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Contagion models

Some large questions concerning network
contagion:

1. For a given spreading mechanism on a given
network, what’s the probability that there will be
global spreading?

2. If spreading does take off, how far will it go?
3. How do the details of the network affect the

outcome?
4. How do the details of the spreading mechanism

affect the outcome?

I Next up: We’ll look at some fundamental kinds of
spreading on generalized random networks.
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Spreading mechanisms

uninfected
infected

I General spreading
mechanism:
State of node i depends
on history of i and i ’s
neighbors’ states.

I Doses of entity may be
stochastic and
history-dependent.

I May have multiple,
interacting entities
spreading at once.
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Spreading on Random Networks

I For random networks, we know local structure is
pure branching.

I Successful spreading is ∴ contingent on single
edges infecting nodes.

Success Failure:

II Focus on binary case with edges and nodes either
infected or not.
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Contagion condition
I We need to find:

r = the average # of infected edges that one random
infected edge brings about.

I Define βk as the probability that a node of degree k
is infected by a single infected edge.

I

r =
∞∑

k=0

kPk

〈k〉︸︷︷︸
prob. of
connecting to
a degree k node

· βk︸︷︷︸
Prob. of
infection

· (k − 1)︸ ︷︷ ︸
# outgoing
infected
edges

+
∞∑

k=0

︷︸︸︷
kPk

〈k〉
· (1− βk )︸ ︷︷ ︸

Prob. of
no infection

· 0︸︷︷︸
# outgoing
infected
edges
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Contagion condition

I Our contagion condition is then:

r =
∞∑

k=0

(k − 1)kPk

〈k〉
βk > 1.

I Case 1:

If βk = 1 then

r =
〈k(k − 1)〉

〈k〉
> 1.

I Good: This is just our giant component condition
again.
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Contagion condition

I Case 2:

If βk = β < 1 then

r = β
〈k(k − 1)〉

〈k〉
> 1.

I A fraction (1-β) edges do not transmit the infection.
I Analogous phase transition to giant component case

but critical value of 〈k〉 is increased.
I Aka bond percolation.
I Resulting degree distribution P ′

k :

P ′
k = βk

∞∑
i=k

(
i
k

)
(1− β)i−kPi .

I We can show FP′(x) = FP(βx + 1− β).
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Contagion condition

I Cases 3, 4, 5, ...:

Now allow βk to depend on k
I Asymmetry: Transmission along an edge depends

on node’s degree at other end.
I Possibility: βk increases with k ...

unlikely

.
I Possibility: βk is not monotonic in k ...

unlikely

.
I Possibility: βk decreases with k ...

hmmm

.
I βk ↘ is a plausible representation of a simple kind of

social contagion.
I The story:

More well connected people are harder to influence.
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Contagion condition

I Example: βk = 1/k .

I

r =
∞∑

k=1

(k − 1)kPk

〈k〉
βk

=
∞∑

k=1

(k − 1)kPk

〈k〉k

=
∞∑

k=1

(k − 1)Pk

〈k〉
=
〈k〉 − 1
〈k〉

= 1− 1
〈k〉

I Since r is always less than 1, no spreading can
occur for this mechanism.

I Decay of βk is too fast.
I Result is independent of degree distribution.
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Contagion condition

I Example: βk = H( 1
k − φ)

where 0 < φ ≤ 1 is a threshold and H is the
Heaviside function.

I Infection only occurs for nodes with low degree.
I Call these nodes vulnerables:

they flip when only one of their friends flips.
I

r =
∞∑

k=1

(k − 1)kPk

〈k〉
βk

=
∞∑

k=1

(k − 1)kPk

〈k〉
H(

1
k
− φ)

=

b 1
φ
c∑

k=1

(k − 1)kPk

〈k〉
where b·c means floor.
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Contagion condition

I The contagion condition:

r =

b 1
φ
c∑

k=1

(k − 1)kPk

〈k〉
> 1.

I As φ → 1, all nodes become resilient and r → 0.
I As φ → 0, all nodes become vulnerable and the

contagion condition matches up with the giant
component condition.

I Key: If we fix φ and then vary 〈k〉, we may see two
phase transitions.

I Added to our standard giant component transition,
we will see a cut off in spreading as nodes become
more connected.
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Thresholds

I What if we now allow thresholds to vary?

I We need to backtrack a little...
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Social Contagion
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Social Contagion

Examples abound

I being polite/rude
I strikes
I innovation
I residential segregation
I ipods
I obesity

I Harry Potter
I voting
I gossip

I Rubik’s cube
I religious beliefs

I leaving lectures

SIR and SIRS contagion possible

I Classes of behavior versus specific behavior

: dieting
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Examples abound

I being polite/rude
I strikes
I innovation
I residential segregation
I ipods
I obesity

I Harry Potter
I voting
I gossip

I Rubik’s cube
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I Classes of behavior versus specific behavior: dieting



Contagion

Basic Contagion
Models

Social Contagion
Models
Granovetter’s model

Network version

Theory

Groups

References

Frame 16/66

Social Contagion

We need to understand influence

I Who influences whom?

Very hard to measure...

I What kinds of influence response functions are
there?

I Are some individuals super influencers?

Highly popularized by Gladwell [5] as ‘connectors’

I The infectious idea of opinion leaders (Katz and
Lazarsfeld) [8]
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We need to understand influence
I Who influences whom? Very hard to measure...
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I The infectious idea of opinion leaders (Katz and

Lazarsfeld) [8]
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One perspective

“In historical events great men—so-called—are but labels
serving to give a name to the event, and like labels they
have the least possible connection with the event itself.
Every action of theirs, that seems to them an act of their
own free will, is in an historical sense not free at all, but in
bondage to the whole course of previous history, and
predestined from all eternity.”

—Leo Tolstoy, War and Peace.
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The hypodermic model of influence
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The two step model of influence [8]
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The general model of influence
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Social Contagion

Why do things spread?

I Because of system level properties?
I Or properties of special individuals?
I Is the match that lights the fire important?
I Yes. But only because we are narrative-making

machines...
I We like to think things happened for reasons...
I System/group properties harder to understand
I Always good to examine what is said before and

after the fact...
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I Because of system level properties?
I Or properties of special individuals?
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I Yes. But only because we are narrative-making

machines...
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I System/group properties harder to understand
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after the fact...
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Social Contagion

Some important models

I Tipping models—Schelling (1971) [9, 10, 11]

I Simulation on checker boards.
I Idea of thresholds.

I Threshold models—Granovetter (1978) [7]

I Herding models—Bikhchandani et al. (1992) [1, 2]

I Social learning theory, Informational cascades,...
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Social contagion models

Thresholds

I Basic idea: individuals adopt a behavior when a
certain fraction of others have adopted

I ‘Others’ may be everyone in a population, an
individual’s close friends, any reference group.

I Response can be probabilistic or deterministic.
I Individual thresholds can vary
I Assumption: order of others’ adoption does not

matter...

(unrealistic).

I Assumption: level of influence per person is uniform

(unrealistic).
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certain fraction of others have adopted
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Social Contagion

Some possible origins of thresholds:

I Desire to coordinate, to conform.
I Lack of information: impute the worth of a good or

behavior based on degree of adoption (social proof)
I Economics: Network effects or network externalities
I Externalities = Effects on others not directly involved

in a transaction
I Examples: telephones, fax machine, Facebook,

operating systems
I An individual’s utility increases with the adoption

level among peers and the population in general
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Social Contagion

Granovetter’s Threshold model—definitions

I γ = threshold of an individual.
I f (γ) = distribution of thresholds in a population.
I F (γ) = cumulative distribution =

∫ γ
γ′=0 f (γ′)dγ′

I φt = fraction of people ‘rioting’ at time step t .
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Granovetter’s Threshold model—definitions
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Social Sciences—Threshold models
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I Example threshold influence response functions:
deterministic and stochastic

I φ = fraction of contacts ‘on’ (e.g., rioting)
I Two states: S and I.
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Social Sciences: Threshold models

I At time t + 1, fraction rioting = fraction with γ ≤ φt .

I

φt+1 =

∫ φt

0
f (γ)dγ = F (γ)|φt

0 = F (φt)

I ⇒ Iterative maps of the unit interval [0, 1].
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Social Sciences: Threshold models

I At time t + 1, fraction rioting = fraction with γ ≤ φt .
I

φt+1 =
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I ⇒ Iterative maps of the unit interval [0, 1].
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Social Sciences—Threshold models

Action based on perceived behavior of others.
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I Two states: S and I.
I φ = fraction of contacts ‘on’ (e.g., rioting)

I Discrete time, synchronous update (strong
assumption!)

I This is a Critical mass model
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I φ = fraction of contacts ‘on’ (e.g., rioting)
I Discrete time, synchronous update (strong
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I This is a Critical mass model
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Social Sciences: Threshold models
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Social Sciences: Threshold models
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Social Sciences—Threshold models

Implications for collective action theory:

1. Collective uniformity 6⇒ individual uniformity
2. Small individual changes ⇒ large global changes
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Implications for collective action theory:

1. Collective uniformity 6⇒ individual uniformity

2. Small individual changes ⇒ large global changes
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Implications for collective action theory:

1. Collective uniformity 6⇒ individual uniformity
2. Small individual changes ⇒ large global changes
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Threshold model on a network

Many years after Granovetter and Soong’s work:

“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 [13]

I Mean field model → network model
I Individuals now have a limited view of the world
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Threshold model on a network

Many years after Granovetter and Soong’s work:

“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 [13]

I Mean field model → network model

I Individuals now have a limited view of the world
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Threshold model on a network

Many years after Granovetter and Soong’s work:

“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 [13]

I Mean field model → network model
I Individuals now have a limited view of the world



Contagion

Basic Contagion
Models

Social Contagion
Models
Granovetter’s model

Network version

Theory

Groups

References

Frame 35/66

Threshold model on a network

I Interactions between individuals now represented by
a network

I Network is sparse
I Individual i has ki contacts
I Influence on each link is reciprocal and of unit weight
I Each individual i has a fixed threshold φi

I Individuals repeatedly poll contacts on network
I Synchronous, discrete time updating
I Individual i becomes active when

fraction of active contacts ai ≥ φiki
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Threshold model on a network
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I All nodes have threshold φ = 0.2.
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I All nodes have threshold φ = 0.2.
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The most gullible

Vulnerables:

I Recall definition: individuals who can be activated by
just one contact being active are vulnerables.

I The vulnerability condition for node i : 1/ki ≥ φi .
I Means # contacts ki ≤ b1/φic.
I Key: For global cascades on random networks, must

have a global component of vulnerables [13]

I For a uniform threshold φ, our contagion condition
tells us when such a component exists:

r =

b 1
φ
c∑

k=1

(k − 1)kPk

〈k〉
> 1.
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Cascades on random networks

explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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starting a global
spreading event
(cascade).

I Bottom curve: fractional
size of vulnerable
subcomponent. [13]

I Cascades occur only if size of vulnerable
subcomponent > 0.

I System is robust-yet-fragile just below upper
boundary [3, 4, 12]

I ‘Ignorance’ facilitates spreading.
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !
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). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).

Watts PNAS ! April 30, 2002 ! vol. 99 ! no. 9 ! 5769
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I Time taken for cascade
to spread through
network. [13]

I Two phase transitions.

I Largest vulnerable component = critical mass.
I Now have endogenous mechanism for spreading

from an individual to the critical mass and then
beyond.
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Cascade window for random networks
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I Outline of cascade window for random networks.
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All-to-all versus random networks
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Early adopters—degree distributions
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The multiplier effect
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Special subnetworks can act as triggers

i0
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B

I φ = 1/3 for all nodes
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Threshold contagion on random networks

I Three pieces (among many) to describe analytically:

1. The fractional size of the largest subcomponent of
vulnerable nodes.

2. The chance of starting a global spreading event (or
cascade)

3. The final size of any succesful spread.
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Threshold contagion on random networks

I Three pieces (among many) to describe analytically:
1. The fractional size of the largest subcomponent of

vulnerable nodes.

2. The chance of starting a global spreading event (or
cascade)

3. The final size of any succesful spread.



Contagion

Basic Contagion
Models

Social Contagion
Models
Granovetter’s model

Network version

Theory

Groups

References

Frame 46/66

Threshold contagion on random networks

I Three pieces (among many) to describe analytically:
1. The fractional size of the largest subcomponent of

vulnerable nodes.
2. The chance of starting a global spreading event (or

cascade)

3. The final size of any succesful spread.
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Threshold contagion on random networks

I Three pieces (among many) to describe analytically:
1. The fractional size of the largest subcomponent of

vulnerable nodes.
2. The chance of starting a global spreading event (or

cascade)
3. The final size of any succesful spread.
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Threshold contagion on random networks

I First goal: Find the largest component of vulnerable
nodes.

I Recall that for finding the giant component’s size, we
had to solve:

Fπ(x) = xFP (Fρ(x)) and Fρ(x) = xFR (Fρ(x))

I We’ll find a similar result for the subset of nodes that
are vulnerable.

I This is a node-based percolation problem.
I For a general threshold distribution f (φ), a degree k

node is vulnerable with probability

βk =

∫ 1/k

0
f (φ)dφ .
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I We’ll find a similar result for the subset of nodes that
are vulnerable.

I This is a node-based percolation problem.

I For a general threshold distribution f (φ), a degree k
node is vulnerable with probability

βk =

∫ 1/k

0
f (φ)dφ .
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Threshold contagion on random networks

I First goal: Find the largest component of vulnerable
nodes.

I Recall that for finding the giant component’s size, we
had to solve:

Fπ(x) = xFP (Fρ(x)) and Fρ(x) = xFR (Fρ(x))

I We’ll find a similar result for the subset of nodes that
are vulnerable.

I This is a node-based percolation problem.
I For a general threshold distribution f (φ), a degree k

node is vulnerable with probability

βk =

∫ 1/k

0
f (φ)dφ .
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Threshold contagion on random networks

I Everything now revolves around the modified
generating function:

F (v)
P (x) =

∞∑
k=0

βkPkxk .

I Generating function for friends-of-friends distribution
is related in same way as before:

F (v)
R (x) =

F ′(v)
P (x)

F ′(v)
P (1)

.
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Threshold contagion on random networks
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generating function:
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Threshold contagion on random networks

I Functional relations for component size g.f.’s are
almost the same...

F (v)
π (x) = 1− F (v)

P (1)︸ ︷︷ ︸
central node
is not
vulnerable

+xF (v)
P

(
F (v)

ρ (x)
)

F (v)
ρ (x) = 1− F (v)

R (1)︸ ︷︷ ︸
first node
is not
vulnerable

+xF (v)
R

(
F (v)

ρ (x)
)

I Can now solve as before to find S(v)
1 = 1− F (v)

π (1).
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Threshold contagion on random networks

I Second goal: Find probability of triggering largest
vulnerable component.

I Assumption is first node is randomly chosen.
I Same set up as for vulnerable component except

now we don’t care if the initial node is vulnerable or
not:

F (v)
π (x) = xFP

(
F (v)

ρ (x)
)

F (v)
ρ (x) = 1− F (v)

R (1) + xF (v)
R

(
F (v)

ρ (x)
)
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Threshold contagion on random networks

I Third goal: Find expected fractional size of spread.

I Not easy even for uniform threshold problem.
I Difficulty is in figuring out if and when nodes that

need ≥ 2 hits switch on.
I See recent progress by Gleeson and Cahalane [6] for

variable seed size on random networks.
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Threshold contagion on random networks

I Third goal: Find expected fractional size of spread.
I Not easy even for uniform threshold problem.

I Difficulty is in figuring out if and when nodes that
need ≥ 2 hits switch on.

I See recent progress by Gleeson and Cahalane [6] for
variable seed size on random networks.
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I Third goal: Find expected fractional size of spread.
I Not easy even for uniform threshold problem.
I Difficulty is in figuring out if and when nodes that

need ≥ 2 hits switch on.

I See recent progress by Gleeson and Cahalane [6] for
variable seed size on random networks.
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Threshold contagion on random networks

I Third goal: Find expected fractional size of spread.
I Not easy even for uniform threshold problem.
I Difficulty is in figuring out if and when nodes that

need ≥ 2 hits switch on.
I See recent progress by Gleeson and Cahalane [6] for

variable seed size on random networks.
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Extensions

I Assumption of sparse interactions is good

I Degree distribution is (generally) key to a network’s
function

I Still, random networks don’t represent all networks
I Major element missing: group structure
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I Degree distribution is (generally) key to a network’s

function

I Still, random networks don’t represent all networks
I Major element missing: group structure
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function
I Still, random networks don’t represent all networks
I Major element missing: group structure
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Group structure—Ramified random networks

p = intergroup connection probability
q = intragroup connection probability.
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Bipartite networks
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Generalized affiliation model
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(Blau & Schwartz, Simmel, Breiger)
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Generalized affiliation model networks with
triadic closure

I Connect nodes with probability ∝ exp−αd

where
α = homophily parameter
and
d = distance between nodes (height of lowest
common ancestor)

I τ1 = intergroup probability of friend-of-friend
connection

I τ2 = intragroup probability of friend-of-friend
connection
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Generalized affiliation model networks with
triadic closure

I Connect nodes with probability ∝ exp−αd

where
α = homophily parameter
and
d = distance between nodes (height of lowest
common ancestor)

I τ1 = intergroup probability of friend-of-friend
connection

I τ2 = intragroup probability of friend-of-friend
connection
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Cascade windows for group-based networks
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Assortativity in group-based networks
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I Very surprising: the most connected nodes aren’t
always the most influential

I Assortativity is the reason
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Social contagion

Summary

I ‘Influential vulnerables’ are key to spread.

I Early adopters are mostly vulnerables.
I Vulnerable nodes important but not necessary.
I Groups may greatly facilitate spread.
I Seems that cascade condition is a global one.
I Most extreme/unexpected cascades occur in highly

connected networks
I ‘Influentials’ are posterior constructs.
I Many potential influentials exist.
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Social contagion

Implications

I Focus on the influential vulnerables.

I Create entities that can be transmitted successfully
through many individuals rather than broadcast from
one ‘influential.’

I Only simple ideas can spread by word-of-mouth.
(Idea of opinion leaders spreads well...)

I Want enough individuals who will adopt and display.
I Displaying can be passive = free (yo-yo’s, fashion),

or active = harder to achieve (political messages).
I Entities can be novel or designed to combine with

others, e.g. block another one.
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