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Basic definitions

Network: (net + work, 1500’s)
Noun:

1. Any interconnected group or system

2. Multiple computers and other devices connected
together to share information

Verb:
1. To interact socially for the purpose of getting
connections or personal advancement

2. To connect two or more computers or other
computerized devices

Overview of
Complex Networks

Basic definitions
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Observation

» Many complex systems can be regarded as complex
networks of physical or abstract interactions

» Opens door to mathematical and numerical analysis

» Dominant approach of last decade of a
theoretical-physics/stat-mechish flavor.

Overview of
Complex Networks

Basic definitions
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Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each other

» e.g., people, forks in rivers, proteins, webpages,
organisms,...

Overview of
Complex Networks

Basic definitions
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Basic definitions

Links = Connections between nodes

» links

» may be real and fixed (rivers),

real and dynamic (airline routes),

abstract with physical impact (hyperlinks),

or purely abstact (semantic connections between
concepts).

» Links may be directed or undirected.
» Links may be binary or weighted.

v

v

v

Overview of
Complex Networks

Basic definitions
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Basic definitions .

Basic definitions

Node degree = Number of links per node

» Notation: Node i’s degree = k;.

» ki=0,12,....

» Notation: the average degree of a network = (k)
(and sometimes as z)
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BaSlC deflnltlons Overview of

Complex Networks

Basic definitions

Adjacency matrix:

» We represent a graph or network by a matrix A with
link weight aj; for nodes / and j in entry (i, /).

> eg.,

01110
0010 1
A=|11 0 0 0 O
01001
01010
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Overview of
Complex Networks

Nexus: Small Worlds and the Groundbreaking
Science of Networks—Mark Buchanan

The Tipping Point: How Little Things can
make a Big Difference—Malcolm Gladwell
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Books

Linked

Overview of
Complex Networks

Linked: How Everything Is Connected to
Everything Else and What It
Means—Albert-Laszlo Barabasi

Six Degrees: The Science of a Connected
Age—Duncan Watts
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Books

Handbook of
Graphs and Networks

Evolution of Networks

Overview of
Complex Networks

Handbook of Graphs and Networks—editors:
Stefan Bornholdt and H. G. Schuster

Evolution of Networks—S. N. Dorogovtsev
and J. F. F. Mendes.
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Overview of
BOOkS Complex Networks

Social Network Analysis—Stanley
Wasserman and Kathleen Faust

In the Beat of a Heart: Life, Energy, and the
Unity of Nature—John Whitfield
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Overview of
BOOkS Complex Networks

Numerous others:

» Complex Social Networks—F. Vega-Redondo

» Fractal River Basins: Chance and
Self-Organization—I. Rodriguez-lturbe and A.
Rinaldo

» Random Graph Dynamics—R. Durette
» Scale-Free Networks—Guido Caldarelli

» Evolution and Structure of the Internet: A Statistical
Physics Approach—Romu Pastor-Satorras and
Alessandro Vespignani

» Complex Graphs and Networks—Fan Chung
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Examples

What passes for a complex network?

» Complex networks are large (in node number)

» Complex networks are sparse (low edge to node
ratio)

» Complex networks are usually dynamic and evolving

» Complex networks can be social, economic, natural,
informational, abstract, ...

Overview of
Complex Networks

Examples of
Complex Networks
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Overview of
Exam p | eS Complex Networks

Physical networks

» River networks Examples of
» Neural networks
» Trees and leaves
» Blood networks

| The |nte|"net Complex Networks
» Road networks
» Power grids

» Distribution (branching) versus redistribution
(cyclical)
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Examples

Interaction networks

» The Blogosphere

Biochemical
networks
Gene-protein
networks

Food webs: who
eats whom

The World Wide
Web (?)

» Airline networks

v

v

Call networks
(AT&T)

The Media

Overview of
Complex Networks

Examples of
Complex Networks

datamining.typepad.com (E)
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http://datamining.typepad.com

Examples

I n te raCtI o n n etwo rks ‘The Structure of Romantic and Sexual Relations at "JefTerson High School*
social networks

>

| 2
>
|

v

v

Snogging
Friendships
Acquaintances

Boards and
directors

Organizations
myspace.com (H),
facebook.com (Bﬂ) (Bearman et al., 2004)

» ‘Remotely sensed’ by: email activity, instant

messaging, phone logs (*cough®).

Overview of
Complex Networks

Examples of
Complex Networks
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http://www.myspace.com
http://www.facebook.com

Examples

The Structure of Romantic and Sexual Relations at "JefTerson High School”

Lo
q "b-.fv
W ot b, P
L ¥ A fepy, /
b

Each circle represents a s

ident and lines connecting students represent romantic relations occuring within the 6 months

preceding the interview, Numbers under the figure count the number of times that pattern was observed (i.e. we found 63
pairs unconnected to anyone ¢lse)

Overview of
Complex Networks

Examples of
Complex Networks
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Examples N o
Relational networks

» Consumer purchases
(Wal-Mart: ~ 1 petabyte = 10'° bytes) B o

Complex Networks

» Thesauri: Networks of words generated by meanings
» Knowledge/Databases/Ideas

» Metadata—Tagging:
del.icio.us (H)http://del.icio.usdel.icio.us, flickr (FH)

common tags cloud | list

community daily dictionary education encyCIOpedia
english free imported info information internet knowledge
learning  news reference research resource

resources search tools wuseful web web2.0  WIKi
Wlklpedla Frame 19/95
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http://del.icio.us
http://www.flickr.com

Observations

A notable features of large-scale networks:

» Graphical renderings of complex networks
are often just a big mess.

» Need to be able to extract key patterns
» Science of Description

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

Some key aspects of real complex networks:

» degree » concurrency
distribution > hierarchical

» assortativity scaling

» homophily » network distances

» clustering » centrality

» motifs » efficiency

» modularity » robustness

» + Coevolution of network structure
and processes on networks.

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

1. degree distribution Py

» Py is the probability that a randomly selected node
has degree k

» k = node degree = number of connections
» ex 1: Erdds-Rényi random networks:

P = e~ R (Kk)k /K

» Distribution is Poisson

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

1. degree distribution Pk

» ex 2: “Scale-free” networks: Px o< k=7 = ‘hubs’
» link cost controls skew
» hubs may facilitate or impede contagion

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

Note:
» Erdds-Rényi random networks are a mathematical
construct.
» ‘Scale-free’ networks are growing networks that form
according to a plausible mechanism.

» Randomness is out there, just not to the degree of a
completely random network.

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

2. assortativity/3. homophily:

» Social networks: Homophily = birds of a feather

» e.g., degree is standard property for sorting:
measure degree-degree correlations.

» Assortative network: ! similar degree nodes
connecting to each other.
Often social: company directors, coauthors, actors.

» Disassortative network: high degree nodes
connecting to low degree nodes.
Often techological or biological: Internet, WWW,
protein interactions, neural networks, food webs.

Overview of
Complex Networks

Properties of
Complex Networks
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Clustering

4. clustering:

» Your friends tend to know each other.
» Two measures:
1. Watts & Strogatz!'°!

o — | Liken: &
| Zikeni G
Kk —1)/2 ]

2. Newman!'"]

3 X #triangles
C=—71—"7T""-
#triples

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

5. motifs:

» small, recurring functional subnetworks
» e.g., Feed Forward Loop:

a feedforward loop

Shen-Orr, Uri Alon, et al.['?

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

6. modularity—community detection:

Clauset et al., 2006 [°!: NCAA football

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

7. concurrency:

>

vV V. v Vv Y

transmission of a contagious element only occurs
during contact

rather obvious but easily missed in a simple model
dynamic property—static networks are not enough
knowledge of previous contacts crucial

beware cumulated network data

Kretzschmar and Morris, 1996 °!

Overview of
Complex Networks

Properties of
Complex Networks
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Properties Gomplex Networks

8. Horton-Strahler ratios:

» Metrics for branching networks:
Method for ordering streams hierarchically Properties of
Number: R, = Nw/Nw+1 Complex Networks
Segment length: R; = (L,+1)/{L,)
Area/Volume: Ry = (@w+1)/(aw)

v

v vy
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Properties

9. network distances:
(a) shortest path length dj:

» Fewest number of steps between nodes i and j.
» (Also called the chemical distance between j and j.)

(b) average path length (dj):

» Average shortest path length in whole network.
» Good algorithms exist for calculation.
» Weighted links can be accommodated.

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

9. network distances:

» network diameter dyax:
Maximum shortest path length between any two
nodes.

> closeness du = [>; ;" /(3)]7":
Average ‘distance’ between any two nodes.

Overview of
Complex Networks

Properties of
Complex Networks
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Properties

10.

centrality:

» Many such measures of a node’s ‘importance’
» ex 1: Degree centrality: k;.
» ex 2: Node /’s betweenness

= fraction of shortest paths that pass through i.

ex 3: Recursive centrality: Hubs and Authorities
(Kleinberg ]

Overview of
Complex Networks

Properties of
Complex Networks

Frame 33/95

F DA



Models

Some important models:

1
2
3.
4
5

. generalized random networks
. scale-free networks
small-world networks

. statistical generative models (p*)
. generalized affiliation networks

Overview of
Complex Networks

Basic models of
complex networks
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Popularity

“Collective dynamics of ‘small-world’ networks”['°!

» Watts and Strogatz
Nature, 1998

» ~ 2400 citations (as of Jan 14, 2008)

“Emergence of scaling in random networks” °!

» Barabasi and Albert
Science, 1999

» ~ 2300 citations (as of Jan 14, 2008)

Overview of
Complex Networks

Basic models of
complex networks
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Overview of
MOdG'S Complex Networks

Generalized random networks:

» Arbitrary degree distribution P.

» Create (unconnected) nodes with degrees sampled
from Py.

» Wire nodes together randomly.

» Create ensemble to test deviations from
randomness.
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Overview of

Scale-free networks Compiax Natworks

» Networks with power-law degree distributions have
become known as scale-free networks.

» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Px ~ k=7 for ‘large’ k

» One of the seminal works in complex networks:
Laszlo Barabasi and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” !

» Somewhat misleading nomenclature...
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SCa|e-free networks Overview of

Complex Networks

» Scale-free networks are not fractal in any sense.

» Usually talking about networks whose links are
abstract, relational, informational, . .. (non-physical)

» Primary example: hyperlink network of the Web

» Much arguing about whether or networks are
‘scale-free’ or not. ...
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Random networks: largest components Gomplex Networks

y=25 y=25 y=25 v=25 Generalized random
(k)=18 (k) =2.05333 (k) =1.66667 (k) =1.92 networks
~=25 ~=25 ~=25 N=25

(k) =16 (k) =1.50667 (k) =1.62667 (k) =18
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Scale-free networks .

The big deal:

» We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?

» Do the mechanism details matter?

Frame 41/95
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BA m Od e | Corr?yzliivﬁgv%rks

» Barabasi-Albert model = BA model.
» Key ingredients:
Growth and Preferential Attachment (PA).
» Step 1: start with mg disconnected nodes.
» Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,....
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—~Probability of connecting to
ith node is « k;.

» In essence, we have a rich-gets-richer scheme.
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BA m Od e | Corr?yzliivﬁgv%rks

» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:
Ac =k

» Definition: Pyacn(k, t) is the attachment probability.
» For the original model:

- ki(t ki(t
Patiacn(node i, t) = N(Itg L kmax(;)( ;
>oim k() Doy KNk (1)

where N(t) = my + t is # nodes at time t
and N(t) is # degree k nodes at time t.
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Overview of

ApprOX|mate ana|YS|S Complex Networks

» When (N + 1)th node is added, the expected
increase in the degree of node i is

Kin
—r—
Sp) k()

» Assumes probability of being connected to is small.

» Dispense with Expectation by assuming (hoping) that
over longer time frames, degree growth will be
smooth and stable.

» Approximate k;j ni1 — ki n With d%ki,ti

E(kins1 — Kin) = m

where t = N(t) — M. Frame 45/95
F A




Approximate analysis N o

» Deal with denominator: each added node brings m
new edges.
N(1)

2 Ki(t) =2tm
j=1

» The node degree equation now simplifies:

d ki(t) _ kif) _ 1

KPS N, LU B
dt Zj:(? k](t) 2mt 2t

» Rearrange and solve:

dki(t)  dt
k(t)y — 2t

= k,'(t) = Cj t1/2.

Frame 46/95
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Approximate analysis N o

» Know ith node appears at time

— i—mg fori> mg
hsart 0 fori < my

» So for i > my (exclude initial nodes), we must have

1/2
k,(t) =m < ) fort > ti,start-

ti,start

» All node degrees grow as '/? but later nodes have
larger t; iare Which flattens out growth curve.

» Early nodes do best (First-mover advantage).
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F DA



Approximate analysis N o

» m=3

Scale-free networks
> ti,start =

1,2,5, and 10.
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Degree distribution Complex Networks

» So what'’s the degree distribution at time t?
» Use fact that birth time for added nodes is distributed

uniformly:
dti,stan
Pr(ti,stan)dti,start = T
» Also use
1/2 met
I(t) <ti7stm> = tl,StaI’t kl(t)Z
Transform variables—Jacobian:
dti,start . mzt
dki ki(t)3"
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Degree distribution Complex Networks

>
Pr(ki)dki = Pr(ti,start)dti,start
g dt
f Pr(thbt‘m)dk, ' é?ls(t;il't
> 2
1 m-t
= —dki2——
t ki(t)3
> 2
m
=2———dk;
ki(t)3 "
>
o ki 2dk; .
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Degree distribution Complex Networks

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.

» Range true more generally for events with size
distributions that have power-law tails.

» 2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

» In practice, v < 3 means variance is governed by
upper cutoff.

» ~ > 3: finite mean and variance (mild)
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Examples

WWWwW

WWWwW

Movie actors
Words (synonyms)

The Internets is a different business...

Overview of
Complex Networks

v =~ 2.1 for in-degree

~ ~ 2.45 for out-degree
v ~23

v~2.8
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Overview of

Real data Complex Networks

From Barabasi and Albert’s original paper °):

10" o o
10° 10 . T
. B . C
10° | RN L \
. 10 *
-3 \I ‘\
< 10 X3 »
= 10 | . 10% F .
n— 104 L \: ‘?
\\ & Scale-free networks
5 10° | . 10° -
10° LN .
ﬁ\\ Y
o 8 N -4 \
10° L . - R SOV W g [ A -
10 10 10 10 10° 100 10° 10° 10* 10 10
K

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

slopes (A) Yacror = 2.3, (B) Yyw = 2.1 and (C) Ypower = 4
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Things to do and questions N o

\{

Vary attachment kernel.
Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

v

Deal with directed versus undirected networks.

v

v

Important Q.: Are there distinct universality classes
for these networks?

Q.: How does changing the model affect v?

Q.: Do we need preferential attachment and growth?
Q.: Do model details matter?

The answer is (surprisingly) yes. More later re Zipf.

vV v vy
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Overview of

P refe re ntlal attaCh ment Complex Networks

» Let’s look at preferential attachment (PA) a little more
closely.

» PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

» For example: If Py,ch(k) o< k, we need to determine
the constant of proportionality.

» We need to know what everyone’s degree is...
» PAis ... an outrageous assumption of node capability.
» But a very simple mechanism saves the day. ..

Frame 55/95
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Overview of

Preferential attachment through randomness  [EsStuemm

v

Instead of attaching preferentially, allow new nodes
to attach randomly.

Now add an extra step: new nodes then connect to
some of their friends’ friends.

Can also do this at random.

Assuming the existing network is random, we know
probability of a random friend having degree k is

v

v

v

Qk 0.8 kPk

v

So rich-gets-richer scheme can now be seen to work
in a natural way.
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Robustness .

» System robustness and system robustness.

» Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks”[?!
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Robustness

Overview of
Complex Networks

» Standard random networks (Erdds-Rényi)
versus

Scale-free networks

Scale-free networks

.... s a0 B a®

Exponential

Scale-free
from
Albert et al., 2000 Frame 58/95
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Overview of

RObUStneSS Complex Networks

12 a
E SE Failure o

o e e me | e » Plots of network

[ o s ] diameter as a function

Lo ] of fraction of nodes
removed

deo 2 b1 » Erdds-Rényi versus i
b Bl B scale-free networks

Pl memet o | v % » blue symbols =

r o@ﬁim ] ° e random removal

skt o162 aonnon] » red symbols =

0000 061 Fa!:: 10000 U‘DWFEHUre 0.02 targeted removal .

' ' . ' ™ from (most connected first)

Albert et al., 2000
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Robustness .

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.

» But: next issue is whether hubs are vulnerable or not.

» Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

» Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

» Need to explore cost of various targeting schemes.

Frame 60/95
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The social world appears to be small...

» Connected random networks have short average
path lengths:

(dag) ~ log(N)
N = population size,
dap = distance between nodes A and B.
» But: social networks aren’t random...

Overview of
Complex Networks

Small-world networks
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Simple socialness in a network:

Need “clustering” (your
friends are likely to
know each other):

Overview of
Complex Networks

Small-world networks
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Non-randomness gives clustering:

NN NN
ZNN2NZNSN
ANZNZNZNN%
ZNZNZNZNDN
NZANZNNND
ZNZNZNZNEN
NZANZNNIND
NN N
NANZNNAND
ZBNBNZANZNEN

dag = 10 — too many long paths.

A




Randomness + regularity

AN NS
BNDNDZBNEN
NSNS
NIV ININ
NS SANZNINS
ZNBNANZANEN

A

A

Now have dag = 3 (d) decreases overall




Small-world networks

Introduced by Watts and Strogatz (Nature, 1998) ['°]
“Collective dynamics of ‘small-world’ networks.”

Small-world networks were found everywhere:
» neural network of C. elegans,

» semantic networks of languages,

» actor collaboration graph,
>
| 4

food webs,
social networks of comic book characters,...

Very weak requirements:

» local regularity + random short cuts

Overview of
Complex Networks

Small-world networks
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Toy model:

Regular

Small-world

Increasing randomness

Random

Overview of
Complex Networks

Small-world networks
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The structural small-world property:

1T T g g T T — T

[® ° oo o
os[ ° C(p)/ C(0) © ]
- D -
0.6 E
04l . o ]
ool LPI/LO) . 1
r [ ] . o 4
° ° ° ° p
0 | | 1l ol
0.0001 0.001 0.01 0.1 1

p

» L(p) = average shortest path length as a function of p

» C(p) = average clustring as a function of p

Overview of
Complex Networks

Small-world networks
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Overview of

PreVIOUS WOrk—flndlng Short pathS Complex Networks

But are these short cuts findable?
Nope.

Nodes cannot find each other quickly
with any local search method.

Need a more sophisticated model...

Frame 69/95
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Previous work—finding short paths

» What can a local search method reasonably use?
» How to find things without a map?

» Need some measure of distance between friends
and the target.

Some possible knowledge:

» Target’s identity

» Friends’ popularity

» Friends’ identities

» Where message has been

Overview of
Complex Networks

Small-world networks

Frame 70/95
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Previous work—finding short paths

Jon Kleinberg (Nature, 2000) "/
“Navigation in a small world.”

Allowed to vary:

1. local search algorithm
and
2. network structure.

Overview of
Complex Networks

Small-world networks

Frame 71/95
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Previous work—finding short paths

Kleinberg’s Network:

1. Start with regular d-dimensional cubic lattice.

2. Add local links so nodes know all nodes within a
distance q.

3. Add m short cuts per node.
4. Connect i to j with probability

[0}

Pjj x Xjj .

» « = 0: random connections.
» « large: reinforce local connections.

» o = d: same number of connections at all scales.

Overview of
Complex Networks

Small-world networks
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Previous work—finding short paths

Theoretical optimal search:

» “Greedy” algorithm.
» Same number of connections at all scales: o = d.

Search time grows slowly with system size (like log? N).

But: social networks aren’t lattices plus links.

Overview of
Complex Networks

Small-world networks
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Previous work—finding short paths

» If networks have hubs can also search well: Adamic
et al. (2001)!"]
P(k;) kf’*
where k = degree of node i (humber of friends).

» Basic idea: get to hubs first
(airline networks).

» But: hubs in social networks are limited.

Overview of
Complex Networks

Small-world networks

Frame 74/95

F DA



The problem Gomplex Networks

If there are no hubs and no underlying lattice, how can
search be efficient?

\ Which friend of a is closest
#b to the target b?

K Generalized affiliation
Aé What does ‘closest’ mean?

\ What is ‘social distance’?

Frame 76/95
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Models

One approach: incorporate identity.

Identity is formed from attributes such as:
» Geographic location
» Type of employment
» Religious beliefs
» Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes < Contexts < Interactions < Networks.

Overview of
Complex Networks

Generalized affiliation
networks
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Social distance—Bipartite affiliation networks [t

[CO ntexts]

[individuals |

unipartite
network

Bipartite affiliation networks: boards and directors,
movies and actors.
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Social distance—Context distance Compa ks

occupation

education health care

kindergarten
teacher

high school

teacher doctor

Generalized affiliation
networks

Frame 79/95
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Overview of
MOdG'S Complex Networks

Distance between two individuals x; is the height of
lowest common ancestor.

Generalized affiliation
networks

X/jZS,X/k:1,X/v:4.

Frame 80/95
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Overview of
MOdG'S Complex Networks

» Individuals are more likely to know each other the
closer they are within a hierarchy.

» Construct z connections for each node using

pjj = cexp{—ax;}.

Generalized affiliation
networks

» o = 0: random connections.
» « large: local connections.

Frame 81/95
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Overview of
MOdG'S Complex Networks

Generalized affiliation networks

geography occupation age

ed affiliation

a b c d e

» Blau & Schwartz*, Simmel['°l, Breiger®!, Watts et
al.l'*l
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h=1 h=2
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h=3

Generalized affiliation
networks
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i
vi=[111]7,v,=[841] Social distance:
o oh
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The model

Triangle inequality doesn’t hold:

h=1 h=2
G D D CY EH @Y D @Y @Y D D D G @D G @D
[ Koy k

Yk =4>Yyi+tyk=1+1=2.
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The model

» Individuals know the identity vectors of
1. themselves,
2. their friends,
and
3. the target.
» Individuals can estimate the social distance between
their friends and the target.

» Use a greedy algorithm + allow searches to fail
randomly.
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a =0 versus o = 2 for N ~ 10°;
-0.5

A | O

o q<r

_8,3—15 \\\ r=20.05
-2

1 3 5 7 9 11 13 15
H

g = probability an arbitrary message chain reaches a
target.

» A few dimensions help.
» Searchability decreases as population increases.
» Precise form of hierarchy largely doesn’t matter.
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The mOdeI'reSL”tS Complex Networks

Milgram’s Nebraska-Boston data:

Model parameters:

12 —
10 » N =108,
5 ¢ N > z =300, g = 100,
= 9 » b=10,
4 ?:‘:Zr':!:ed affiliation
> a=1H=2;
2
]
12345678 9101112131415
L > <Lm0del> ~ 6.7
> Ldata ~ 6.5
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Social search—Data Compiax Natworks

Adamic and Adar (2003)

» For HP Labs, found probability of connection as
function of organization distance well fit by
exponential distribution.

» Probability of connection as function of real distance
x 1/r.
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Social Search—Real world uses

vV v.v. v Yy

v

Tags create identities for objects

Website tagging: http://www.del.icio.us
(e.g., Wikipedia)

Photo tagging: http://www.flickr.com

Dynamic creation of metadata plus links between
information objects.

Folksonomy: collaborative creation of metadata
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Social Search—Real world uses

Recommender systems:

» Amazon uses people’s actions to build effective
connections between books.

» Conflict between ‘expert judgments’ and
tagging of the hoi polloi.
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Conclusions

v

Bare networks are typically unsearchable.

Paths are findable if nodes understand how network
is formed.

» Importance of identity (interaction contexts).

» Improved social network models.

» Construction of peer-to-peer networks.

» Construction of searchable information databases.

v
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