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Opt'mal Supply networks Supply Networks

Introduction

What'’s the best way to distribute stuff?

» Stuff = medical services, energy, people,
» Some fundamental network problems:

1. Distribute stuff from a single source to many sinks

2. Distribute stuff from many sources to many sinks

3. Redistribute stuff between nodes that are both
sources and sinks

» Supply and Collection are equivalent problems
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Rlver network mOdels Supply Networks

Introduction

Optimality:

» Optimal channel networks ['*]
» Thermodynamic analogy "'

versus...
Randomness:

» Scheidegger’s directed random networks
» Undirected random networks
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F DA



Optimization approaches Supply Networks

Cardiovascular networks:

Optimal branching

» Murray’s law (1926) connects branch radii at forks: ¢!

I’3

_ .3, .3
=n+rn

where ry = radius of main branch
and ry and r; are radii of sub-branches

» Calculation assumes Poiseuille flow

» Holds up well for outer branchings of blood networks
» Also found to hold for trees

» Use hydraulic equivalent of Ohm’s law:

Ap=®Z = V=IR

where Ap = pressure difference, ¢ = flux Frame 5/85
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Supply Networks

Optimization approaches

Cardiovascular networks:

Optimal branching

» Fluid mechanics: Poiseuille impedance for smooth
flow in a tube of radius r and length ¢:

8nl
Z=—

mré
where n = dynamic viscosity

» Power required to overcome impedance:
Pirg = ®PAp = $2Z

» Also have rate of energy expenditure in maintaining
blood:
P, metabolic = CI 2£

where ¢ is a metabolic constant. Frame 6/85
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Optimization approaches Supply Networks

Optimal branching

Aside on Py,

Work done = F - d = energy transferred by force F
Power = rate work is done = F - v
AP = Force per unit area

® = Volume per unit time
= cross-sectional area - velocity

So ®AP = Force - velocity

vV v v Yy

v
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Supply Networks

Optimization approaches

Optimal branching

Murray’s law:

» Total power (cost):

8nl
P = Pdrag + Pmetabohc - ¢2T +cr [

» Observe power increases linearly with ¢
» But r’s effect is nonlinear:
» increasing r makes flow easier but increases

metabolic cost (as r?)
» decreasing r decrease metabolic cost but impedance

goes up (as r=4)
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Optlmlzatlon Supply Networks

Murray’s law:

Optimal branching

» Minimize P with respect to r:

P _ 0 (8l o
8r—6r(¢wr4+cr€

= —4¢2% +c2rl =0

» Rearrange/cancel/slap:

2 — 017;;6 _ k25
Ui

where k = constant.
Frame 9/85
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Supply Networks

Optimization

Murray’s law: Optimal branching

» So we now have:
® = krd

» Flow rates at each branching have to add up (else
our organism is in serious trouble...):
by =0y + by

where again 0 refers to the main branch and 1 and 2
refers to the offspring branches

» All of this means we have a groovy cube-law:

3 _ .3 3
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Optlmlzatlon Supply Networks

Murray meets Tokunaga:

Murray meets Tokunaga

» &, = volume rate of flow into an order w vessel
segment

» Tokunaga picture:

w—1

b, =20, 1+ Z chbwfk
k=1

» Using ¢, = kr2
w—1
=21+ T3,
k=1

» Find Horton ratio for vessell radius R, =r,, /1, _1...

Frame 12/85
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Optimization

Murray meets Tokunaga:

» Find R} satisfies same equation as R, and R,
(v is for volume):

R®=R,=R, =R3

» Is there more we could do here to constrain the
Horton ratios and Tokunaga constants?

Supply Networks

Murray meets Tokunaga

Frame 13/85
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Supply Networks

Optimization

Murray meets Tokunaga:

» Isometry: V,, o £2
» Gives

R} =R, =R,

» We need one more constraint...

» West et al (1997) 6] achieve similar results following
Horton’s laws.

» So does Turcotte et al. (1998)!'°! using Tokunaga
(sort of).

Frame 14/85
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Supply Networks

Optimization approaches

The bigger picture:

» Rashevsky (1960’s) °! showed using a network story
that power output of heart should scale as M2/3

» West et al. (1997 on)!'% 2l managed to find M3/4
(a mess—super long story—see previous course...)

» Banavar et al.!'l attempt to derive a general result for
all natural branching networks

» Again, something of a mess 1°!
» We'll look at and build on Banavar et al’s work...

Frame 16/85
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Supply Networks

Simple supply networks

Single Source

History

» Banavar et al.,
Nature,
(1999) 'l

» Very general
attempt to find
most efficient
transportation
networks.

References
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S'mple Supply networks Supply Networks

Banavar et al. find ‘most efficient’ networks with

v

P Md/(d-H)

... but also find

v

Vhbiood X M(d+1 )/d

v

Consider a 3 g shrew with Vpigod = 0.1 Viody
= 3000 kg elephant with Vyig0a = 10 Viody
Such a pachyderm would be rather miserable.

v

v

Frame 18/85
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Supply Networks

Pachydermal sadness

Checking that last statement:

» For d = 3, we have Viooq = cV(@t1)/d = ci/4/3

» If our shrew has Vb(s(:‘;gw) = 0.1V/(6hrew) then
c=0.1 ( V(shrew))—1}3.

» Assuming V/(clephant) — 18 \/shrew \ya have

Vb(leolzghant) _ C( V(elephant))4/3

—0.1 ( V(shrew))—1 /3 (1 06 V(shrew))“'/3

/

-~

[ \/ (elephant)
— 107 V(shrew) —-10 V(elepham)‘

Frame 19/85
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Supply Networks

Geometric argument

» Consider one source supplying many sinks in a d
dimensional volume

» Material draw by sinks is invariant.
» Assume some cap on flow speed of material, Viax
» See network as a bundle of virtual vessels:

’T\.‘m&.ﬁ

» The right question: how does number of sustainable
sinks N;inks scale with volume V for the most efficient
network design?

» Or: what is highest a for Ny oc V? Framo 21/65
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GeOmet”C arg ument Supply Networks

» Best case: lengths of virtual vessels « r.
» Worst case: lengths of virtual vessels o LY.

Frame 22/85
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GeOmet”C arg ument Supply Networks

» Banavar et al. assume sink density p is uniform
» If we allow p to vary, then we find

Vblood X pLd+1

> Since Viiooa x L9, we must have p o< L1,

» = capillary density must decrease as M increases
(observed).

Frame 23/85
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Supply Networks

Geometric argument

Niinks o pLd x L7119 « pmlad=1/d

v

so for d = 3, we have o = 2/3.
ford =2, we have a = 1/2.

Claim: If volume shapes change allometrically, the
exponent decreases.

Claim: Less Efficient networks have lower exponents
too (b/c they must have lower densities of sinks).

We'll work through these claims in detail...

v

v

v

v
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Supply Networks

Geometric argument

» Reminder: we break network up into virtual vessels:

%%P\gﬁi

» Assume flow rate at each sink is independent of
system size.

» Take the cross-sectional area a of virtual vessels to
be constant.

» Minimizing the volume of the network is then
equivalent to minimizing the sum of the path lengths
from the source to all sinks.

Frame 25/85
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Supply Networks

Geometric argument

» Note: we are ignoring issues such as impedance.

» Changes in impedance (e.g., due to combining of
flows) may change material speed but not overall
flow rate

» Scaling of material volume must be « system
volume—it’s a Oth order concern.

Frame 26/85
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GeOmet”C arg ument Supply Networks

» Consider families of systems that grow allometrically.
» Family = a basic shape 2 indexed by volume V.

L,

Ly

» Orient shape to have dimensions Ly x Ly x ... X Ly
» In 2-d, Ly o« A" and Ly, < A" where A = area.
» In general, have d lengths which scale as L; oc V7.

» For above example, width grows faster than height:

1 > Yo Frame 28/85
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GeOmet”C arg ument Supply Networks

Some generality:

» Consider d dimensional spatial regions living in D
dimensional ambient spaces. Notation: Q4 p(V).

» River networks: d =2and D =3

» Cardiovascular networks: d =3 and D =3

» Star-convexity of Qg p(V): A spatial region is
star-convex if from at least one point, all other points

in the region can be reached by travelling along
straight lines while remaining within the region.

» Assume source can be located at a point which has
direct line of sight to all sources.

» We can generalize to a much broader class of
shapes...

Frame 29/85
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Geometric argument

» Reminder of best and worst configurations

» Basic idea: Minimum volume of material in system
Vet < sum of distance from the source to the sinks.

» See what this means for sink density p if sinks do not

change their feeding habits with overall size.
Frame 30/85
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Supply Networks

Geometric argument

Assumptions in detail:
» Each region Q4 p(V) has overall dimensions

Ly x Lo x -+ x Lg.
» Specifically, V = cL{L,--- Ly where ¢ < 1 is a shape

factor dependent of Q.
» We allow for arbitrary shape scaling:

Li=c v

where [[%,¢ci=cand 39, ~; = 1.

» For isometric growth, v; = 1/d.

» For allometric growth, we must have at least two of
the {7} being different

» We choosethe L;jsothatyy >y > ... > vy

Frame 31/85
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Supply Networks

Computing the minimal network volume:

MiN Vo o / p||7]| X
Qq,0(V)

:p/ (X2 +x3+...+x3)12dx
Qa,0(V)

» Substituting x; = L;u;, we have

Min Vet o plLy ---Ld/ (L2024 ... 4 L2u3)"/2du

Qq,p(C)
x pV (L2302 + L3203 + ... + L2u2)"/2du
Qq4,p(c)
where we have rescaled to a volume of size ¢ < 1
where c is the shape factor. Frame 32/85
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Computing the minimal network volume: Supply Networks
» We are here:

min Vyet o pV (L2 + 13U+ ...+ L3u2)"/2di
Qq,0(c)

» Observe that the integrand will be dominated by the
L; that scale strongest with V.

» Assume first k < d dimensions scale with equal
strength, L; = ¢; ' V-,

» Plug in scaling for L; in terms of V and pull V" out to
the front.

min VnetochVV*/ (c72uf + ...+ CRUE+ ...
Q4,0(€)

C/:_E1 V2(7k+1 _'7*)UI€+1 + . + C(;Z Vz(’yd—’y*)ug)1/2da

Frame 33/85

F DA



Computing the minimal network volume: Sueply fetnorks

» Where we are now:

minVneto<pV1+7*/ (728 +...+ 22 +...
Qq,0(¢)

C,%_H V20 _7*)UI%+1 + ...+ Cc21’ V2(Wd—7*)u‘21)1/2da

» Now allow V — oo and see that part of integrand
vanishes:

min Vnet—>pv1+7*/ (2 + ...+ c2ud)?du
Qa,0(¢)

since integral is now nice and friendly and small.

Frame 34/85
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Supply Networks

Geometric argument

» Our general result:

min Ve o pV17+

» For scaling is isometric, we have v, = 750 = 1/d and
a” the L/ SCa|e aS V1 /d Minimal volume calculation

min Vnet/iso x pv1+1/d _ pv(d-H)/d

» If scaling is allometric, we have
Vs = Yallo = Max;~; > 1/d and
min Vnet/allo X pv1+%no
» We see that isometrically scaling volumes require
less network volume than allometrically scaling
volumes:
min Vnet/iso

———— —0as V —
min Vnet/a]lo Frame 35/85
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Geometric argument

Blood networks
» Material costly = expect lower optimal bound of
Vier o pV(@1/9 o 19+ 1o be closely followed.
» For cardiovascular networks, d = D = 3.

» Know that volume of blood scales linearly with blood
volume "2, Vi x Vg o LY.

» Since we have shown V. o pL9t1, sink density
must also decrease as volume increases:

pox L1 y-1/d.

Frame 37/85
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GeOmet”C arg ument Supply Networks

Blood networks
» We assume, reasonably, that V o« M where M is
mass.

» It next follows that P, the rate of overall energy use in
2, can at most scale with volume as

PxpV x pM x Mma-1)/d
» For three dimensional organisms, we have

P o M?2/3,

» Much controversy about all this?! but for small
mammals and birds, 2/3 scaling looks good for
resting metabolic rate.

Frame 38/85
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Some data on metabO“C rates Supply Networks

3.5
3} B =0.026 M>5%8
2.5
2 » Heusner’s
1.5 data (1991) [°!
n;a 1 » 391 Mammals
< 09 > blue line: 2/3
_0_(; » red line: 3/4.
-1 » B=P=
-15 [10-Dec-2001 pete dos] power
0 1 2 3 4 5 6 7
IoglOM
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GeOmet”C arg ument Supply Networks

Interesting result from quantum mechanics:

>

Homeothermic organisms need to keep their
temperature static

A good amount of heat loss is through infra-red
radiation (when resting)

For mammals with M < 10 kg:

P = 2.57 x 105M?/3erg/sec.

Stefan-Boltzmann’s law (3): 45 = 5=ST*

where T is absolute temperature, S is surface area, ¢
= emissivity < 1 and ¢ depends on Planck’s
constant, speed of light, 7°, these sorts of things.

Rough estimates of these constants give

P ~ 10°M?/3erg/sec.

Frame 40/85
Not bad... 5 sac



http://en.wikipedia.org/wiki/Stefan-Boltzmann_law

GeOmet”C arg ument Supply Networks

Organisms at work:

» What about organisms working as hard as possible?
» For short bursts, power scales closer to mass.

» Energy is stored locally muscles and we have
accounted for this.

» Also: apparently some capillaries are dormant during
rest.

Frame 41/85

F DA



GeOmet”C arg ument Supply Networks

» River networks can be seen as collection networks.
» Many sources and one sink.
» For river networks, we know p is constant so

Vet o pV(@+1)/d — constant x V/3/2

» Hmmm: now network volume is growing faster than
basin ‘volume’ (really area).

» It's all okay:
Landscapes are 2-d surfaces living in 3-d.

» D=3and d =2.
» Streams can grow not just in width but in depth...

Frame 43/85
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GeOmet”C arg ument Supply Networks

v

Volume of water in river network can be calculated by
adding up basin areas

(Discreteness of data means summing instead of
integrating)

v

Each site on discrete lattice is a source.
Imagine a steady flow from each source to outlet.
Flows sum in such a way that

Vit = > Gpixel i

all pixels

v

v

v

Frame 44/85
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Supply Networks

Geometric argument

107
E e

» Banavar et als i o

approach!'l is 0E ot

okay because p 7 |

really is constant. g o [ .
» Theirony: shows 5. |10 1 St

optimal basins are 10 '

isometric i 4”2
» Optimal Hack’s o o OF

law: a ~ ¢/ with / e1c

h — 1/2 :110" 10 10% 10° 10° 10° 108

A (pixel units)

> (Zzzzz
( ) From Banavar et al. (1999) ']
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Geometric argument: evidence SN

Montgomery and Dietrich [”!

Basin length (m)

10 110’ 104 105 108 107 108 10® 1010 10" 10%2 10"

> Drainage area (m?)

» Composite data set: includes everything from
unchanneled valleys up to world’s largest rivers.

» Esimated fit:
L~1.783%49

» N.b., data is a mixture of basin and main stream
lengths.

Frame 46/85
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World’s largest rivers only: Supply Networks

4
10
.
— .
= p
E .
£ o2,
~ 25
= 0o 00y
i
3 3 o o River networks
- 10 o~
E 0.9 o
< -
2 )
@ -0 0
» p
.g o
g
2
10 5 6 7
10 10 10 10
» area a (sq mi)

» Data from Leopold (1994) (¢!
» Estimate of Hack exponent: h = 0.50 4+ 0.06

Frame 47/85
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Supply Networks

Optimal river networks

Large scale deviations in Hack’s law

Mississippi:Q=7 basins

1 2

River networks

-
@

frequency
frequency
S

0 10 20 30 40 O0 5 0 15

| 4 12/a L%

» Rivers seem generally relatively long (but isometric).
» Measured width/length ratio unexplained.

Frame 48/85
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Supply Networks

Many sources, many sinks

How do we distribute sources?
» Focus on 2-d (results generalize to higher
dimensions)
» Sources = hospitals, post offices, pubs, ...

» Key problem: How do we cope with uneven
population densities?

» Obvious: if density is uniform then sources are best
distributed uniformly

» Which lattice is optimal? The hexagonal lattice
Q1: How big should the hexagons be?

» Q2: Given population density is uneven, what do we
do?

» We'll follow work by Stephan!'® '#l and by Gastner
and Newman (2006) “! and work cited by them. Frame 50/85
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Optimal source allocation

Solidifying the basic problem

» Given a region with some population distribution p,
most likely uneven.

» Given resources to build and maintain N facilities.

» Q: How do we locate these N facilities so as to
minimize the average distance between an
individual’s residence and the nearest facility?

Supply Networks

Frame 51/85
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Optlmal source a”ocat'on Supply Networks

Facility location

From Gastner and Newman (2006) |!

» Approximately optimal location of 5000 facilities.

» Based on 2000 Census data.

Frame 52/85

» Simulated annealing + Voronoi tessellation.
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Optlmal source a”oca‘“on Supply Networks

0.1

0.01

facility density D (in km2)

Facility location

0.1 1 10 100 1000 10000

population density p (in km2)

From Gastner and Newman (2006) |“!
» Optimal facility density D vs. population density p.
» Fitis D o p968 with r?> = 0.94.
» Looking good for a 2/3 power...

Frame 53/85
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Optlmal source a”oca‘“on Supply Networks

Size-density law:

>

DO(p2/3

» Why?
» Again: Different story to branching networks where
there was either one source or one sink.

» Now sources sinks are distributed throughout
region...

Frame 55/85
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Optlmal source a”oca‘“on Supply Networks

» We first examine Stephan’s treatment (1977) '3 4]

» “Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries”
(Science, 1977)

» Zipf-like approach: invokes principle of minimal effort.
» Also known as the Homer principle.

Frame 56/85
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Optimal source allocation

» Consider a region of area A and population P with a
single functional center that everyone needs to
access every day.

» Build up a general cost function based on time
expended to access and maintain center.

» Write average travel distance to center is d and
assume average speed of travel is v.

» Note that average travel distance will be on the
length scale of the region which is A'/2

» Average time expended per person in accessing
facility is therefore

d/v=CcA?/v

where c is an unimportant shape factor. Frame 57/85
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Supply Networks

Optimal source allocation

» Next assume facility requires regular maintenance
(person-hours per day)

Call this quantity 7

If burden of mainenance is shared then average cost
per personis 7/P.

Replace P by pA where p is density.

v

v

v

» Total average time cost per person:

T =d/V+1/(pA) = gA" 2V + 7/(pA).

v

Now Minimize with respect to A...

Frame 58/85
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Optimal source allocation

» Differentiating...

g; = ;A ( A1/2/V—|—T/(pA)>

=c/(2VA'2 — 7/(pA%) = 0

» Rearrange:

A= (2vr/cp)?/® o p2/3

» # facilities per unit area
Af‘l x p2/3

» Groovy...

Supply Networks

Frame 59/85
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Optlmal source a”oca‘“on Supply Networks

An issue:

» Maintenance (7) is assumed to be independent of
population and area (P and A)

Frame 60/85
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Optlmal source a”OCatIOH Supply Networks

Stephan’s online book
“The Division of Territory in Society” is here (F).

Frame 61/85
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Supply Networks

Cartograms

Introduction

Optimal branching

Standard world map:

Single Sou

Distributed
Source:

Cartograms

Frame 63/85
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Cartograms

Cartogram of countries ‘rescaled’ by population:

NITED STATE - TRANCE
oA v .
o,
4
EGYPT INDIA
NIGERIA
PACIFIC » - 5
IR § BRAZIL -
% % y
ATLANTIC o Baaans
rl' QCEAN INDONESIA
L 3 7
J s INDIAN
£ - OCEAN AusTALL

ANTARCTICA

Supply Networks

Introduction

Optimal branching

Single Source

Distributed
Sources

Cartograms

Frame 64/85
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Cartograms

Diffusion-based cartograms:

>

Idea of cartograms is to distort areas to more
accurately represent some local density p (e.qg.
population).

Many methods put forward—typically involve some
kind of physical analogy to spreading or repulsion.
Algorithm due to Gastner and Newman (2004) ©°/ is
based on standard diffusion:

Op

2,9 _ 4
V<p ;= 0
Allow denSity to diffuse and trace the movement of

individual elements and boundaries.

Diffusion is constrained by boundary condition of
surrounding area having density p.

Supply Networks
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Cartograms

Introduction

Optimal branching

Single Sou

= N

Child mortality:

Distributed
Source:

Cartograms

Frame 66/85
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Cartograms

Introduction

Optimal branching

Energy consumption:

Single Sou

o
N
7y o Distributed
T ST
A . Source
25 '

\«:v Cartograms
;
Ca -

Frame 67/85
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Supply Networks

Cartograms

Introduction

Optimal branching

Gross domestic product:

Single Source

Frame 68/85

F DA




Supply Networks

Cartograms

Introduction

Optimal branching

Greenhouse gas emissions:

Single Source

Frame 69/85
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Cartograms

Introduction

Optimal branching

Single Source

Distributed
Sou

Cartograms

£.
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Cartograms

People living with HIV:

——

-

Supply Networks

Introduction

Optimal branching

Single Source

Distributed
Sou

Cartograms
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Cartograms Supply Networks

» The preceding sampling of Gastner & Newman’s
cartograms lives here (/).

» A larger collection can be found at
worldmapper.org (H).

)

Frame 72/85
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Slze-denSI'[y |aW Supply Networks

Cartograms

» Left: population density-equalized cartogram.

» Right: (population density)2/3-equalized cartogram.
» Facility density is uniform for p?/3 cartogram.

From Gastner and Newman (2006) *!

Frame 73/85
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Supply Networks

Size-density law

- - I i | * E | 1
2 0.1F [— pmedian iy .
2 - | __ random population- = :
B 0.075E proportional

2] . .
< -

§ o0sf
= -

E 0.025f

(=} - Cartograms

= [ i

00 30 60 90 120 150 180

interior angle of Voronoi cell (degrees)

From Gastner and Newman (2006) [*!
» Cartogram’s Voronoi cells are somewhat hexagonal.

Frame 74/85
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Supply Networks

Size-density law

Deriving the optimal source distribution:
» Basic idea: Minimize the average distance from a
random individual to the nearest facility. I°!

» Assume given a fixed population density p defined on
a spatial region Q.

» Formally, we want to find the locations of n sources
{X1,...,Xn} that minimizes the cost function

F(lF1, . %a) = [ p(R)min % 505

» Also known as the p-median problem.
» Not easy... in fact this one is an NP-hard problem. [°!

Frame 75/85
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Supply Networks

Size-density law

Approximations:

» For a given set of source placements {Xi, ..., X},
the region 2 is divided up into Voronoi cells (&), one
per source.

» Define A(X) as the area of the Voronoi cell containing
X.

» As per Stephan’s calculation, estimate typical
distance from X to the nearest source (say /) as

GA(X)!/?

where c¢; is a shape factor for the ith Voronoi cell.

» Approximate c; as a constant c.
Frame 76/85
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Slze-denSI'[y |aW Supply Networks

Carrying on:

» The cost function is now
Foc / p(R)AR)'/2d% .
Q

» We also have that the constraint that Voronoi cells
divide up the overall area of Q: >, A(X)) = Aq.

» Sneakily turn this into an integral constraint:
X R
a A(X)
» Within each cell, A(X) is constant.
» So... integral over each of the n cells equals 1.

Frame 77/85
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Size-density law
Now a Lagrange multiplier story:

» By varying {Xi, ..., X,}, minimize

G(A) = ¢ /Q p(X)A(X)/2d% — A <n— /Q [A%)] d)?)

» Next compute §G/dA, the functional derivative (H) of
the functional G(A).

» This gives

/ {;Cp()?)A(;e)V? + A [AX)] ‘2} dx
Q
» Setting the integrand to be zilch, we have:

p(X) =2XcTA(X)%/2,

Frame 78/85
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Supply Networks

Size-density law
Now a Lagrange multiplier story:
» Rearranging, we have
A(X) = (2xc1)?/3p72/3,

» Finally, we indentify 1/A(X) as D(X), an
approximation of the local source density.

» Substituting D = 1/A, we have
. c \2/3
D)= (g30) -
» Normalizing (or solving for \):

2\12/3 .
f[[;[))((x)j))]]z/%l < [p(X)]2/°.

F DA
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Global redistribution networks

One more thing:

» How do we supply these facilities?
» How do we best redistribute mail? People?
» How do we get beer to the pubs?

» Gaster and Newman model: cost is a function of
basic maintenance and travel time:

Cmaint + ’YCtravel-

» Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance /; and number of legs to journey:

(1 = 9)¢j + 6(#hops).

» When § = 1, only number of hops matters. Frame 80/85
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