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Basic definitions Basic definitions

Network: (net + work, 1500’s)
Noun:

1. Any interconnected group or system

2. Multiple computers and other devices connected
together to share information

» Many complex systems can be regarded as complex
networks of physical or abstract interactions

» Opens door to mathematical and numerical analysis

» Dominant approach of last decade of a

Verb: theoretical-physics/stat-mechish flavor.

1. To interact socially for the purpose of getting
connections or personal advancement

2. To connect two or more computers or other
computerized devices
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Complex Networks

Basic definitions

Basic definitions

Links = Connections between nodes

» links
» may be real and fixed (rivers),
» real and dynamic (airline routes),
» abstract with physical impact (hyperlinks),
| 4

Nodes = A collection of entities which have
properties that are somehow related to each other

» e.g., people, forks in rivers, proteins, webpages,

organisms, ... or purely abstact (semantic connections between
concepts).
» Links may be directed or undirected.
» Links may be binary or weighted.
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Complex Networks

Basic definitions Basic definitions

Adjacency matrix:

Node degree = Number of links per node » We represent a graph or network by a matrix A with

link weight a;; for nodes i and j in entry (i, j).
» Notation: Node /’s degree = k;.

> eg.,
» ki=0,12,.... 01110
» Notation: the average degree of a network = (k) 0010 1
(and sometimes as 2) A=|11 0 0 0 O
0100 1
01010
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Books

Evolution of Networks

5N, Dorogoser | LEF M

Overview of
Complex Networks

Nexus: Small Worlds and the Groundbreaking
Science of Networks—Mark Buchanan

The Tipping Point: How Little Things can
make a Big Difference—Malcolm Gladwell
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Overview of
Complex Networks

Handbook of Graphs and Networks—editors:
Stefan Bornholdt and H. G. Schuster

Evolution of Networks—S. N. Dorogovtsev
and J. F. F. Mendes.

Frame 11/95

F Dae

Books

Linked

Books

Overview of
Complex Networks

Linked: How Everything Is Connected to
Everything Else and What It
Means—Albert-Laszlo Barabési

Six Degrees: The Science of a Connected
Age—Duncan Watts
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Overview of

Complex Networks

Social Network Analysis—Stanley
Wasserman and Kathleen Faust

In the Beat of a Heart: Life, Energy, and the
Unity of Nature—John Whitfield
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Numerous others:

Examples of
Complex Networks

» Complex Social Networks—F. Vega-Redondo

» Fractal River Basins: Chance and
Self-Organization—I. Rodriguez-lturbe and A.
Rinaldo

» Random Graph Dynamics—R. Durette
» Scale-Free Networks—Guido Caldarelli

» Evolution and Structure of the Internet: A Statistical
Physics Approach—Romu Pastor-Satorras and
Alessandro Vespignani

» Complex Graphs and Networks—Fan Chung

What passes for a complex network?

» Complex networks are large (in node number)

» Complex networks are sparse (low edge to node
ratio)

» Complex networks are usually dynamic and evolving

» Complex networks can be social, economic, natural,
informational, abstract, ...
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Physical networks Interaction networks

» River networks
» Neural networks
» Trees and leaves
» Blood networks

» The Internet
» Road networks
» Power grids

» Distribution (branching) versus redistribution
(cyclical)

Examples of
Complex Networks
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» The Blogosphere
» Biochemical

networks
Gene-protein
networks

Food webs: who
eats whom

The World Wide
Web (?)

» Airline networks

Call networks
(AT&T)

The Media

datamining.typepad.com (H)

Examples of
Complex Networks
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http://datamining.typepad.com

Examples

Overview of
Complex Networks

Examples

The Structure of Romantic and Sexual Relations at " JefTerson High School”

Overview of
Complex Networks

H 51 ¢ of Romantic and Sexual Relations at "JefTerson High School" ’
Interaction networks:; o : . »3':.
. LY ¢ !
social networks E—— 57 s gy, / ———
. Complex Networks S, :‘ LY "' :_. Loo \‘ Complex Networks
> Snogging o SRR ok
. . 5. ¥
» Friendships o SRR
» Acquaint -F;v‘r;’ 3 v \
cquaintances AR D,
» Boards and ¢ X s
: o X%l 1
directors » e Y PN
» Organizations

v

myspace.com (H),

facebook.com (Bﬂ) (Bearman et al., 2004) \, \ .:> P -
» ‘Remotely sensed’ by: email activity, instant —+—{ + { BESNES
messaging, phone logs (*cough®).
Fach circle represents a student and lines connecting students represent romantic relations cccuring within the 6 months
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Overview of

preceding the interview. Numbers under the figure count the number of times that pattern wes observed (i.e. we found 63
pairs unconnected to anyone else)
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Overview of

Complex Networks Observations

Examples
Relational networks

Complex Networks

» Consumer purchases

(Wal-Mart: ~ 1 petabyte = 10'° bytes)
» Thesauri: Networks of words generated by meanings
» Knowledge/Databases/Ideas

» Metadata—Tagging:
del.icio.us (FH)http://del.icio.usdel.icio.us, flickr (FH)

Examples of
Complex Networks

Properties of
Complex Networks

A notable features of large-scale networks:

» Graphical renderings of complex networks
are often just a big mess.

» Need to be able to extract key patterns
» Science of Description

common tags cloud | list

community daily dictionary education enCyCIOpedia

english free imported info information internet knowledge

reference research

learning  news resource
resources search tools useful web web2.0 Wiki

. . Frame 1 Frame 2
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http://www.myspace.com
http://www.facebook.com
http://del.icio.us
http://www.flickr.com

Properties

Some key aspects of real complex networks:

» degree » concurrency
distribution > hierarchical

» assortativity scaling

» homophily » network distances

» clustering » centrality

» motifs » efficiency

» modularity » robustness

» + Coevolution of network structure
and processes on networks.

Properties

1. degree distribution Py

» ex 2: “Scale-free” networks: Py o« k=7 = ‘hubs’
» link cost controls skew
» hubs may facilitate or impede contagion

Overview of
Complex Networks

Properties of
Complex Networks
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Overview of
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Properties of
Complex Networks
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Properties

1. degree distribution Py

» Py is the probability that a randomly selected node
has degree k

» k = node degree = number of connections
» ex 1: Erdés-Rényi random networks:

Py = e~ R (k)k /K1

» Distribution is Poisson

Properties

Note:

» Erdds-Rényi random networks are a mathematical

construct.

» ‘Scale-free’ networks are growing networks that form

according to a plausible mechanism.

» Randomness is out there, just not to the degree of a

completely random network.

Overview of
Complex Networks

Properties of
Complex Networks
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Properties of
Complex Networks
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Properties

2. assortativity/3. homophily:

» Social networks: Homophily = birds of a feather

» e.g., degree is standard property for sorting:
measure degree-degree correlations.

» Assortative network: %! similar degree nodes
connecting to each other.

Often social: company directors, coauthors, actors.

» Disassortative network: high degree nodes
connecting to low degree nodes.
Often techological or biological: Internet, WWW,
protein interactions, neural networks, food webs.

Properties

5. motifs:

» small, recurring functional subnetworks
» e.g., Feed Forward Loop:

a feedforward loop

Shen-Orr, Uri Alon, et al.!'?!

Overview of
Complex Networks

Properties of
Complex Networks
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Overview of
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Properties of
Complex Networks
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Clustering

4. clustering:

» Your friends tend to know each other.

» Two measures:

1. Watts & Strogatz!'®!

2. Newman ']

Properties

oo

C =

Dioen; Gie
kitki —1)/2 /.

3 x ##triangles

#triples

6. modularity—community detection:

Clauset et al., 2006 [°/: NCAA football

Overview of
Complex Networks

Properties of
Complex Networks
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Overview of
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Properties of
Complex Networks
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Properties

7. concurrency:

» transmission of a contagious element only occurs
during contact

rather obvious but easily missed in a simple model
dynamic property—static networks are not enough
knowledge of previous contacts crucial

beware cumulated network data

Kretzschmar and Morris, 1996 [°!

vV V. v v Vv

Properties

9. network distances:
(a) shortest path length dj:

» Fewest number of steps between nodes i and j.
» (Also called the chemical distance between i and j.)

(b) average path length (dj):

» Average shortest path length in whole network.
» Good algorithms exist for calculation.
» Weighted links can be accommodated.

Overview of
Complex Networks

Properties of
Complex Networks
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Overview of
Complex Networks

Properties of
Complex Networks
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Properties

8. Horton-Strahler ratios:

» Metrics for branching networks:

Method for ordering streams hierarchically
Number: R, = N,,/N,, 11

Segment length: R; = (l,+1) /(L)
Area/Volume: Ry = (a,+1)/{(aw)

v

v vVvYyy

Properties

9. network distances:

» network diameter dpax:
Maximum shortest path length between any two
nodes.

> closeness du = [>; d, " /(5)]7":
Average ‘distance’ between any two nodes.

Overview of
Complex Networks

Properties of
Complex Networks
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Overview of
Complex Networks

Properties of
Complex Networks
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Properties Complex Networks Models o Netwt

Complex Networks

10. centrality:

Popertesof Some important models:
omplex Networks
» Many such measures of a node’s ‘importance. 1. generalized random networks Basic models of
’ complex networks
» ex 1: Degree centrality: k;. 2 scale-free networks g
» ex 2: Node i’s betweenness 3. small-world networks
= fraction of shortest paths that pass through /. - .
. p. P g. _ 4. statistical generative models (p*)
» ex 3: Recursive centrality: Hubs and Authorities . I
: (8] 5. generalized affiliation networks
(Kleinberg ')
Frame 33/95 Frame 34/95
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Popularity Complax Networks Models A

Complex Networks

“Collective dynamics of ‘small-world’ networks”['°!

» Watts and Strogatz Generalized random networks:

Nature, 1998 Basic models of » Arbitrary degree distribution P.
. . complex networks .
> = 2400 citations (as of Jan 14, 2008) » Create (unconnected) nodes with degrees sampled
from Py.

“Emergence of scaling in random networks” ! » Wire nodes together randomly.

» Create ensemble to test deviations from
randomness.

» Barabasi and Albert
Science, 1999

» ~ 2300 citations (as of Jan 14, 2008)

Frame 35/95
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Scale-free networks o s

» Networks with power-law degree distributions have
become known as scale-free networks.

» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Py ~ k™7 for ‘large’ k

» One of the seminal works in complex networks:
Laszlo Barabasi and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” [°!

» Somewhat misleading nomenclature...

Frame 38/95
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Random networks: largest components o

v=25 y=25 y=25 =25
(ky=1.8 (k) =2.05333 (k) = 1.66667 (k) =1.92
v=25 =25 =25 =25
(ky =16 (k) =1.50667 (k) =1.62667 (ky =18
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Scale-free networks

» Scale-free networks are not fractal in any sense.

» Usually talking about networks whose links are
abstract, relational, informational, ... (non-physical)

» Primary example: hyperlink network of the Web

» Much arguing about whether or networks are
‘scale-free’ or not. . .

Scale-free networks

The big deal:

» We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?

» Do the mechanism details matter?

Overview of
Complex Networks
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BA m Od e | Con?r;/IZ;Vil\?;vt\s:)rks

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with mg disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,....
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—~Probability of connecting to
ith node is  k;.

In essence, we have a rich-gets-richer scheme.

v

v

v Yy

v

Frame 43/95

F Dae

Overview of
Complex Networks

Approximate analysis

» When (N + 1)th node is added, the expected
increase in the degree of node i is

Kin
——
S k()

» Assumes probability of being connected to is small.

» Dispense with Expectation by assuming (hoping) that
over longer time frames, degree growth will be
smooth and stable.

> Approximate ki ni1 — Kin With $tk;

E(King1 — kin) = m

d . ki(D)
dy—m f
at S k()

where t = N(t) — Mp. Frame 45/95
F LA

BA model

» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:
A =k

» Definition: Paach(K, t) is the attachment probability.
» For the original model:

ki(t) ki(t)

N B kmax t
SRR e k()

Pattach(nOde i, t) ==

where N(t) = my + t is # nodes at time ¢
and N(t) is # degree k nodes at time t.

Approximate analysis

» Deal with denominator: each added node brings m

new edges.
N(t)

2 k(t) =2tm
J=1

» The node degree equation now simplifies:

d ki(t) ki(t)
it = MEwD o M ome
> it Ki(t)

’
= Etki(t)

» Rearrange and solve:

ki(t) 2t (= at

» Nextfindg;...

Overview of
Complex Networks
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Approximate analysis o s
Pp y

» Know jth node appears at time

. i—mg fori> mg
hstart =0 for i < mo

» So for i > mg (exclude initial nodes), we must have

1/2

t,' ,start

» All node degrees grow as t'/2 but later nodes have
larger {; sare Which flattens out growth curve.

» Early nodes do best (First-mover advantage).

Frame 47/95
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Complex Networks

Degree distribution Overview of

» So what’s the degree distribution at time t?

» Use fact that birth time for added nodes is distributed
uniformly:

Pr(; gtar) At gtart. ™ dt";‘ar‘
» Also use
1/2 m?t
ki(t)y=m <ti’sm> = b start = k(02
Transform variables—Jacobian:
dlisan _ , MPt
dki k()3

Frame 49/95

F Dae

Approximate analysis

» m=3

> Zti,start =

1,2,5, and 10.

Degree distribution

>
Pl‘(k,')dk,' = Pr(ti,start)dti,start
>
= Pr(ti,start)dki dili,ls:ﬁ
>
1, Pt
St k(3
> 2
m
= Zde,’
>
X k,-73dk,'.

Overview of
Complex Networks
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Overview of
Complex Networks

Overview of
Complex Networks

Degree distribution Examples

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3. WWW  ~ ~ 2.1 for in-degree
» Range true more generally for events with size Movi WWW- = 2'45 for out-degree
distributions that have power-law tails. Words (g;nneoi;::?) ?y - 22
» 2 <~ < 3: finite mean and ‘infinite’ variance (wild)
» In practice, v < 3 means variance is governed by The Internets is a different business...

upper cutoff.
» ~ > 3: finite mean and variance (mild)

Frame 51/95 Frame 52/95
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Overview of
Complex Networks

Real data Things to do and questions

» Vary attachment kernel.

- o Api [3].
From Barabasi and Albert’s original paper » Vary mechanisms:

10" & 10 i
. B 1. Add edge deletion
10 o N 0" 2. Add node deletion
<1 " 3. Add edge rewiring
Ty * . 1 T » Deal with directed versus undirected networks. T
10* 10° |0t » Important Q.: Are there distinct universality classes
o W N e R for these networks?
e e e e e e e e ° » Q.: How does changing the model affect v?
Fig. 1. The distribution f i f ivities f jous |, ks. (A) A llaborati .
L Al A RN sty S st s » Q.: Do we need preferential attachment and growth?
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have .
slopes (A) Vocior = 2.3, (B) Voo = 213N (C) Vpopuer = 4 » Q.: Do model details matter?
» The answer is (surprisingly) yes. More later re Zipf.

Frame 53/95
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Overview of
Complex Networks

Preferential attachment

» Let’s look at preferential attachment (PA) a little more
closely.

» PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

» For example: If Pycn(k) o< k, we need to determine
the constant of proportionality.

» We need to know what everyone’s degree is...
» PAis .. an outrageous assumption of node capability.
» But a very simple mechanism saves the day. ..

Frame 55/95
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Overview of
Complex Networks

Robustness

» System robustness and system robustness.

» Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks” %!

Frame 57/95
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Preferential attachment through randomness

» Instead of attaching preferentially, allow new nodes
to attach randomly.

» Now add an exira step: new nodes then connect to
some of their friends’ friends.

» Can also do this at random.

» Assuming the existing network is random, we know
probability of a random friend having degree k is

Qk 0.8 kPk

» So rich-gets-richer scheme can now be seen to work
in a natural way.

Robustness

» Standard random networks (Erdds-Rényi)
versus
Scale-free networks

e av
T an o8 ™

Exponential Scale-free

Albert et al., 2000

Overview of
Complex Networks
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Robustness o s Robustness .

a E SF
o 18 S e R » Plots of network » Scale-free networks are thus robust to random
J ot e s ] diameter as a function failures yet fragile to targeted ones.
o ag 09 20922 of fraction of nodes » All very reasonable: Hubs are a big deal.
olo
TotsrarrEEEEEEEY removed » But: next issue is whether hubs are vulnerable or not.
& ‘ ‘ = 4 H . . .
doo 00 004 » Erdds-Rényi versus » Representing all webpages as the same size node is
b T o . scale-free networks obviously a stretch (e.g., google vs. a random
[ memet ol W 9%y blue symbols = person’s webpage)
1or @oo@iiack 1 %0 attack random removal » Most connected nodes are either:
57600M 1" » red symbols = 1. Physically larger nodes that may be harder to ‘target’
Fallre : Failure targeted removal 2. or subnetworks of smaller, normal-sized nodes.
0 A ‘ _ .
b0 oor e Beoeor e (most connected first) » Need to explore cost of various targeting schemes.

Albert et al., 2000

Frame 59/95 Frame 60/95

F DA F DA

The social world appears to be small... o Simple socialness in a network: o T

» Connected random networks have short average
path lengths:

(dag) ~ log(N)
N = population size,
dap = distance between nodes A and B.

» But: social networks aren’t random...

Need “clustering” (your
friends are likely to
know each other):

Small-world networks

Frame 62/95 Frame 63/95
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Non-randomness gives clustering: Randomness + regularity

NZNZNZNND NN

ZNZNZNZ2NZN ZNZNZNZN 2N
N NN NS NG
ZNZNZN2NZN ZBNANAND 2N
N NN NN NZANE NS
NN NI, NG IBNEN
NN INCING NSNS
ZNZN2NZNEN NN NN
NN INCIN N2SBNANND
ZANSNZNZNAN ZNANZNZNEN

A A

dag = 10 — too many long paths. Now have dag = 3 (d) decreases overall

Small-world networks

Introduced by Watts and Strogatz (Nature, 1998) |'°]
“Collective dynamics of ‘small-world’ networks.”

Small-world networks were found everywhere: Regular Small-world

» neural network of C. elegans,

» semantic networks of languages,

» actor collaboration graph,

» food webs,

» social networks of comic book characters,...

Very weak requirements:

» local regularity + random short cuts




The structural small-world property:

1:E| B v I o "o’ 'g" |:|I T T —

® u} i

sl ° C(p)/ C(0) © ]

- [ ] 4

- D -

0.6 _

0al . o ]

[ ]

ool LP/LO) . 1
- [ . o

[ ) ° ° . p

0 | sl | MY i1

0.0001 0.001 0.01 0.1 1

» L(p) = average shortest path length as a function of p

» C(p) = average clustring as a function of p

Previous work—finding short paths

» What can a local search method reasonably use?
» How to find things without a map?

» Need some measure of distance between friends
and the target.

Some possible knowledge:

» Target’s identity

» Friends’ popularity

» Friends’ identities

» Where message has been

Overview of
Complex Networks

Small-world networks

Frame 68/95
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Overview of
Complex Networks

Small-world networks

Frame 70/95
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Previous work—finding short paths

But are these short cuts findable?
Nope.

Nodes cannot find each other quickly
with any local search method.

Need a more sophisticated model...

Previous work—finding short paths

Jon Kleinberg (Nature, 2000) "/
“Navigation in a small world.”

Allowed to vary:

1. local search algorithm
and
2. network structure.

Overview of
Complex Networks

Small-world networks
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Small-world networks
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Previous work—finding short paths

Kleinberg’s Network:

1. Start with regular d-dimensional cubic lattice.

2. Add local links so nodes know all nodes within a
distance q.

3. Add m short cuts per node.
4. Connect / to j with probability

pjj X,'j_a.

» o = 0: random connections.
» « large: reinforce local connections.
» o = d: same number of connections at all scales.

Previous work—finding short paths

» |If networks have hubs can also search well: Adamic
etal. (2001)!"]
P(k;) kf”
where k = degree of node i (number of friends).

» Basic idea: get to hubs first
(airline networks).

» But: hubs in social networks are limited.

Overview of
Complex Networks

Small-world networks
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Small-world networks

Frame 74/95
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Previous work—finding short paths

Theoretical optimal search:

» “Greedy” algorithm.

» Same number of connections at all scales: o = d.

Search time grows slowly with system size (like log? N).

But: social networks aren’t lattices plus links.

The problem

If there are no hubs and no underlying lattice, how can
search be efficient?

Which friend of a is closest
to the target b?

What does ‘closest’ mean?

- What is ‘social distance’?

Overview of
Complex Networks

Small-world networks

Frame 73/95
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Overview of
Complex Networks

Models

One approach: incorporate identity.

Identity is formed from attributes such as:
» Geographic location
» Type of employment
» Religious beliefs
» Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes < Contexts « Interactions < Networks.

Frame 77/95
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Overview of
Complex Networks

Social distance—Context distance

occupation

education health care

kindergarten
teacher

high school
teacher

doctor

Frame 79/95
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Social distance—RBipartite affiliation networks

[CO ntexts]

[individuals |

unipartite
network

Bipartite affiliation networks: boards and directors,
movies and actors.

Models

Distance between two individuals x; is the height of
lowest common ancestor.

X,'j:3,X,'k:1,X,'V:4.

Overview of
Complex Networks
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Models

» Individuals are more likely to know each other the
closer they are within a hierarchy.

» Construct z connections for each node using

pj = cexp{—ax;}.

» « = 0: random connections.
» « large: local connections.

The model
h=1 h=2
i ] i ]

h=3
G @Y QY EY ED D Y Y
i ]

vVi=[111],v=[841]T Social distance:

1 2 _ 3 _ i vh
x,-/-_4, x,-j_3, x,./._1. y,/_mhlnx,-j.

Overview of
Complex Networks
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Models

Generalized affiliation networks

geography occupation age

R -

a b c d e
» Blau & Schwartz!*, Simmell'®], Breiger !, Watts et
al. !l
The model

Triangle inequality doesn’t hold:

h=1 h=2
G ED D D ED Y EH G G EH @Y G D &Y G Y
i LK o] k

Yk =4>Yyi+yx=1+1=2

Overview of
Complex Networks
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Overview of
Complex Networks

The model

» Individuals know the identity vectors of
1. themselves,
2. their friends,
and
3. the target.
» Individuals can estimate the social distance between
their friends and the target.

» Use a greedy algorithm + allow searches to fail
randomly.

Frame 85/95

F Dae

Overview of
Complex Networks

The model-results

Milgram’s Nebraska-Boston data:

Model parameters:
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The model-results—searchable networks

a = 0 versus o = 2 for N ~ 10°;
-0.5

o q<r
19 \\\ r=0.05
-2

1 3 5 7 9 11 13 15
H

g = probability an arbitrary message chain reaches a
target.

» A few dimensions help.
» Searchability decreases as population increases.
» Precise form of hierarchy largely doesn’t matter.

Social search—Data

Adamic and Adar (2003)

» For HP Labs, found probability of connection as
function of organization distance well fit by
exponential distribution.

» Probability of connection as function of real distance
x 1/r.
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Social Search—Real world uses o s Social Search—Real world uses .

Tags create identities for objects

Website tagging: http://www.del.icio.us
(e.g., Wikipedia)

Photo tagging: http://www.flickr.com

Dynamic creation of metadata plus links between
information objects.

Folksonomy: collaborative creation of metadata

Recommender systems:

» Amazon uses people’s actions to build effective
connections between books.

» Conflict between ‘expert judgments’ and
tagging of the hoi polloi.
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[§ L. Adamic, R. Lukose, A. Puniyani, and B. Huberman.

Search in power-law networks.
Phys. Rev. E, 64:046135, 2001. pdf (i)

@ R. Albert, H. Jeong, and A.-L. Barabasi.
Error and attack tolerance of complex networks.
Nature, 406:378-382, July 2000. pdf (&)

» Bare networks are typically unsearchable.

» Paths are findable if nodes understand how network
is formed.

Importance of identity (interaction contexts).
Improved social network models.

Construction of peer-to-peer networks.
Construction of searchable information databases.

[ A.-L. Barabasi and R. Albert. References
Emergence of scaling in random networks.
Science, 286:509-511, 1999. pdf (&)
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[1 P. M. Blau and J. E. Schwartz.
Crosscutting Social Circles.
Academic Press, Orlando, FL, 1984.
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