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Introduction

What'’s the best way to distribute stuff?

» Stuff = medical services, energy, people,
» Some fundamental network problems:

1. Distribute stuff from a single source to many sinks

2. Distribute stuff from many sources to many sinks

3. Redistribute stuff between nodes that are both
sources and sinks

» Supply and Collection are equivalent problems
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Introduction

Optimal branching
Murray meets Tokunaga
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Reframing the question
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References

River network models

Optimality:

» Optimal channel networks ['%!
» Thermodynamic analogy !/

versus...
Randomness:

» Scheidegger’s directed random networks
» Undirected random networks
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Cardiovascular networks: Cardiovascular networks:

Optimal branching Optimal branching

» Murray’s law (1926) connects branch radii at forks: [/ » Fluid mechanics: Poiseuille impedance for smooth

flow in a tube of radius r and length /:

3_,3, .3
="y +15

_ 8t

72
wr4

where ry = radius of main branch
and ry and r» are radii of sub-branches

» Calculation assumes Poiseuille flow

» Holds up well for outer branchings of blood networks
» Also found to hold for trees

» Use hydraulic equivalent of Ohm’s law:

where n = dynamic viscosity
» Power required to overcome impedance:

Pirg = PAp = $2Z

» Also have rate of energy expenditure in maintaining

Ap=0Z e V=IR blood:
p= = V= Prietabotic = Cr 26
where Ap = pressure difference, ¢ = flux Frame 5/85 where ¢ is a metabolic constant. Frame 6/85
&5 vae & vax
Optimization approaches Supply Retworks Optimization approaches Sueply Hetuerie
Optimal branchin Optimal branchin
- ’ Murray’s law: i i

Aside on Py, » Total power (cost):

» Work done = F - d = energy transferred by force F
» Power = rate work isdone = F - v
» AP = Force per unit area

» & = Volume per unit time
= cross-sectional area - velocity

» So AP = Force - velocity

8nl
P= Pdrag + Pmetabolic = q)zr,’zél + CI'ZE

» Observe power increases linearly with ¢
» But r’s effect is nonlinear:
» increasing r makes flow easier but increases
metabolic cost (as r?)

» decreasing r decrease metabolic cost but impedance
goes up (as r=*)

Frame 7/85
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Optimization Supply etwerie Optimization Supply Networks
Murray’s laW: Optimal branching Murray’s laW: Optimal branching
» Minimize P with respect to r: » So we now have:
& = kr’
(9P 8 287’]€ 2
ar —ar \ ¥ gttt » Flow rates at each branching have to add up (else
our organism is in serious trouble...):
8nl
:—4¢277r75+02r£=o by = Py + by
where again 0 refers to the main branch and 1 and 2
» Rearrange/cancel/slap: refers to the offspring branches
All of this means we have a groovy cube-law:
02 _ crr® Y > is ns w g y
167 3

_ 3 3

where k = constant.
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Optimization Optimization

Murray meets Tokunaga:

Murray meets Tokunaga Murray meets Tokunaga

» &, = volume rate of flow into an order w vessel
segment

» Tokunaga picture:

Murray meets Tokunaga:

» Find R3 satisfies same equation as R, and R,
(v is for volume):

w—1

b, =20, 1+ > TP, «
k=1

R®=R,=R =R’

» Using ¢, = kr3 » |Is there more we could do here to constrain the

] Horton ratios and Tokunaga constants?

we

3_ 0,3 3

rw - 2rw—1 + Z Tkrw—k
k=1

» Find Horton ratio for vessell radius R, = r,,/r,_1...

Frame 13/85

Frame 12/85
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Optimization

eets Tokunaga

Murray meets Tokunaga:

> Isometry: V,, o< £3
» Gives

R} =R, =R,

» We need one more constraint...

» West et al (1997) "6l achieve similar results following
Horton’s laws.

» So does Turcotte et al. (1998) ['°! using Tokunaga
(sort of).

Frame 14/85
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Simple supply networks

» Banavar et al.,
Nature,
(1999) [l

» Very general
attempt to find
most efficient
transportation
networks.

Frame 17/85
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Optimization approaches

The bigger picture:

» Rashevsky (1960’s) [’/ showed using a network story
that power output of heart should scale as M?2/3

» West et al. (1997 on)!'® 2l managed to find M3/4
(a mess—super long story—see previous course...)

» Banavar et al.!'! attempt to derive a general result for
all natural branching networks

» Again, something of a mess %!
» We'll look at and build on Banavar et al’s work...

Simple supply networks

Banavar et al. find ‘most efficient’ networks with

v

P Md/(d-H)

... but also find

v

Volooa o< M(d+1)/d

v

Consider a 3 g shrew with V004 = 0.1 Viody
= 3000 kg elephant with Viio0a = 10 Vioay
Such a pachyderm would be rather miserable.

v

v

Supply Networks
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Pachydermal sadness

Checking that last statement:

» For d = 3, we have Vijoq = cV(@t1)/d = c\/4/3

> If our shrew has V(™) — 0.1 V/(shew) then
c=01 ( V(shrew))—1/3_

» Assuming V/(elephant) — 108 /shrew " \we have

Vtgle;zghant) _ C( V(elephant))4/3

—01 ( V(shrew))f1/3 (1 06 V(shrew))4/3

C \/(elephant)

-1 07 V(shrew) -10 V(elephant) )

» Oops.

Geometric argument

» Best case: lengths of virtual vessels o r.
» Worst case: lengths of virtual vessels LY.

Supply Networks
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Geometric argument

» Consider one source supplying many sinks in a d
dimensional volume

» Material draw by sinks is invariant.
» Assume some cap on flow speed of material, Viax
» See network as a bundle of virtual vessels:

‘T«’\fxﬁ\

» The right question: how does number of sustainable
sinks N;inks scale with volume V for the most efficient
network design?

» Or: what is highest « for Ngjpxs oc V*?

Geometric argument

» Banavar et al. assume sink density p is uniform
» If we allow p to vary, then we find

Vilood o< pL9t"

> Since Voiood o L9, we must have p o L.

» = capillary density must decrease as M increases
(observed).

Supply Networks

Frame 21/85
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Geometric argument Supply Retworks Geometric argument

» Reminder: we break network up into virtual vessels:

QE%O\HPMPE

» Assume flow rate at each sink is independent of
system size.

» Take the cross-sectional area a of virtual vessels to
be constant.

» Minimizing the volume of the network is then
equivalent to minimizing the sum of the path lengths
from the source to all sinks.

Nanis o< pL9 oc L=1L9 o M(@=1)/d

v

so for d = 3, we have a = 2/3.
for d =2, we have o = 1/2.

Claim: If volume shapes change allometrically, the
exponent decreases.

Claim: Less Efficient networks have lower exponents
too (b/c they must have lower densities of sinks).

We'll work through these claims in detail...

v

v

v

v

Frame 24/85 Frame 25/85
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Geometric argument Supply Retworks Geometric argument

» Consider families of systems that grow allometrically.
» Family = a basic shape 2 indexed by volume V.

L,

Minimal volume calculation

» Note: we are ignoring issues such as impedance.

» Changes in impedance (e.g., due to combining of
flows) may change material speed but not overall
flow rate

» Scaling of material volume must be « system
volume—it’s a Oth order concern.

L’

» Orient shape to have dimensions L1 x Lo x ... X Ly

» In2-d, L{ x A" and L, < A2 where A = area.

» In general, have d lengths which scale as L; o V7.

» For above example, width grows faster than height:
"> 2.

Frame 28/85

Frame 26/85
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Geometric argument Supply Retworks Geometric argument

» Reminder of best and worst configurations

b 5

Some generality:

» Consider d dimensional spatial regions living in D
dimensional ambient spaces. Notation: Q4 p(V).

» River networks: d =2and D =3

» Cardiovascular networks: d =3 and D = 3

» Star-convexity of Q4 p(V): A spatial region is
star-convex if from at least one point, all other points
in the region can be reached by travelling along
straight lines while remaining within the region.

» Assume source can be located at a point which has
direct line of sight to all sources.

» We can generalize to a much broader class of
shapes...

Minimal volume calculation

Minimal volume calculation

» Basic idea: Minimum volume of material in system
Vet o< sum of distance from the source to the sinks.

» See what this means for sink density p if sinks do not

change their feeding habits with overall size.
Frame 29/85 Frame 30/85
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Geometric argument Suppyfletworks Computing the minimal network volume:

Assumptions in detail:

» Each region Qg p(V) has overall dimensions min Ve /Qd (V) pIIxflax

L1 ><L2><-~-><Ld.
» Specifically, V = cLiLy--- Ly where ¢ < 1is ashape [[i " =p / (X2 + X3 +...+x2)"/24x%
factor dependent of €. Qq4,0(V)
» We allow for arbitrary shape scaling:

Minimal volume calculation

» Substituting x; = L;u;, we have

Li=c v
min Vyer o pLy -~-Ld/ (L2 4 ...+ LBuB)'/2du
where [T2,ci=cand %, v = 1. Q4.0(°)

» For isometric growth, v; = 1/d.
. Vv L202 + L2u2 + ... + L2u3)/2di
» For allometric growth, we must have at least two of > Qd,o(c)( Wi Lot - Latla)
the {~;} being different where we have rescaled to a volume of size ¢ < 1
> We choose the [jsothaty1 272 > ... > ¢ Frame 31/85 where c is the shape factor. Frame 32185
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Supply Networks

Computing the minimal network volume:
» We are here:

MiN Vyer o pV/ (L3P + 122+ ...+ L2u2)"2di

Qq,p(C)

Minimal volume calculation

» Observe that the integrand will be dominated by the
L; that scale strongest with V.

» Assume first k < d dimensions scale with equal
strength, L; = ¢; 'V,

» Plug in scaling for L; in terms of V and pull V7+ out to
the front.

min VnetochV”*/ (Cl2U8 + .. .+ CEUE+ ...
Qq4,p(c)

Gt VAR 4 P VR ) 200
rame
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Supply Networks

Geometric argument

» Our general result:

MiN Vet oc pV/ 1+

» For scaling is isometric, we have v, = ~iso = 1/d and

a” the L,‘ Scale as \/1 /d: Minimal volume calculation

min Vnet/iso x pv1+1/d _ pv(d—H)/d

» If scaling is allometric, we have
Y& = Yallo = Max;vy; > 1/d and
MiN Vier/aio o p V11700
» We see that isometrically scaling volumes require
less network volume than allometrically scaling
volumes:
mMin Vie/iso

p —0asV — oo Frame 35/85
min Vnet/allo

F Dae

Computing the minimal network volume:

» Where we are now:

min Vnetocpv“ﬂ*/ (c72Uf + ...+ U2 + ...
Qq,0(C)

Cl%+1 V2('Vk+1 _7*)U/%+1 4+ 4+ 0(21 V2('yd—'y*)ut21)1/2dt—j
» Now allow V — oo and see that part of integrand

vanishes:

min Vnet—>pv1+”*/ (BuU? +... +cud)/?di
Qq,p(C)

since integral is now nice and friendly and small.

Geometric argument

Blood networks
» Material costly = expect lower optimal bound of
Vier o pV(@1D/d o 1941 to be closely followed.
» For cardiovascular networks, d = D = 3.

» Know that volume of blood scales linearly with blood
volume "2, Vi ox Vg o L9,

» Since we have shown Ve x pL9t!, sink density
must also decrease as volume increases:

poc L= oc V19,

Supply Networks

Minimal volume calculation

Frame 34/85
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Blood networks
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Geometric argument

Blood networks

>

We assume, reasonably, that V o« M where M is
mass.

It next follows that P, the rate of overall energy use in
Q, can at most scale with volume as

PxpV xpM x md-=1)/d
For three dimensional organisms, we have

P x M?2/3.

Much controversy about all this [ but for small
mammals and birds, 2/3 scaling looks good for
resting metabolic rate.

Geometric argument

Interesting result from quantum mechanics:

>

Homeothermic organisms need to keep their
temperature static

A good amount of heat loss is through infra-red
radiation (when resting)

For mammals with M < 10 kg:
P = 2.57 x 10°M?/3erg/sec.

Stefan-Boltzmann’s law (): 4& = 5=ST*

where T is absolute temperature, S is surface area, ¢
= emissivity < 1 and ¢ depends on Planck’s
constant, speed of light, 7°, these sorts of things.

Rough estimates of these constants give
P ~ 10°M?/3erg/sec.

Not bad...

Supply Networks

Blood networks

Frame 38/85
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Blood networks

Frame 40/85
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Some data on metabolic rates

B = 0.026 M*%68

2.5
2 » Heusner’s
o 19 data (1991) [°!
o ! » 391 Mammals
2 05 > blue line: 2/3
O .
—05 » red line: 3/4.
—15 [10-Dec-2001 peter dodds] pOWGr
0 1 2 3 4 5 6 7
IoglOM

Geometric argument

Organisms at work:

» What about organisms working as hard as possible?
» For short bursts, power scales closer to mass.

» Energy is stored locally muscles and we have
accounted for this.

» Also: apparently some capillaries are dormant during
rest.

Supply Networks

Blood networks

Frame 39/85
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Blood networks
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http://en.wikipedia.org/wiki/Stefan-Boltzmann_law

Geometric argument Suppy Netwars Geometric argument Suppy Networs

» River networks can be seen as collection networks.
» Many sources and one sink.
» For river networks, we know p is constant so

v

Volume of water in river network can be calculated by
adding up basin areas

(Discreteness of data means summing instead of
integrating)

Each site on discrete lattice is a source.

Imagine a steady flow from each source to outlet.

v

Vet o pV(@+1)/d — constant x V/3/2

v

» Hmmm: now network volume is growing faster than
basin ‘volume’ (really area).

» It's all okay:
Landscapes are 2-d surfaces living in 3-d.

v

v

Flows sum in such a way that

Vnct: Z pixel i

» D=3and d = 2. all pixels
» Streams can grow not just in width but in depth...
Frame 43/85 Frame 44/85
F HaAx & vao
Geometric argument Suppyfletworks Geometric argument: evidence AR

Montgomery and Dietrich "]

107 oy —y T r—y vy oy ~y e -y oy w

101 ¢

» Banavar et al.’s
approach 'l is
okay because p
really is constant.

» The irony: shows
optimal basins are
isometric

» Optimal Hack’s
law: a ~ ¢/ with
h=1/2

> (Zzzz2)

Basin length (m)

Z A; (pixel units)

‘°‘1o' .' 108 104 105 108 107 10® 10 10%0 10" 10%2 10"

Drainage area (m?)

v

Composite data set: includes everything from
unchanneled valleys up to world’s largest rivers.

Esimated fit:

v

A (pixel units)

~ 0.49
From Banavar et al. (1999) '] L~1.78a

v

N.b., data is a mixture of basin and main stream
lengths.

Frame 45/85 Frame 46/85
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World’s largest rivers only: Supely Networks Optimal river networks

10

Large scale deviations in Hack’s law

y
= 7
=} - Mississippi:Q=7 basins
= o o7 Ny PP
= 0o 00
Ee
= o &% 13
Q-

g 0 0.9 o & oy
< P S =4
g & s g
7 670 s 219
o e E 2
R °
a 5]

2

10 4 5 6 7
10 10 10 10 o
. 0 5 10 15
> area a (sq mi) > L2%a

» Data from Leopold (1994) [°]
» Estimate of Hack exponent: h = 0.50 + 0.06

» Rivers seem generally relatively long (but isometric).
» Measured width/length ratio unexplained.

Frame 48/85

Frame 47/85
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Many sources, many sinks Supely Netwerks Optimal source allocation

How do we distribute sources?
» Focus on 2-d (results generalize to higher
dimensions)
» Sources = hospitals, post offices, pubs, ...

» Key problem: How do we cope with uneven
population densities?

» Obvious: if density is uniform then sources are best
distributed uniformly

» Which lattice is optimal? The hexagonal lattice
Q1: How big should the hexagons be?

» Q2: Given population density is uneven, what do we
do?

» We'll follow work by Stephan!'® "%l and by Gastner
and Newman (2006) 1/ and work cited by them. Frame 50/85

F Dae

Solidifying the basic problem

» Given a region with some population distribution p,
most likely uneven.

» Given resources to build and maintain N facilities.

» Q: How do we locate these N facilities so as to

minimize the average distance between an
individual’s residence and the nearest facility?

Frame 51/85
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Optimal source allocation Supply Retworks Optimal source allocation Supply Network

0.1

Facility location Facility location

facility density D (in km2)

YT R BRI | vl 4l wl 4l
0.1 1 10 100 1000 10000

population density p (in km2)

From Gastner and Newman (2006) [*!
» Optimal facility density D vs. population density p.
» Fitis D o p%%8 with r? = 0.94.
» Looking good for a 2/3 power...

From Gastner and Newman (2006) |!

» Approximately optimal location of 5000 facilities.

» Based on 2000 Census data.

Frame 52/85 Frame 53/85

» Simulated annealing + Voronoi tessellation.
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Size-density law:

» We first examine Stephan’s treatment (1977) '3 14

» “Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries”
Siz-caniy ow (Science, 1977)

» Zipf-like approach: invokes principle of minimal effort.
» Also known as the Homer principle.

>

D x p2/3

» Why?
» Again: Different story to branching networks where
there was either one source or one sink.

» Now sources sinks are distributed throughout
region...

Size-density law

Frame 55/85 Frame 56/85
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Supply Networks

Optimal source allocation

» Consider a region of area A and population P with a
single functional center that everyone needs to
access every day.

» Build up a general cost function based on time
expended to access and maintain center.

» Write average travel distance to center is d and
assume average speed of travel is v.

» Note that average travel distance will be on the
length scale of the region which is A'/?

» Average time expended per person in accessing
facility is therefore

d/v=CcA?/v

where ¢ is an unimportant shape factor. Frame 57/85

F Dae

Supply Networks

Optimal source allocation
» Differentiating...
oT o _
A= 34 <CA1/2/V + T/(pA))

= c/(2VA"2 — 1/(pA?) = 0

» Rearrange:

A= (207 /cp)?/® x p2/3

» # facilities per unit area «

Af‘l o P2/3

Frame 59/85

» Groovy...
F DA

Optimal source allocation

» Next assume facility requires regular maintenance
(person-hours per day)

Call this quantity 7

If burden of mainenance is shared then average cost
per person is 7/P.

Replace P by pA where p is density.
Total average time cost per person:

v

v

v

v

T=3/7+7/(0A) = gA'? [V + 7/(pA).

v

Now Minimize with respect to A...

Optimal source allocation

An issue:

» Maintenance (7) is assumed to be independent of
population and area (P and A)

Supply Networks

Frame 58/85
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Optimal source allocation Cartograms

Standard world map:

B -
Stephan’s online book e < w RS
“The Division of Territory in Society” is here (H). %& > P “é'f
Size-density law . }7;2;{_; > i"’b 2 \, *ﬂ,‘.{}a\ Cartograms
&£

Frame 61/85 Frame 63/85
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Supply Networks Supply Networks

Cartograms Cartograms

Diffusion-based cartograms:

— gy = _F ——

Cartogram of countries ‘rescaled’ by population:

» |dea of cartograms is to distort areas to more
accurately represent some local density p (e.g.

Q. e population).
e ; = » Many methods put forward—typically involve some
racine kind of physical analogy to spreading or repulsion.
\f NNNNNN » Algorithm due to Gastner and Newman (2004) °/ is
. e sereoere based on standard diffusion: coroore

ANTARCTICA

Frame 64/85

F Dae

9]

2 p
——=0.
AT
Allow density to diffuse and trace the movement of

individual elements and boundaries.

Diffusion is constrained by boundary condition of
surrounding area having density p.

Frame 65/85
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Cal’tograms Supplviletione Cartograms Supply Networks

uction

uction
Optimal branc

Optimal branc
Child mortality:

Energy consumption:

Si

Cartograms

Refere

(-

Frame 66/85

Frame 67/85
F DA

F Dae

Cartograms SupplvEletuons Cartograms Supply Networks

Optimal branching

Gross domestic product:

Optimal branching

oo Source Greenhouse gas emissions:

Si Source

Cartograms

} I ) Cartograms
References

References

Frame 68/85

Frame 69/85
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Cartograms

Cartograms

» The preceding sampling of Gastner & Newman'’s
cartograms lives here (H).

» A larger collection can be found at
worldmapper.org (H).

)

Supply Networks

Cartograms

Frame 70/85
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Cartograms

Frame 72/85
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Cartograms

People living with HIV:

—

I

Size-density law

» Left: population density-equalized cartogram.
» Right: (population density)?/3-equalized cartogram.
» Facility density is uniform for p?/3 cartogram.

From Gastner and Newman (2006) |!

Supply Networks

Cartograms

Frame 71/85
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Cartograms

Frame 73/85
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Size'denSity IaW Supplviletione Size_density |aW Supply Networks

Deriving the optimal source distribution:

T T T J T " ? T

=} L ]
S| i - - ] . N .
® Oif [——posdim slin ] » Basic idea: Minimize the average distance from a
g | — mngom popuation- | : random individual to the nearest facility. ©°!
£ 0075k proportional = E y.
B - » Assume given a fixed population density p defined on
o - . .
& 0050 a spatial region Q.
g 0.025F » Formally, we want to find the locations of n sources
g s {Xq,...,Xn} that minimizes the cost function

% 30 60 90 120 150 180

interior angle of Voronoi cell (degrees)

F({%s, ... %n}) = /Q p(R)min 1% — %X .

From Gastner and Newman (2006) [*!

» Also known as the p-median problem.

» Cartogram’s Voronoi cells are somewhat hexagonal. ) ) )
d d » Not easy... in fact this one is an NP-hard problem. [°!

Frame 74/85 Frame 75/85
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Size'denSity IaW SupplvEletuons Size_density |aW Supply Networks
Approximations: Carrying on:
» For a given set of source placements {Xi, ..., Xn}, > The cost function is now
the region 2 is divided up into Voronoi cells (&), one o .
per source. F = C/Q,O(X)A(X)1/2dx.
Define A(X he area of the Voronoi cell containin , ,
i )?e ° AlX)asthe J » We also have that the constraint that Voronoi cells

divide up the overall area of Q: 37, A(X;) = Aq.

» As per Stephan’s calculation, estimate typical , . , _
P P yp » Sneakily turn this into an integral constraint:

distance from X to the nearest source (say /) as
dx

GiA(X)"/2 a5 =
iA(X) A
where c; is a shape factor for the ith Voronoi cell.

. » Within each cell, A(X) is constant.
» Approximate c¢; as a constant c.

» So... integral over each of the n cells equals 1.

Frame 76/85 Frame 77/85

F Dae F Dae



http://en.wikipedia.org/wiki/Voronoi_diagram

Size-density law
Now a Lagrange multiplier story:

» By varying {Xi, ..., X»}, minimize

G(A) = ¢ /Q P(R)A(R)!/2d% -\ (n— /Q AF)] d)?)

» Next compute §G/JA, the functional derivative (&) of
the functional G(A).

» This gives

/ [_ch()?)A(x‘)Vz + A [A()?)]_z] dx
Q
» Setting the integrand to be zilch, we have:

p(X) = 2 ¢ TA(X)%/2,

Global redistribution networks

One more thing:

» How do we supply these facilities?
» How do we best redistribute mail? People?
» How do we get beer to the pubs?

» Gaster and Newman model: cost is a function of
basic maintenance and travel time:

Cmaint + ’YCtravel-

» Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance ¢;; and number of legs to journey:

(1 = 0)¢jj + o(#hops).

» When 6 = 1, only number of hops matters.

Supply Networks

Frame 78/85
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Supply Networks

Frame 80/85

F Dae

Size-density law
Now a Lagrange multiplier story:
» Rearranging, we have
A(X) = (2xc™1)?/372/3,

» Finally, we indentify 1/A(X) as D(X), an
approximation of the local source density.
» Substituting D = 1/A, we have

o0 = (£

» Normalizing (or solving for \):

D% = n—LEWP e,

Jalp(X)1?/3dx

Global redistribution networks
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http://en.wikipedia.org/wiki/Functional_derivative
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