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All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 2/11

All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 2/11

All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 2/11

All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 2/11

All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 2/11

All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 2/11

All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 2/11

All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 2/11

All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 2/11

All the way with A~x = ~b:
I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 3/11

Best solution ~x∗ when ~b = ~p + ~e:

Space

Left Null

R
m

~0

~0

d = m− r

d = r

Row Space
Column Space

R
n

Null Space

~xn

~xr

A ~xn = ~0

A~xr = ~p

A~x∗ = ~p

d = n− r

d = r

~x∗ = ~xr + ~xn

~p

~b

~e
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Fundamental Theorem of Linear Algebra

Now we see:
I Each of the four fundamental subspaces has a ‘best’

orthonormal basis
I The v̂i span Rn

I We find the v̂i as eigenvectors of ATA.
I The ûi span Rm

I We find the ûi as eigenvectors of AAT.

Happy bases

I {v̂1, . . . , v̂r} span Row space
I {v̂r+1, . . . , v̂n} span Null space
I {û1, . . . , ûr} span Column space
I {ûr+1, . . . , ûm} span Left Null space
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I {ûr+1, . . . , ûm} span Left Null space



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 4/11

Fundamental Theorem of Linear Algebra

Now we see:
I Each of the four fundamental subspaces has a ‘best’

orthonormal basis
I The v̂i span Rn

I We find the v̂i as eigenvectors of ATA.
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I We find the ûi as eigenvectors of AAT.

Happy bases

I {v̂1, . . . , v̂r} span Row space
I {v̂r+1, . . . , v̂n} span Null space
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I The ûi span Rm
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Fundamental Theorem of Linear Algebra

How A~x works:
I A = UΣV T

I A sends each ~vi ∈ C(AT) to its partner ~ui ∈ C(A) with
a stretch/shrink factor σi > 0.

I A is diagonal with respect to these bases and has
positive entries (all σi > 0).

I When viewed the right way, any A is a diagonal
matrix Σ.
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Image approximation (80x60)

Idea: use SVD to approximate images

I Interpret elements of matrix A as color values of an
image.

I Truncate series SVD representation of A:

A = UΣV T =
r∑

i=1

σi ûi v̂T
i

I Use fact that σ1 > σ2 > . . . > σr > 0.

I Rank r = min(m, n).
I Rank r = # of pixels on shortest side.
I For color: approximate 3 matrices (RGB).
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A =
1∑

i=1

σi ûi v̂T
i
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Image approximation (80x60)
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σi ûi v̂T
i



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 9/11

Image approximation (480x615)

A =
4∑

i=1

σi ûi v̂T
i



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 9/11

Image approximation (480x615)

A =
5∑

i=1
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σi ûi v̂T
i



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 9/11

Image approximation (480x615)

A =
30∑

i=1
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σi ûi v̂T
i



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 10/11

Image approximation (480x640)

A =
480∑
i=1
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σi ûi v̂T
i



Ch. 6: Lec. 25

The fundamental
theorem of linear
algebra

Approximating
matrices with SVD
The basic idea

Guess who?

Bonus example 1

Bonus example 2

Frame 11/11

Image approximation (480x640)

A =
3∑

i=1
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