Overview of Complex Systems

Principles of Complex Systems Course 300. Fall. 2008

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Course Information

Basic Definitions

References

Frame 1/108

Outline

Course Information

Major Centers

Resources

Projects

Topics

Basic Definitions

Complexity

Emergence

Self-Organization

Modeling

Statistical Mechanics

Universality

Symmetry Breaking

Tools and Techniques

Measures of Complexity

References

Information

Basic Definitions

References

Frame 2/108

Basics:

- Instructor: Prof. Peter Dodds
- Lecture room and meeting times:
 220 Votey, Tuesday and Thursday, 11:00 am to 12:30 pm
- Office: 203 Lord House, 16 Colchester Avenue
- E-mail: pdodds@uvm.edu
- Website:

http://www.uvm.edu/ pdodds/teaching/2008-08UVM-300/ (H)

- Suggested Texts:
 - "Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools" by Didier Sornette [12].
 - "Critical Mass: How One Thing Leads to Another" by Philip Ball [3]

Course Information Major Centers Resources Projects Topics

Basic Definitions

Emergence Self-Organi Modeling

Modeling Statistical Me

Symmetry Breaking
Tools and Technic

References

References

Frame 3/108

Admin:

Paper products:

1. Outline

Office hours:

9:00 am to 10:30 am Tuesday and Thursday Rm 203, Math Building

Course Information

Basic Definitions

Frame 4/108

Grading breakdown:

- ▶ Projects/talks (55%)—Students will work on semester-long projects. Students will develop a proposal in the first few weeks of the course which will be discussed with the instructor for approval. Details: 15% for the first talk, 20% for the final talk, and 20% for the written project.
- Assignments (40%)—All assignments will be of equal weight and there will be three or four of them.
- ► General attendance/Class participation (5%)

Course Information Major Centers Resources Projects Topics

Basic Definitions

Emergence Self-Organ

Modeling Statistical M

> Universality Symmetry Breakin Tools and Techniq

> Tools and Technique

References

Frame 5/108

How grading works:

Questions are worth 3 points according to the following scale:

- 3 = correct or very nearly so.
- 2 = acceptable but needs some revisions.
- 1 = needs major revisions.
- ▶ 0 = way off.

Course Information

Basic Definitions

References

Frame 6/108

Schedule:

Week # (dates)	Tuesday	Thursday
1 (9/2, 9/4)	lecture	lecture
2 (9/9, 9/11)	lecture	lecture
3 (9/16, 9/18)	lecture	lecture
4 (9/23, 9/25)	Project	Project
	presentations	presentations
5 (9/30, 10/2)	lecture	lecture
6 (10/7, 10/9)	lecture	lecture
7 (10/14, 10/16)	lecture	lecture
8 (10/21, 10/23)	lecture	guest lecture:
		Stuart Kauffman
9 (10/28, 10/30)	lecture	lecture
10 (11/4, 11/6)	lecture	lecture
11 (11/11, 11/13)	lecture	lecture
12 (11/18, 11/20)	lecture	lecture
13 (11/25, 11/27)	Thanksgiving	Thanksgiving
14 (12/2, 12/4)	lecture	lecture
15 (12/9, 12/11)	Project	Project
	Presentations	Presentations

Course Information

Resourc

Basic Definitions

Emergence Self-Organi

Modeling Statistical N

Universality Symmetry Breakin

Tools and Technic

- .

References

Frame 7/108

Important dates:

- Classes run from Tuesday, Septeber 2nd to Thursday, December 11.
- Add/Drop, Audit, Pass/No Pass deadline—Monday, September 15.
- 3. Last day to withdraw—Friday, October 31.
- Reading and exam period—Friday, December 12th to Friday, December 19th.

Course Information Major Centers

Resource Projects

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics
Universality
Symmetry Breaking

References

Frame 8/108

More stuff:

Do check your zoo account for updates regarding the course.

Academic assistance: Anyone who requires assistance in any way (as per the ACCESS program or due to athletic endeavors), please see or contact me as soon as possible.

Course Information Major Centers

Resource Projects

Basic Definitions

Emergence
Self-Organization
Modeling
Statistical Mechanics

Universality
Symmetry Breaking
Tools and Techniques

References

Frame 9/108

Centers

- Santa Fe Institute (SFI)
- New England Complex Systems Institute (NECSI)
- Michigan's Center for the Study of Complex Systems (CSCS (⊞))
- Northwestern Institute on Complex Systems $(NICO (\boxplus))$
- Also: Indiana, Davis, Brandeis, University of Illinois, Duke, Warsaw, Melbourne, ..., UVM (CSC)

Course Information Major Centers Basic Definitions

References

Frame 11/108

Books:

- "Modeling Complex Systems" by Nino Boccara [6]
- "Critical Phenomena in Natural Sciences" by Didier Sornette [12]
- "Complex Adaptive Systems: An Introduction to Computational Models of Social Life," by John Miller and Scott Page [10]
- "Micromotives and Macrobehavior" by Thomas Schelling [11]
- "Social Network Analysis" by Stanley Wasserman and Katherine Faust [14]
- ► "Handbook of Graphs and Networks" by Stefan Bornholdt and Hans Georg Schuster [7]
- "Dynamics of Complex Systems" by Yaneer Bar-Yam^[4]

Course
Information
Major Centers
Resources
Projects
Topics
Basic Definitions
Complexity
Emergence
Self-Organization

Measures of Comp

References

Frame 13/108

Useful Resources:

- Cosma Shalizi's notebooks: http://www.cscs.umich.edu/ crshalizi/notebooks/ (⊞)
- Complexity Digest: http://www.comdig.org (⊞)

Information Resources

Basic Definitions

References

Frame 14/108

Projects

- Semester-long projects.
- Develop proposal in first few weeks.
- May range from novel research to investigation of an established area of complex systems.
- We'll go through a list of possible projects soon.

Course Information Projects

Basic Definitions

References

Frame 16/108

Projects

The narrative hierarchy—explaining things on many scales:

- ▶ 1 to 3 word encapsulation, a soundbite,
- a sentence/title,
- a few sentences,
- a paragraph,
- a short paper,
- a long paper,
- a chapter,
- a book,
- **...**

Course Information Major Centers Resources Projects

Basic Definitions

Complexity
Emergence
Self-Organization

Statistical Mechanics Universality Symmetry Breaking

Tools and Techniques
Measures of Complexity

References

Frame 17/108

Measures of complexity

Scaling phenomena

- Zipf's law
- Non-Gaussian statistics and power law distributions
- Sample mechanisms for power law distributions
- Organisms and organizations
- Scaling of social phenomena: crime, creativity, and consumption.
- Renormalization techniques

Course Information Major Centers Resources Projects Topics

Basic Definitions

Complexity Emergence Self-Organization Modeling Statistical Mechani

Universality
Symmetry Breakin

Tools and Techniq Measures of Com

References

Frame 19/108

Multiscale complex systems

- Hierarchies and scaling
- Modularity
- Form and context in design

Complexity in abstract models

- The game of life
- Cellular automata
- Chaos and order—creation and maintenance

Information Topics

Basic Definitions

References

Frame 20/108

Integrity of complex systems

- Generic failure mechanisms
- Network robustness
- Highly optimized tolerance: Robustness and fragility
- Normal accidents and high reliability theory

Complex networks

- Small-world networks
- Scale-free networks

Course Information Major Centers Resources Projects

Topics

Basic Definitions

complexity
mergence
self-Organization
dodeling
statistical Mechanics

Onlversality Symmetry Breakir Tools and Techniq

neasures of Comp

References

Frame 21/108

Collective behavior and contagion in social systems

- Percolation and phase transitions
- Disease spreading models
- Schelling's model of segregation
- Granovetter's model of imitation
- Contagion on networks
- Herding phenomena
- Cooperation
- Wars and conflicts

Course Information Major Centers Resources Projects Topics

Basic Definitions

Emergence
Self-Organization
Modeling
Statistical Mechanics
Universality

Universality
Symmetry Breaking
Tools and Techniques

References

Frame 22/108

Large-scale Social patterns

Movement of individuals

Collective decision making

- Theories of social choice
- The role of randomness and chance
- Systems of voting
- Juries
- Success inequality: superstardom

Course Information Major Centers Resources Projects

Topics

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics

Universality
Symmetry Breaking
Tools and Techniques

iviedsures or Comp

References

Frame 23/108

Information

- Search in networked systems (e.g., the WWW, social systems)
- Search on scale-free networks.
- Knowledge trees, metadata and tagging

Information Topics

Basic Definitions

References

Frame 24/108

Complex: (Latin = with + fold/weave (com + plex))

Adjective:

- 1. Made up of multiple parts; intricate or detailed.
- 2. Not simple or straightforward.

Course Information

Basic Definitions Complexity

References

Frame 26/108

Possible properties of a Complex System:

- Many interacting agents or entities
- Relationships are nonlinear
- Presence of feedback
- Complex systems are open (out of equilibrium)
- Presence of memory
- Modular/multiscale/hierarchical structure
- Evidence of emergence properties
- Evidence of self-organization

Course Information Major Centers Resources Projects

Basic Definitions

Complexity

Self-Organization Modeling Statistical Mechanic

niversality ymmetry Breaking ools and Techniques

Measures of Com

References

Frame 27/108

Examples

Examples of Complex Systems:

- human societies
- cells
- organisms
- ant colonies
- weather systems
- ecosystems

- animal societies
- disease ecologies
- brains
- social insects
- geophysical systems
- the world wide web

Course Information Major Centers Resources Projects

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling

Statistical Mechanics
Universality

Symmetry Breaking
Tools and Techniques
Measures of Complexity

References

Frame 28/108

Examples

Relevant fields:

- Physics
- Economics
- Sociology
- Psychology
- Information Sciences

- Cognitive Sciences
- Biology
- Ecology
- Geociences
- Geography

- Medical Sciences
- SystemsEngineering
- ComputerScience
- **...**

Information Major Centers Resources Projects Topics Basic Definitions Complexity Finerrence

Course

Basic Definitions
Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics
Universality
Symmetry Breaking

References

Frame 29/108

Complicated versus Complex.

- Complicated: Mechanical watches, airplanes, ...
- Engineered systems can be made to be highly robust but not adaptable.
- But engineered systems can become complex (power grid, planes).
- They can also fail spectacularly.
- Explicit distinction: Complex Adaptive Systems.

Information
Major Centers
Resources
Projects
Topics
Basic Definitions
Complexity
Emergence

Course

Emergence
Self-Organization
Modeling
Statistical Mechanics
Universality

Symmetry Breakir Tools and Techniq Measures of Comi

. .

References

Frame 30/108

Nino Boccara in Modeling Complex Systems:

[6] "... there is no universally accepted definition of a complex system ... most researchers would describe a system of connected agents that exhibits an emergent global behavior not imposed by a central controller, but resulting from the interactions between the agents."

Course Information Major Centers Resources Projects

Basic Definitions

Complexity

Emergence Self-Organization

Modeling Statistical Me

Symmetry Break

Tools and Tech Measures of C

. .

References

Frame 31/108

The Wikipedia on Complex Systems:

"Complexity science is not a single theory: it encompasses more than one theoretical framework and is highly interdisciplinary, seeking the answers to some fundamental questions about living, adaptable, changeable systems."

Course Information

Basic Definitions Complexity

References

Frame 32/108

Philip Ball in *Critical Mass*:

[3] "...complexity theory seeks to understand how order and stability arise from the interactions of many components according to a few simple rules."

Course Information

Basic Definitions

Complexity

References

Frame 33/108

Cosma Shalizi:

"The "sciences of complexity" are very much a potpourri, and while the name has some justification—chaotic motion seems more complicated than harmonic oscillation, for instance—I think the fact that it is more dignified than "neat nonlinear nonsense" has not been the least reason for its success.—That opinion wasn't exactly changed by working at the Santa Fe Institute for five years."

Course Information Major Centers Resources Projects

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanic

Universality
Symmetry Breaking

Tools and Techniq

References

Frame 34/108

Nonlinear (OED)

1. a. Math. and Physics. Not linear; ... involving or possessing the property that the magnitude of an effect or output is not linearly or proportionally related to that of the cause or input. First cited use 1844.

Course Information

Basic Definitions

Complexity

References

Frame 35/108

Nonlinear (OED)

b. collog. to go non-linear: to lose one's head; to rave, esp. about a particular obsession. First cited use 1985.

Course Information

Basic Definitions Complexity

References

Frame 36/108

Steve Strogatz in Sync:

"... every decade or so, a grandiose theory comes along, bearing similar aspirations and often brandishing an ominous-sounding C-name. In the 1960s it was cybernetics. In the '70s it was catastrophe theory. Then came chaos theory in the '80s and complexity theory in the '90s."

Course Information Major Centers Resources Projects

Basic Definitions

Complexity

Self-Organia Modeling

Statistical Mec

Symmetry Breaki

ools and Technic

References

Frame 37/108

Complexity Society

08/27/2007 09:17 PM

Page 1 of 1

HOME ABOUT CONTACTS NEWS & LINKS FAQs JOURNAL SITE

Membership To foin TCS apply here

Complexity Society Newsletter The August 2007 edition is now available.

Complexity Digest
The current issue of Complexity on-line.

Recent Event: Summer School in Complexity Science organised by Imperial College, London, Wye College, Kent, UK. 8-17th July 2007.

Forthcoming Events: ECCS'07 European Conference on Complex Systems.

1-5th October 2007. New Paper The Fractal Imagination: New

Resources for Conceptualising Creativity

"Emergence: Complexity & Organization (ECO)* A Journal of research, theory and practice on Organisations as complex

http://www.complexity-society.com/

Welcome to the COMPLEXITY SOCIETY

"The Application of Complexity Science to Human Affairs"

The Complexity Society provides a focal point for people in the UK interested in complexity. It is a community that uses complexity science to rethink and reinterpret all aspects of the world in which we live and work.

Digest 2007.29 is now available. Its core values are OPENNESS, EQUALITY and DIVERSITY.

- . Open to all, open to ideas, open in process and activities
- · Equality, egalitarian, non-hierarchical, participative · Diverse, connecting and embracing a wide range of views,

respecting differences The society objectives are to promote the theory of complexity in education, government, the health service and business as well as the beneficial application of complexity in a wide variety of social, economic, scientific and technological contexts such as sources of competitive advantage, business clusters and

Complexity includes ideas such as complex adaptive systems. self-organisation, co-evolution, agent based computer models, chaos, networks, emergence and fractals.

knowledge management.

Membership is open to all and current members include people from universities, business, and government funded organisations.

©2007 The Complexity Society Privacy Policy Disclaimer Pane last undated: 13 August 2007 Information

Basic Definitions

Complexity

Outreach

"The society objectives are to promote the theory of complexity in education, government, the health service and business as well as the beneficial application of complexity in a wide variety of social, economic, scientific and technological contexts such as sources of competitive advantage, business clusters and knowledge management."

"Complexity includes ideas such as complex adaptive systems, self-organisation, co-evolution, agent based computer models, chaos, networks, emergence, wombats, and fractals."

Course Information Basic Definitions Complexity

References

Frame 39/108

The Wikipedia on Emergence:

"In philosophy, systems theory and the sciences, emergence refers to the way complex systems and patterns arise out of a multiplicity of relatively simple interactions. ... emergence is central to the physics of complex systems and yet very controversial."

Information Basic Definitions Emergence

Course

References

Frame 41/108

Emergence:

Examples:

- ► Fundamental particles ⇒ Life, the Universe, and Everything
- ▶ Genes ⇒ Organisms
- ▶ Brains ⇒ Thoughts
- ▶ Fireflies ⇒ Synchronized Flashes
- ▶ People ⇒ World Wide Web
- ▶ People ⇒ Behavior in games not specified by rules (e.g., bluffing in poker)
- ▶ People ⇒ Religion

Course Information

Basic Definitions

Emergence

References

Frame 42/108

Friedrich Hayek (Economist/Philospher/Nobelist):

- Markets, legal systems, political systems are emergent and not designed.
- 'Taxis' = made order (by God, Sovereign, Government, ...)
- 'Cosmos' = grown order
- Archetypal limits of hierarchical and decentralized structures.
- Hierarchies arise once problems are solved.
- Decentralized structures help solve problems.
- Dewey Decimal System versus tagging.

Information **Basic Definitions** Emergence

Course

References

Frame 43/108

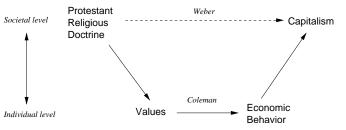
Thomas Schelling (Economist/Nobelist):

- "Micromotives and Macrobehavior" [?]
- Segregation, wearing hockey helmet, seating choices

Information

Basic Definitions

Emergence


References

Frame 44/108

James Coleman in Foundations of Social Theory:

Understand macrophenomena arises from microbehavior which in turn depends on macrophenomena. [8]

Course
Information
Major Centers
Resources
Projects
Topics
Basic Definitions
Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics

Measures of Comp

References

Frame 45/108

Higher complexity:

Many system scales (or levels) that interact with each other.

Information

Basic Definitions

Emergence

Frame 46/108

Even mathematics: [9]

Gödel's Theorem (roughly): we can't prove every theorem that's true.

Suggests a strong form of emergence:

Some phenomena cannot be formally deduced from elementary aspects of a system.

Course Information

Basic Definitions

Emergence

References

Frame 47/108

The idea of emergence is rather old...

"The whole is more than the sum of its parts" -Aristotle

Philosopher G. H. Lewes first used the word explicity in 1875.

Course
Information
Major Centers
Resources
Projects

Basic Definitions

Complexity
Emergence
Self-Organization

Self-Organiza Modeling

Modeling Statistical Me

> niversality ymmetry Breakir

ools and Technic

References

Frame 48/108

There appears to be two types of emergence:

Weak emergence:

System-level phenomena is different from that of its constituent parts yet can be connected theoretically.

Strong emergence:

System-level phenomena fundamentally cannot be deduced from how parts interact.

(Strong emergence is what Mark Bedau calls magic...)

Course Information

Basic Definitions

Emergence

References

Frame 49/108

Complex Systems enthusiasts often decry reductionist approaches . . .

But reductionism seems to be misunderstood.

Reductionist techniques can explain weak emergence (e.g., phase transitions).

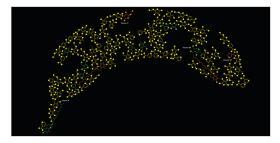
'A Miracle Occurs' explains strong emergence.

Course
Information
Major Centers
Resources
Projects
Topics

Basic Definitions
Complexity
Emergence

Implexity
Inergence
If-Organization
Ideling
Intitioal Mechanics
Interesting
In

vieasures of Comp


References

Frame 50/108

The emergence of taste:

- ▶ Molecules ⇒ Ingredients ⇒ Taste
- See Michael Pollan's <u>article on nutritionism</u> (⊞) in the New York Times, January 28, 2007.

nytimes.com

Course Information Major Centers Resources

Projects Topics

Basic Definitions

Emergence
Self-Organization
Modeling

tatistical Mechanics
Iniversality

Tools and Technique Measures of Comp

References

Frame 51/108

Reductionism and food:

- Unhappy Meals, Michael Pollan, NY Times, January 2007
- "even the simplest food is a hopelessly complex thing to study, a virtual wilderness of chemical compounds, many of which exist in complex and dynamic relation to one another..."
- "So ... break the thing down into its component parts and study those one by one, even if that means ignoring complex interactions and contexts, as well as the fact that the whole may be more than, or just different from, the sum of its parts. This is what we mean by reductionist science."

Course Information **Basic Definitions** Emergence

References

Frame 52/108

- "people don't eat nutrients, they eat foods, and foods can behave very differently than the nutrients they contain."
- Studies suggest diets high in fruits and vegetables help prevent cancer.
- So... find the nutrients responsible and eat more of them
- But "in the case of beta carotene ingested as a supplement, scientists have discovered that it actually increases the risk of certain cancers. Big oops."

Information **Basic Definitions** Emergence

Course

References

Frame 53/108

Thyme's known antioxidants:

4-Terpineol, alanine, anethole, apigenin, ascorbic acid, beta carotene, caffeic acid, camphene, carvacrol, chlorogenic acid, chrysoeriol, eriodictyol, eugenol, ferulic acid, gallic acid, gamma-terpinene isochlorogenic acid, isoeugenol, isothymonin, kaempferol, labiatic acid, lauric acid, linalyl acetate, luteolin, methionine, myrcene, myristic acid, naringenin, oleanolic acid, p-coumoric acid, p-hydroxy-benzoic acid, palmitic acid, rosmarinic acid, selenium, tannin, thymol, tryptophan, ursolic acid, vanillic acid.

Course Information Major Centers Resources Projects

Basic Definitions

Complexity Emergence Self-Organiza

Self-Organ Modeling

Universality
Symmetry Break

ools and Technic Measures of Com

References

Frame 54/108

"It would be great to know how this all works, but in the meantime we can enjoy thyme in the knowledge that it probably doesn't do any harm (since people have been eating it forever) and that it may actually do some good (since people have been eating it forever) and that even if it does nothing, we like the way it tastes."

Gulf between theory and practice: baseball and bumblebees.

Course
Information
Major Centers
Resources
Projects
Topics
Basic Definitions
Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics

References

Frame 55/108

Yaneer Bar-Yam (founder and head of NECSI) on emergence:

Suggests there are four types of emergence. No, five!

One very weak, one weak, two strong, and a dynamic strong version.

Course Information

Basic Definitions

Emergence

References

Frame 56/108

Example—string of three bits with one odd parity bit:

Global constraint on bits not seen in individual bits.

Course Information Major Centers Resources

Basic Definitions

Complexity

Emergence

Self-Organization

Modeling

Statistical Mechanics

Universality Symmetry Breakin

ools and Techniqu

. .

References

Frame 57/108

Strong: constraints on the global structure may not be observable by viewing behavior of individual parts.

Not a pure micro-to-macro story.

Still... seems that analysis of the system is possible by thinking about the parts.

And centralized control is a simple system-level feature.

Course
Information
Major Centers
Resources
Projects
Topics
Basic Definitions
Complexity
Emergence

ergence
f-Organization
deling
tistical Mechanics
versality
nmetry Breaking

Measures of Compl

References

Frame 58/108

Self-Organization

(also: Self-assembly)

"Self-organization is a process in which the internal organization of a system, normally an open system, increases in complexity without being guided or managed by an outside source."

Course Information

Basic Definitions

Self-Organization

References

Frame 60/108

Emergence but no Self-Organization?

 H_20 molecules \Rightarrow Water

Random walks ⇒ Normal distributions

Information

Basic Definitions

Self-Organization

References

Frame 61/108

Self-organization but no Emergence?

Water above and near the freezing point.

Emergence may be limited to a low scale of a system.

Information

Basic Definitions

Self-Organization

References

Frame 62/108

Eric Beinhocker (The Origin of Wealth): [5]

Dynamic:

- Complexity Economics: Open, dynamic, non-linear systems, far from equilibrium
- ▶ Traditional Economics: Closed, static, linear systems in equilibrium

Course Information

Basic Definitions

Self-Organization

References

Frame 63/108

Agents:

- Complexity Economics:
 - Modelled individually; use inductive rules of thumb to make decisions; have incomplete information; are subject to errors and biases; learn to adapt over time
- Traditional Economics: Modelled collectively; use complex deductive calculations to make decisions; have complete information; make no errors and have no biases; have no need for learning or adaptation (are already perfect)

Information
Major Centers
Resources
Projects
Topics

Basic Definitions
Complexity
Emergence

Course

Self-Organization
Modeling
Statistical Mechanics
Universality

Symmetry Breakin
Tools and Techniq

References

Frame 64/108

Networks:

- Complexity Economics: Explicitly model bi-lateral interactions between individual agents; networks of relationships change over time
- Traditional Economics: Assume agents only interact indirectly through market mechanisms (e.g. auctions)

Course Information **Basic Definitions**

Self-Organization

References

Frame 65/108

Emergence:

- Complexity Economics: No distinction between micro/macro economics; macro patterns are emergent result of micro level behaviours and interactions
- Traditional Economics: Micro-and macroeconomics remain separate disciplines

Course Information

Basic Definitions

Self-Organization

References

Frame 66/108

Evolution:

Complexity Economics:

The evolutionary process of differentiation, selection and amplification provides the system with novelty and is responsible for its growth in order and complexity

Traditional Economics:

No mechanism for endogenously creating novelty, or growth in order and complexity

Course Information Basic Definitions

Self-Organization

References

Frame 67/108

Upshot

- The central concepts Complexity and Emergence are not well defined.
- ► There is no general theory of Complex Systems.
- But the problems exist...
 Complex (Adaptive) Systems abound...
- We use whatever tools we need.

Course Information Major Centers Resources Projects

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanic

Universality
Symmetry Breaki

Measures of Com

References

References

Frame 68/108

Models

Nino Boccara in *Modeling Complex Systems*:

"Finding the emergent global behavior of a large system of interacting agents using methods is usually hopeless, and researchers therefore must rely on computer-based models."

Course Information Major Centers Resources Projects

Basic Definitions

Complexity
Emergence
Self-Organization

Modeling

Universality
Symmetry Breaking
Tools and Techniques

References

Frame 70/108

Approaches

Nino Boccara in *Modeling Complex Systems*:

Focus is on dynamical systems models:

- differential and difference equation models
- chaos theory
- cellular automata
- networks
- power-law distributions

Course Information

Basic Definitions

Modelina

References

Frame 71/108

Models

Philip Ball in Critical Mass:

[3] "... very often what passes today for 'complexity science' is really something much older, dressed up in fashionable apparel. The main themes in complexity theory have been studied for more than a hundred years by physicists who evolved a tool kit of concepts and techniques to which complexity studies have barely added a handful of new items."

Course Information Major Centers Resources Projects

Basic Definitions

Emergence
Self-Organization
Modeling
Statistical Mechanics
Universality

Universality Symmetry Breaking Tools and Technique

References

Frame 72/108

Old School

- Statistical Mechanics is "a science of collective behavior."
- ▶ Simple rules give rise to collective phenomena.

Course Information Major Centers Resources Projects

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics

Statistical Mechanic Jniversality Symmetry Breaking

Tools and Techniq

. .

References

Frame 73/108

Statistical mechanics

The Ising Model:

- Idealized model of a ferromagnet.
- ▶ Each atom is assumed to have a local spin that can be up or down: $S_i = \pm 1$.
- Spins are assumed arranged on a lattice (e.g. square lattice in 2-d).
- In isolation, spins like to align with each other.
- Increasing temperature breaks these alignments.
- ► The drosophila of statistical mechanics.

Course Information Major Centers Resources Projects

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics
Universality

Symmetry Breaking Tools and Technique

....

References

Ising model

2-d Ising model simulation:

http://www.pha.jhu.edu/ javalab/ising/ising.html (⊞)

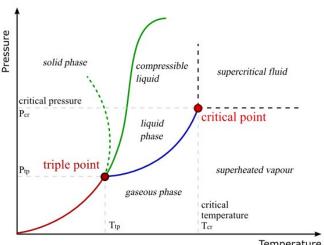
Course Information Major Centers Resources

Basic Definitions

Emergence
Self-Organization
Modeling
Statistical Mechanics

Statistical Mechanics
Universality
Symmetry Breaking

Measures of Comp


References

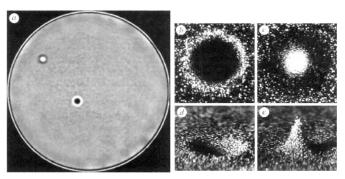
Frame 76/108

Phase diagrams

Temperature

Qualitatively distinct macro states.

Information **Basic Definitions**


Statistical Mechanics

Frame 77/108

Phase diagrams

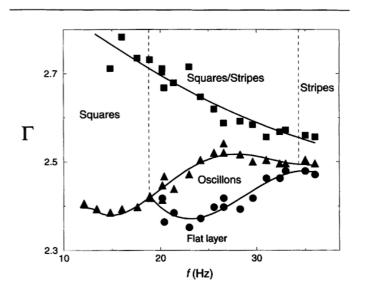
Oscillons, bacteria, traffic, snowflakes, ...

Umbanhowar et al., *Nature*, 1996 [13]

Information
Major Centers
Resources
Projects
Topics
Basic Definitions
Complexity
Emergence

Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics

Jniversality Symmetry Breaking Tools and Techniqu


ools and Techniqu Measures of Comp

References

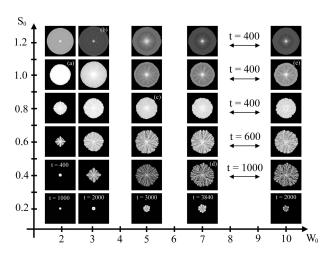
Frame 78/108

Phase diagrams

Information **Basic Definitions**

Statistical Mechanics

Frame 79/108



Information

Basic Definitions

Statistical Mechanics

Phase diagrams

 W_0 = initial wetness, S_0 = initial nutrient supply

http://math.arizona.edu/~lega/HydroBact.html

Frame 80/108

Ising model

Analytic issues:

- ▶ 1-d: simple (Ising & Lenz, 1925)
- 2-d: hard (Onsager, 1944)
- 3-d: extremely hard...
- 4-d and up: simple.

Information

Basic Definitions

Statistical Mechanics

Frame 81/108

Statistics

- Origins of Statistical Mechanics are in the studies of people... (Maxwell and co.)
- Now physicists are using their techniques to study everything else including people...
- See Philip Ball's "Critical Mass" [3]

Course Information

Basic Definitions Statistical Mechanics

References

Frame 82/108

Universality

Universality:

The property that the macroscopic aspects of a system do not depend sensitively on the system's details.

- The Central Limit Theorem.
- Lattice gas models of fluid flow.

Course Information

Basic Definitions

Universality

References

Frame 84/108

Universality

- Sometimes details don't matter too much.
- Many-to-one mapping from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Course Information Major Centers Resources Projects

Basic Definitions

Emergence
Self-Organization
Modelling
Statistical Mechanics
Universality

Universality
Symmetry Breaking
Tools and Techniques

References

Frame 85/108

Fluids

Fluid flow is modeled by the Navier-Stokes equations.

Works for many very different fluids:

► The atmosphere, oceans, blood, galaxies, the earth's mantle...

and ball bearings on lattices...?

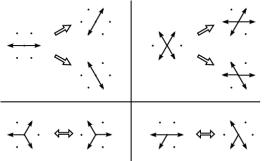
Information
Major Centers
Resources
Projects
Topics

Basic Definitions
Complexity
Emergence

Course

Self-Organization
Modeling
Statistical Mechanics
Universality

ools and Techniqu Measures of Comp


References

Frame 86/108

Lattice gas models

Collision rules in 2-d on a hexagonal lattice:

Lattice matters... No 'good' lattice in 3-d. Information
Major Centers
Resources
Projects
Topics
Basic Definitions
Complexity

Emergence Self-Organization Modeling

Universality
Symmetry Breakir
Tools and Technic

Tools and Techni Measures of Con

References

Frame 87/108

Philip Anderson's paper: "More is Different." Science (1972). [1]

- Argues against idea that the only real scientists are those working on the fundamental laws.
- Symmetry breaking ⇒ different laws/rules at different scales...

Course Information

Basic Definitions

Symmetry Breaking

References

Frame 89/108

"Elementary entities of science X obey the laws of science Y"

- X
- solid state or many-body physics
- chemistry
- molecular biology
- cell biology
- •
- psychology
- social sciences

- Y
- elementary particle physics
- solid state many-body physics
- chemistry
- molecular biology
- •
- physiology
- psychology

Course Information Major Centers Resources

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling

Universality
Symmetry Breaking
Tools and Techniques

References

Frame 90/108

Anderson:

[the more we know about] "fundamental laws, the less relevance they seem to have to the very real problems of the rest of science."

Scale and complexity thwart the constructionist hypothesis.

Course Information Major Centers Resources Projects

Basic Definitions

Complexity Emergence

Self-Organiz

Modeling Statistical Med

Universality Symmetry Breaking

Symmetry Breaking
Tools and Techniques
Measures of Complexity

References

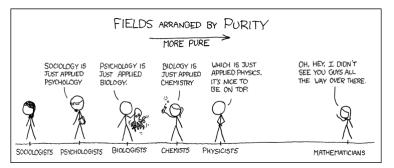
Frame 91/108

- Page 291–292 of Sornette [12]: Renormalization \Leftrightarrow Anderson's hierarchy.
- But Anderson's hierarchy is not a simple one: the rules change.

Course Information

Basic Definitions

Symmetry Breaking


References

Frame 92/108

More is different:

from http://www.xkcd.com

Information

Basic Definitions

Symmetry Breaking

References

Frame 93/108

Tools and techniques:

- Differential equations, difference equations, linear algebra.
- Statistical techniques for comparisons and descriptions.
- Methods from statistical mechanics and computer science.
- Computer modeling (specialized, Swarm, Starlogo, and more...)

Course Information

Basic Definitions

Tools and Techniques

References

Frame 95/108

How do we measure the complexity of a system?

Information

Basic Definitions

Measures of Complexity

Frame 97/108

(1) Entropy: number of microstates that could underlie a particular macrostate.

- Used in information theory and statistical mechanics/thermodynamics.
- Measures how uncertain we are about the details of a system.
- Problem: Randomness maximizes entropy, perfect order minimizes.
- Our idea of 'maximal complexity' is somewhere in between...

Course Information Major Centers Resources Projects

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics
Universality

Symmetry Breaking Tools and Techniques Measures of Complexity

References

Frame 98/108

Hmmm

(Aside)

What about entropy and self-organization?

Isn't entropy supposed to always increase?

Information

Basic Definitions

Measures of Complexity

References

Frame 99/108

Hmmm

Two ways for order to appear in a system without offending the second law of thermodynamics:

- (1) Entropy of the system decreases at the expense of entropy increasing in the environment.
- (2) The system becomes more ordered macroscopically while becoming more disordered microscopically.

Course Information Major Centers Resources Projects

Basic Definitions

Emergence
Self-Organization
Modeling
Statistical Mechanics
Universality
Symmetry Breaking

Tools and Techniques
Measures of Complexity

Poforonooo

References

Frame 100/108

(2) Various kinds of information complexity:

- Roughly, what is the size of a program required to reproduce a string of numbers?
- Again maximized by random strings.
- Very hard to measure.

Information

Basic Definitions

Measures of Complexity

References

Frame 101/108

(3) Variation on (2): what is the size of a program required to reproduce members of an ensemble of a string of numbers?

Now: Random strings have very low complexity.

Course Information Major Centers Resources Projects

Basic Definitions

Complexity
Emergence
Self-Organization
Modeling
Statistical Mechanics
Universality
Symmetry Breaking

Symmetry Breaking Tools and Techniqu

Measures of Complexity

References

Frame 102/108

Large problem: given any one example, how do we know what ensemble it belongs to?

One limited solution: divide the string up into subsequences to create an ensemble.

See *Complexity* by Badii & Politi^[2]

Information

Basic Definitions

Measures of Complexity

References

Frame 103/108

So maybe no one true measure of complexity exists.

Cosma Shalizi:

"Every few months seems to produce another paper proposing yet another measure of complexity, generally a quantity which can't be computed for anything you'd actually care to know about, if at all. These quantities are almost never related to any other variable, so they form no part of any theory telling us when or how things get complex, and are usually just quantification for quantification's own sweet sake."

Course Information

Basic Definitions

Measures of Complexity

References

Frame 104/108

References L

P. W. Anderson. More is different Science, 177(4047):393–396, August 1972. pdf (⊞)

R. Badii and A. Politi. Complexity: Hierarchical structures and scaling in physics.

Cambridge University Press, Cambridge, UK, 1997.

P. Ball. Critical Mass: How One Thing Leads to Another. Farra, Straus, and Giroux, New York, 2004.

Y. Bar-Yam. Dynamics of Complex Systems". Westview Press, Boulder, CO, 2003. Course Information Basic Definitions

References

Frame 105/108

References II

E. D. Beinhocker. The Origin of Wealth. Harvard Business School Press, Cambridge, MA, 2006.

N. Boccara. Modeling Complex Systems. Springer-Verlag, New York, 2004.

S. Bornholdt and H. G. Schuster, editors. Handbook of Graphs and Networks. Wiley-VCH, Berlin, 2003.

J. S. Coleman. Foundations of Social Theory. Belknap Press, Cambridge, MA, 1994. Course Information Basic Definitions

References

Frame 106/108

References III

R. Foote. Mathematics and complex systems. Science, 318:410–412, 2007. pdf (⊞)

J. H. Miller and S. E. Page. Complex Adaptive Systems: An introduction to computational models of social life. Princeton University Press, Princeton, NJ, 2007.

T. C. Schelling. Micromotives and Macrobehavior. Norton, New York, 1978.

D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 2nd edition, 2003. Course Information Basic Definitions

References

Frame 107/108

References IV

P. B. Umbanhowar, F. Melo, and H. L. Swinney. Localized excitations in a vertically vibrated granular layer.

Nature, 382:793–6, 29 August 1996. pdf (⊞)

S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge, UK, 1994.

Information Basic Definitions

Course

References

Frame 108/108

