?

i

» Mildly sneaky as variables need to be independent
for us to be truly happy and edges are correlated...
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Measurements of degree-degree correlations [

Group Network Type Size n Assortativity r  Error o,

a Physics coauthorship undirected 52909 0.363 0.002

a Biology coauthorship undirected 1 520251 0.127 0.0004

b Mathematics coauthorship  undirected 253339 0.120 0.002 Assortativity by
Social ¢ Film actor collaborations  undirected 449913 0.208 0.0002 degree

d Company directors undirected 7673 0.276 0.004

e Student relationships undirected 573 —0.029 0.037

f Email address books directed 16 881 0.092 0.004

g Power grid undirected 4941 —0.003 0013
Technological h Internet undirected 10697 —0.189 0.002

i World Wide Web directed 269 504 —0.067 0.0002

j Software dependencies directed 3162 —0.016 0.020

k Protein interactions undirected 2115 —0.156 0.010

1 Metabolic network undirected 765 —0.240 0.007
Biological m  Neural network directed 307 —0.226 0.016

n Marine food web directed 134 —0.263 0.037

o Freshwater food web directed 92 —0.326 0.031

» Social networks tend to be assortative (homophily)

» Technological and biological networks tend to be
disassortative Frame 13/26
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Spreading on degree-correlated networks

» Next: Generalize our work for random networks to
degree-correlated networks.
» As before, by allowing that a node of degree k is

activated by one neighbor with probability Gk, we
can handle various problems:

1.
2.

3.

find the giant component size.
find the probability and extent of spread for simple
disease models.

find the probability of spreading for simple threshold
models.
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» Goal: Find f, ; = Pr an edge emanating from a
degree j 4+ 1 node leads to a finite active
subcomponent of size n.
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subcomponent of size n.

» Repeat: a node of degree k is in the game with
probability [k .

» Define 31 = [Bk1].
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Spreading on degree-correlated networks Ao ing

» Goal: Find f, ; = Pr an edge emanating from a
degree j 4+ 1 node leads to a finite active
subcomponent of size n.

» Repeat: a node of degree k is in the game with
probability [k .

» Define 31 = [Bk1].

» Plan: Find the generating function
Fi(x; B1) = 32520 fnjx".

Contagion

Frame 15/26
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» Recursive relationship:
Fi(x: 1) = x> é (1 = Brs1.1)
k=0

+ XZ H%’;ﬁkﬂn [Fk(X; i )} "
k=0
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» Recursive relationship:

Fi(x: B1) = x°) é (1 = Br+1,1)
k=0

Contagion

+ XZ H%’;ﬁkﬂn [Fk(X; i )} "
k=0

» First term = Pr that the first node we reach is not in
the game.

» Second term involves Pr we hit an active node which
has k outgoing edges.
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Spreading on degree-correlated networks Miing

» Recursive relationship:

Contagion

Fi(x: 1) = x> é (1= Brt1.1)
k=0
Ejk Nk
+XZ ﬁ/_ﬁkﬂj [Fk(X, 51)}
k=0

» First term = Pr that the first node we reach is not in
the game.

» Second term involves Pr we hit an active node which
has k outgoing edges.

» Next: find average size of active components
reached by following a link from a degree j + 1 node

= F/(1; 61).
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Assortativity and
Mixing

Contagion

Frame 17/26

F DA



Spreading on degree-correlated networks Ao ing

» Differentiate F;(x; 51), set x = 1, and rearrange.
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Spreading on degree-correlated networks Ao ing

» Differentiate F;(x; 51), set x = 1, and rearrange.

» We use Fg(1; 51) = 1 which is true when no giant
component exists. We find: Contagion

RiFj(1; By) = Z Ok k11 + Z ke Brs1.1Fr(1; 5).
k=0 k=0
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Spreading on degree-correlated networks Ao ing

» Differentiate F;(x; 51), set x = 1, and rearrange.

» We use Fg(1; 51) = 1 which is true when no giant
component exists. We find: Contagion

RF[(1:01) = D 6kBis11 + ) keBir1,1F(1: Bi).
k=0 k=0

» Rearranging and introducing a sneaky dj:

o0

Z Sk R — KBrr1,18jk) Fr(1; ) Z €k Bk+1,1-

k=0

Frame 17/26
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Spreading on degree-correlated networks

» In matrix form, we have
Ac s F/(1: 1) = Ef
where
[AE’B‘LH,kH = ik Rk — KBi1,16jk
2 - -
[F(1'51)]k+1 = FL(1; 3y),

/
k
(E]; 11 k+1 = €k, and {51} = Bk+1,1-

k+1
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» So, in principle at least:
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F(1:61) = Ag 5 Ebr.
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Spreading on degree-correlated networks
» So, in principle at least:

F'(1;51) = AZL. Efy.

(1:51) = Ag 5 Efs

» Now: as F'(1; 3;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.
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» So, in principle at least:

F'(1;51) = AZL. Efy.

(1:51) = Ag 5 Efs

» Now: as F'(1; 3;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

» Right at the transition, the average component size
explodes.
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Spreading on degree-correlated networks

» So, in principle at least:

F'(1;6;) = AZL. Ef;.

(1:51) = Ag 5 Efs

» Now: as F'(1; 3;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

» Right at the transition, the average component size
explodes.

» Exploding inverses of matrices occur when their
determinants are 0.
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Spreading on degree-correlated networks Miing

» So, in principle at least:

L
F/(1:51) = A, Efh.

Contagion

» Now: as F'(1; 3;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

» Right at the transition, the average component size
explodes.

» Exploding inverses of matrices occur when their
determinants are 0.

» The condition is therefore:

detA 0

E7§1 -
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Spreading on degree-correlated networks

» General condition details:

det AE,@ = det [(5ij/(_1 — (k- 1)5k71ej_17k_1] =0.

Assortativity and
Mixing

Contagion

Frame 20/26

F DA



Spreading on degree-correlated networks

» General condition details:

det AE,@ = det [(5ij/(_1 — (k- 1)5k71ej_17k_1] =0.

» The above collapses to our standard contagion
condition when ey = R;R.
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Spreading on degree-correlated networks Ao ing
» General condition details:
detAg 5 = det [0 Rk—1 — (k —1)Bk 1611 k1] = 0.

» The above collapses to our standard contagion Contagion
condition when ey = R;R.

» When 3; = [ﬁ, we have the condition for a simple
disease model’'s successful spread

det [0 Rk—1 — B(k — 1)€j-1k-1] = 0.
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Spreading on degree-correlated networks Ao ing
» General condition details:
detAg 5 = det [0 Rk—1 — (k —1)Bk 1611 k1] = 0.

» The above collapses to our standard contagion sl
condition when ey = R;R.

» When §; = [ﬁ, we have the condition for a simple
disease model’'s successful spread

det [0 Rk—1 — B(k — 1)€j-1k-1] = 0.

» When 3; = 1, we have the condition for the existence
of a giant component:

det [(5//(Rk_1 _ (k - 1)ej—1,k—1:| = O
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Spreading on degree-correlated networks
» General condition details:
det AE,@ = det [(5ij/(_1 — (k- 1)5k71ej_17k_1] =0.

» The above collapses to our standard contagion
condition when ey = R;R.

» When §; = [ﬁ, we have the condition for a simple
disease model’'s successful spread

det [0 Rk—1 — B(k — 1)€j-1k-1] = 0.

» When 3; = 1, we have the condition for the existence
of a giant component:

det [(5//(Rk_1 _ (k - 1)ej—1,k—1:| = O

» Bonusville: We’'ll find another (possibly better)
version of this set of conditions later...
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Spreading on degree-correlated networks

We'll next find two more pieces:

1. Puig, the probability of starting a cascade
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We'll next find two more pieces:

1. Puig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.
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Spreading on degree-correlated networks

We'll next find two more pieces:

1. Puig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Triggering probability:

» Generating function:

H(x; fy) = XZPK [qu(x: 51)},(-

k=0
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Spreading on degree-correlated networks Ao ing

We'll next find two more pieces:

1. Puig, the probability of starting a cascade

2. S, the expected extent of activation given a small Contagion
seed.

Triggering probability:
» Generating function:
- > ~ 1k
H(x; B1) = x Y P« [qu(X: 51)} :
k=0

» Generating function for vulnerable component size is
more complicated.
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» Want probability of not reaching a finite component.
Ptrig = Strig =1- H(1.g1)

=1 *ipk [Fk71(1;ﬁ1)]k-

k=0
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Spreading on degree-correlated networks Ao ing

» Want probability of not reaching a finite component.
Ptrig = Strig =1- H(1.g1)

=1 *ipk [Fk—1(1§§1)]k-

k=0

Contagion

» Last piece: we have to compute Fx_1(1; 51).
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Spreading on degree-correlated networks Ao ing

» Want probability of not reaching a finite component.
Ptrig = Strig =1- H(1.g1)

=1 *ipk [Fk—1(1§§1)]k-

k=0

Contagion

» Last piece: we have to compute Fx_1(1; 51).

» Nastier (nonlinear)—we have to solve the recursive
expression we started with when x = 1:

Fi(1:61) = 72, %(1 — Brs1,1)+
. L 1k
Y ro %BKHJ [Fk(1;51)} :
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Spreading on degree-correlated networks Miing

» Want probability of not reaching a finite component.
Ptrig = Strig =1- H(1.g1)
e ~ 1k
=1-) P [Fk—1(1§ﬁ1)] :

k=0

Contagion

» Last piece: we have to compute Fx_1(1; 51).

» Nastier (nonlinear)—we have to solve the recursive
expression we started with when x = 1:
2 o 6
Fi(1:81) = k20 A (1 = Brar 1)+
, L 1k
> keo %BKHJ [Fk(1 1 )} :
» lterative methods should work here.
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Spreading on degree-correlated networks

» Truly final piece: Find final size using approach of
Gleeson | a generalization of that used for
uncorrelated random networks.

Assortativity and
Mixing

Contagion

Frame 23/26

F DA



Spreading on degree-correlated networks

» Truly final piece: Find final size using approach of
Gleeson | a generalization of that used for
uncorrelated random networks.

» Need to compute 0; ;, the probability that an edge
leading to a degree j node is infected at time t.
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Spreading on degree-correlated networks Ao ing

» Truly final piece: Find final size using approach of
Gleeson | a generalization of that used for
uncorrelated random networks.

» Need to compute 0; ;, the probability that an edge _
leading to a degree j node is infected at time t. contagion

» Evolution of edge activity probability:

0111 = Gi(0) = do + (1 — do)

[e.°]

k-1
€j—1,k—1 k—1\ L
>R Z< i >9/i,t(1 — 10)" " B

k=1 I o
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Spreading on degree-correlated networks Ao ing

» Truly final piece: Find final size using approach of
Gleeson | a generalization of that used for
uncorrelated random networks.

» Need to compute 0; ;, the probability that an edge _
leading to a degree j node is infected at time t. contagion

» Evolution of edge activity probability:

0111 = Gi(0) = do + (1 — do)

0o k—1
€1 k—1 k—1\ ; i
> l,q. Z< i >9/i,t(1 — 0k 1) B

k= 971 o
» Overall active fraction’s evolution:

k

G141 = o+ (1—0o) Z sz <i>9li,t(1 —0k,0) "B

k=0 i=0 Frame 23/26
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Spreading on degree-correlated networks

» As before, these equations give the actual evolution
of ¢; for synchronous updates.
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» As before, these equations give the actual evolution
of ¢; for synchronous updates. . .
» Contagion condition follows from 6,1 = G(6;).
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» As before, these equations give the actual evolution
of ¢; for synchronous updates.

> Contagion condition follows from .1 = G(0;).

» Linearize G around 00 =0.
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Spreading on degree-correlated networks Ao ing
» As before, these equations give the actual evolution
of ¢; for synchronous updates.
> Contagion condition follows from .1 = G(0;).
» Linearize G around 00 = 0

B dG;(0 82G;(0) ,
O 41 = Z Dby 1 ; o2, Tkt
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Spreading on degree-correlated networks Ao ing

» As before, these equations give the actual evolution
of ¢; for synchronous updates. .

> Contagion condition follows from 61 = G(67).

» Linearize G around 00 = 0

dG;(0 92G;(0)
9; — / ] 02
G Z 0. ; 902 , bt

Contagion

> If Gj(O) # 0 for at least one j, always have some
infection.

> If G;(0) = 0V}, largest eigenvalue of {dfék(?)} must

exceed 1.
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Spreading on degree-correlated networks

>

As before, these equations give the actual evolution
of ¢; for synchronous updates.

Contagion condition follows from 0,1 = G(f}).
Linearize G around 00 =0.

AL = 0G(0) X, 92G(0) ,,
0 t+1 —G/(0)+k:1 D0rz 9k,t+; 80£t Ot +

If Gj(6) # 0 for at least one j, always have some
infection.

If G;(0) = 0V, largest eigenvalue of {dfék(?)} must

exceed 1.
Condition for spreading is therefore dependent on
eigenvalues of this matrix:
9G/(0) €141
= : k—1
ael(’t "qj_1 ( )B/ﬂ
Insert question from assignment 5 (/)
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How the giant component changes with Ao ing
assortativity

1.0
08 |- » More assortative |k
Z networks
B oosk percolate for lower
Pl V. A — average degrees
K b A1/ - dmoratve » But disassortative
e ] networks end up
T with higher
exponential parameter k extents of
spreading.

from Newman, 2002 [3]
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