Branching H Branching
Networks OUﬂ | ne Networks

Branching Networks Introduction

Complex Networks, Course 295A, Spring, 2008 River Networks

Definitions
Allometry

Laws

Stream Ordering
Horton’s Laws
Tokunaga'’s Law
Horton < Tokunaga
Reducing Horton
Scaling relations
Fluctuations

Prof. Peter Dodds

Department of Mathematics & Statistics
University of Vermont

Models
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. References
Frame 1/121 Frame 2/121
F LA F YA
. Branchi . Branchi
Introduction s Branching networks are everywhere... Nefwork:

Branching networks are useful things:

Introduction

Introduction

HydroSHEDS

Amazon Basin

» Fundamental to material supply and collection

» Supply: From one source to many sinks in 2- or 3-d.

» Collection: From many sources to one sink in 2- or
3-d.

» Typically observe hierarchical, recursive self-similar
structure

River network derived
from SRTM elevation data
at 500 m resolution

Only
major
rivers and 7}
streams are
visualized

Examples:

» River networks (our focus)
» Cardiovascular networks

» Plants
>
>

River line width
proportional to
upstream basin area
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Evolutionary trees
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Branching networks are everywhere...

http://en.wikipedia.org/wiki/Image:Applebox.JPG (EH)

Basic basin quantities: a, /, L, L :

» a=drainage
basin area

» /= length of
longest (main)
stream (which
may be fractal)

> [ = LH =
longitudinal length
of basin

» L =L, =width of

v basin
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Introduction
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Definitions.
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Geomorphological networks

Definitions

>

Drainage basin for a point p is the complete region of
land from which overland flow drains through p.

Definition most sensible for a point in a stream.

» Recursive structure: Basins contain basins and so

v

on.

In principle, a drainage basin is defined at every
point on a landscape.

On flat hillslopes, drainage basins are effectively
linear.

We treat subsurface and surface flow as following the
gradient of the surface.

Okay for large-scale networks...

Allometry

Isometry: dimensions scale linearly with each other.

Allometry: dimensions scale nonlinearly.

Branching
Networks

Definitions.
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Basin allometry Networke ‘Laws’ Networke
» Hack’s law (1957) [°!:

Introduction

Introduction

A River | River works

. WOrKS ‘ h
Allometric

relationships:
reportedly 0.5 < h < 0.7

» Scaling of main stream length with basin size:

¢ L9

References H References

o L9

» Combine above: reportedly 1.0 < d < 1.1

2o L9/h =D » Basin allometry:

LH X ah/dE 31/D

D < 2 — basins elongate.

Frame 11/121 Frame 12/121
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Branching

Branching

There are a few more ‘laws’: ¥ Networks Reported parameter values:” Notworks

Introduction

Relation: Name or description: Introduction
Fver Networks Parameter: Real networks: River Networks
Tx = T1(R7)X Tokunaga’s law

Laws Laws

¢~ L9 self-affinity of single channels R, 3.0-5.0
n,/n,+1 = R, Horton’s law of stream numbers R, 3.0-6.0
lw11/l, = R, Horton’s law of main stream lengths R,=Rr 1.5-3.0
a,.1/a, = Ry Horton’s law of basin areas T, 1.0-1.5
S.+1/8, = Rs Horton’s law of stream segment lengths [ d 1.1+0.01 References
L, ~ LH scaling of basin widths D 1.8=+0.1
P(a) ~ a™ probability of basin areas h 0.50-0.70
P(¢) ~ ¢~ probability of stream lengths 7 1.43+0.05
¢~ a" Hack’s law v 1.8+0.1
a~ LP scaling of basin areas H 0.75-0.80
A~ a’ Langbein’s law 5 0.50-0.70
A~ L? variation of Langbein’s law ¢ 1.05+0.05

Frame 14/121 Frame 15/121
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Kind of a mess...

Order of business:

1. Find out how these relationships are connected.
2. Determine most fundamental description.
3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

Stream Ordering:

Some definitions:
» A channel head is a point in landscape where flow
becomes focused enough to form a stream.

» A source stream is defined as the stream that
reaches from a channel head to a junction with
another stream.

» Roughly analogous to capillary vessels.
» Use symbol w = 1,2, 3, ... for stream order.

Branching
Networks
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Stream Ordering:

Method for describing network architecture:

» Introduced by Horton (1945) !

» Modified by Strahler (1957) "¢

» Term: Horton-Strahler Stream Ordering ']

» Can be seen as iterative trimming of a network.

Stream Ordering:

1. Label all source streams as order w = 1 and remove.

2. Label all new source streams as order w = 2 and
remove.

3. Repeat until one stream is left (order = Q)

4. Basin is said to be of the order of the last stream
removed.

5. Example above is a basin of order Q = 3.

Branching
Networks
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Stream Ordering—A large example:

Mississippi
4n
46
44
42
g
E 40
T 38 _
36 :
- )= 11 g
KT S 10 %
32t = 9
3 ° i
-105 -100 -95 -90 -85
longitude

Stream Ordering:

One problem:

» Resolution of data messes with ordering

» Micro-description changes (e.g., order of a basin
may increase)

» ... but relationships based on ordering appear to be
robust to resolution changes.

Networke Stream Ordering:
Another way to define ordering:

» Follow all labelled streams downstream

the resulting stream has order incremented by 1

» As before, label all source streams as order w = 1.

» Whenever two streams of the same order (w) meet,

(w—+1).
» If streams of different orders . Mississippi
wq and wo meet, then the 49

resultant stream has order
equal to the largest of the two. €4

» Simple rule: N
3 = vy u
wy = max(w1 , wg) + (5W1 wo 22 —
Frame 21/121 . -105 _1(I)gngi_ti?:|e -90 -85
5 9o where ¢ is the Kronecker delta.
Networks Stream Ordering:
Utility:

» Stream ordering helpfully discretizes a network.
» Goal: understand network architecture

Frame 23/121
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Stream Ordering:

Resultant definitions:

» A basin of order Q has n,, streams (or sub-basins) of
order w.

> Ny > Nyt
» An order w basin has area a,,.

» An order w basin has a main stream length 7.
» An order w basin has a stream segment length s,

1. an order w stream segment is only that part of the
stream which is actually of order w

2. an order w stream segment runs from the basin
outlet up to the junction of two order w — 1 streams

Horton’s laws

Horton’s Ratios:

» So... Horton’s laws are defined by three ratios:
Rn, R£7 and Ra.
» Horton’s laws describe exponential decay or growth:

Ny = Ny_1 /Rn
= w—Q/Rn2

— n1/Rnwf1
= ny e—(w—1)|n Rn

Branching

Networks

Frame 25/121
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Horton’s laws

Self-similarity of river networks

» First quantified by Horton (1945) "], expanded by

Schumm (1956) [

Three laws:

» Horton’s law of stream numbers:

‘nw/nw+1 — Rn > 1

» Horton’s law of stream lengths:

» Horton’s law of basin areas:

41/8 = Ra > 1

Horton’s laws

Similar story for area and length:

>

3, = 3 e(w—1)|n Ra

7, =7,ew-NnA

» As stream order increases, number drops and area

and length increase.

Branching
Networks
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Branching

Horton’s laws Y Horton’s laws e

A few more things:

Horton’s Laws

Horton’s Laws

» Horton’s laws are laws of averages. A bonus law:
» Averaging for number is across basins. » Horton’s law of stream segment lengths:
» Averaging for stream lengths and areas is within - -
basins. ‘Sw“/s‘” =R > 1
» Horton’s ratios go a long way to defining a branching » Can show that Rs = R,.
network...
» But we need one other piece of information...
Frame 30/121 Frame 31/121
&5 vae & vax
Horton’s laws in the real world: Mo Horton’s laws-at-large Mo

The Mississippi The Nile
- N,

= a,(sqkm)
I, (km)

3 : 103 Horton’s Laws Horton’s Laws
2 15 Blood networks:
1
1
. | 1 ! » Horton’s laws hold for sections of cardiovascular
123456 7 891011 10711234567891011 networks
w stream ordew . . .
The Amazon » Measuring such networks is tricky and messy...

- Ny,
= a,(sqkm)
km) #

» Vessel diameters obey an analogous Horton’s law.

oy

Frame 33/121

1234567891011 Frame 32/121

stream ordew =2 oo
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Horton’s laws Y

Observations:

» Horton’s ratios vary:

R, 3.0-5.0
R, 3.0-6.0
R, 15-3.0

» No accepted explanation for these values.
» Horton’s laws tell us how quantities vary from level to

level ...
» ... but they don’t explain how networks are
structured.
Frame 34/121
F LA
Network Architecture Nemarke
Definition:

» T, = the average number of side streams of order
v that enter as tributaries to streams of order 1

» u,v=1,2,3, ...
> u>v+1

» Recall each stream segment of order 1 is ‘generated’
by two streams of order p — 1

» These generating streams are not considered side
streams.

Frame 37/121

F Dae

Tokunaga'’s law

Delving deeper into network architecture:

» Tokunaga (1968) identified a clearer picture of
network structure [%': 22 23

» As per Horton-Strahler, use stream ordering.

» Focus: describe how streams of different orders
connect to each other.

» Tokunaga’s law is also a law of averages.

Network Architecture
Tokunaga’s law

» Property 1: Scale independence—depends only on
difference between orders:

T,LL,V = T;Lfl/

» Property 2: Number of side streams grows
exponentially with difference in orders:

T/hl/ = T1 (RT)/171/71

» We usually write Tokunaga’s law as:

T Ti(Rr)<" | where Ry ~2

Branching
Networks

Frame 36/121
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Networks

Tokunaga’s law—an example: pETe The Mississippi Branching

A Tokunaga graph:
= y=1
- 2
| o 25 ey
. ; ~ 4
Ty~ 5 15 NI
o - 6
Rr~4 o = ~- 7
L 05 —+— 8
-9
—— 10
Y 2345678091011
H
Frame 39/121 Frame 40/121
& Ao F Ao
Can Horton and Tokunaga be happy? Networke Let us make them happy Networke

We need one more ingredient:

Horton and Tokunaga seem different: Space-fillingness

» A network is space-filling if the average distance
Horon < Totunaga between adjacent streams is roughly constant. Horon < Totunaga

» Reasonable for river and cardiovascular networks
» For river networks:

Drainage density pqq = inverse of typical distance
between channels in a landscape.

» In terms of basin characteristics:

» Horton’s laws appear to contain less detailed
information than Tokunaga’s law.

» Oddly, Horton’s law has three parameters and
Tokunaga has two parameters.

» R,, Ry, and Rs versus T; and Rry.

» To make a connection, clearest approach is to start
with Tokunaga’s law...

Q
» Known result: Tokunaga — Horton 1. 22,23, 10. 2]

>_stream segment lengths > ", n,s,
basin area aan

Pdd =

Frame 42/121 Frame 43/121
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More with the happy-making thing

Start with Tokunaga’s law: Ty = T{R%™!

» Start looking for Horton’s stream number law:
n,/n,i1 = Rn.

» Estimate n,,, the number of streams of order w in
terms of other n,/, W' > w.

» Observe that each stream of order w terminates by

either:
w=3 W=3 4. Running into another stream of order w
and generating a stream of order w + 1...
W=+ > 2n,.1 Streams of order w do this
=4 w=3 2. Running into and being absorbed by a

stream of higher order o’ > w...

W=¢ » n, T, _, streams of order w do this

More with the happy-making thing

Create Horton ratios:
» Divide through by n, . 1:

Q—w
n 2 1 Nutk
2 BT N T (R et
M4 L I M4

» Left hand side looks good but we have n,,. x/n,1’s
hanging around on the right.

» Recall, we want to show R, = n,/n,, 1 is a constant,
independent of w...

Branching
Networks

Horton <= Tokunaga

Frame 44/121
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Branching
Networks

Horton <> Tokunaga

Frame 46/121
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More with the happy-making thing Mo

Putting things together:

>

>

Q
Ny = 2nw+1 =+ Z Tw’—w Ny
~—— ——

w'=w+1

generation absorption

Horton < Tokunaga
Substitute in T, = Ty(Ry) « ~1:

Q
n, =2n,,1+ Z T1(R7) Wowlp

w'=w+1

» Shift index to k = o' — w:
Q—w
o = 2 T1(Ry)<!
n nw+1 + 2 1( T) nw+k Frame 45/121
B F YA
More with the happy-making thing Mo

Finding Horton ratios:

>

v

v

v

v

v

Letting 2 — oo, we have

[o¢]

n n

w — 2 _|_ § T1 (RT)k_1 w+k (1 ) Horton <> Tokunaga
N4 k—1 N1

The ratio n,,, «/n,,.1 can only be a function of k due
to self-similarity (which is implicit in Tokunaga’s law).

The ratio n,,/n, 1 is independent of w and depends
only on Ty and Rr.

Can now call n,/n,+1 = Rp.
Immediately have n, /N1 = Fw’;(k*”.
Plug into Eq. (1)...

Frame 47/121
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More with the happy-making thing Networke More with the happy-making thing Mo
Finding Horton ratios:
Finding R, in terms of Ty and Rr:

» We are here: (R, —2)(1 — Rr/Rn) = T
» X R, to find quadratic in Rp:

» Now have:

Rn=2+)Y Ti(Rr)* 'R,V

k=1
00

=2+ T Y (Rr/Ry)"
k=1

(Rn—2)(Rn— Rr) = TiRn

>
T R2 —(2+ Ry + T1)Rn+ 2Rr =0
1—Rr/R
7/Fn » Solution:
) (2+FI’T+T1):|:\/(2+RT+T1)2—8RT
» Rearrange to find: Rn = 5
Frame 48/121 Frame 49/121
&5 vae & vax
Finding other Horton ratios Networke Horton and Tokunaga are happy Mo
Connect Tokunaga to R
J ° Altogether then:
» Now use uniform drainage density pqq4.
>

» Assume side streams are roughly separated by
distance 1/paq-

» For an order w stream segment, expected length is

w—1
8 = pyg <1 + Z Tk)

k=1

= éw/éw_1 =Rr= Rs=ARr

» Recall R, = Rs so

|R,= Ry

» And from before:
» Substitute in Tokunaga’s law T = Ty A5

w—1
80 =~ pgg (1 + T ) R}“) x R

k=1

(2+Rr+Ty)++/(2+Rr+T1)2 -8Ry

Rn: 2

Frame 50/121 Frame 51/121
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Horton and Tokunaga are happy

Some observations:

» R, and R, depend on Ty and Rr.
» Seems that R; must as well...

» Suggests Horton’s laws must contain some
redundancy

» We’'ll in fact see that R; = R,.

» Also: Both Tokunaga’s law and Horton’s laws can be
generalized to relationships between statistical
distributions. [ #

Horton and Tokunaga are friends

From Horton to Tokunaga !

» Assume Horton’s laws
hold for number and
length

» Start with an order w
stream

» Scale up by a factor of
R,, orders increment

» Maintain drainage
density by adding new
order 1 streams

Branching
Networks

Horton <= Tokunaga

Frame 52/121
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Networks

Horton <> Tokunaga

Frame 54/121
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Horton and Tokunaga are happy

The other way round

» Note: We can invert the expresssions for R, and Ry
to find Tokunaga’s parameters in terms of Horton’s
parameters.

Rr = Ry,

» Suggests we should be able to argue that Horton’s
laws imply Tokunaga'’s laws (if drainage density is
uniform)...

Horton and Tokunaga are friends

...and in detail:

» Must retain same drainage density.

» Add an extra (R, — 1) first order streams for each
original tributary.

» Since number of first order streams is now given by
Tk we have:

K
Tir1 = (R — 1) (ZT,-+1>.
i=1

» For large w, Tokunaga’s law is the solution—let’s
check...

Branching
Networks

Horton <> Tokunaga

Frame 53/121
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Horton and Tokunaga are friends Networke Horton’s laws of area and number: Networke
The Mississippi The Mississippi
Just checking: ] N
. . 3 ] ® |
» Substitute Tokunaga's law T; = TyR; ' = T{R,/™" ! L]
into Z T
Tk+1 = Rg—1 (ZT+1> 9 :5 a=1
> W ﬁThe Nile 1 — The Nile
R - R

Tt = (Re—1) (Zﬂﬂ’ ‘+1> N W

. [ w

R k 1 10" 10t %

R, — 1T 1 i o |

( E ) 1 ( RZ - 1 + ) 10 123456789101 ) 10 1234567891011
stream orde® stream orde®
R k
~(R-N)Thg—7=T Ry ... yep. » In right plots, stream number graph has been flipped

¢ Frame 56/121 Vertically. Frame 58/121
5 oac » Highly suggestive that R, = R;... 5 oac
Measuring Horton ratios is tricky: Networks Mississippi: Networks

w range R R, R, Rs Ra/Rn
[2, 3] 527 526 248 2.30 1.00
[2,5] 486 496 242 2.31 1.02
[2,7] 4.77 4.88 2.40 2.31 1.02
[3, 4] 472 491 241 234 1.04
[3, 6] 470 483 240 2.35 1.03
[3, 8] 460 479 238 2.34 1.04
[4, 6] 469 481 240 2.36 1.02
[4, 8] 457 477 238 2.34 1.05
[5,7] 468 483 236 2.29 1.03
[6,7] 463 476 230 2.16 1.03
[7,8] 416 467 241 256 1.12

meany 469 485 240 2.33 1.04

stddevo 0.21 0.13 0.04 0.07 0.08
o/u 0.045 0.027 0.015 0.031 0.024

» How robust are our estimates of ratios?

» Rule of thumb: discard data for two smallest and two
largest orders.

Frame 59/121 Frame 60/121
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Amazon: Networke Reducing Horton’s laws: Mo

Rough first effort to show R, = R.:
w range R R, R, Rs Ra/Rn

[2, 3] 478 471 247 2,08 0.99
[2,5] 455 458 232 212 1.01

» aq o« sum of all stream lengths in a order 2 basin
(assuming uniform drainage density)

[2,7] 442 453 224 210 1.02 » So:
[3.5] 445 452 226 214 1.0 e
3,77 435 449 220 210 1.03 aq = Y NuSu/pu
[4,6] 438 454 222 218 1.03 w=T
[5, 6] 438 462 222 2.21 1.06 Q o
[6,7] 408 427 205 1.83 1.05 x> R 1 5 Ry
mean u 442 453 225 2.10 1.02 w=1 pg g
stddeve 0.17 0.10 0.10 0.09 0.02
o/u  0.038 0.023 0.045 0.042 0.019 _ R, z": Rs\*“
~ R = \R,
Frame 61/121 Frame 62/121
F Dae F Dae
Reducing Horton’s laws: Networke Reducing Horton’s laws: Mo
Continued ...
>
R?_ & <Rs>w
agx =5 ) (o5
s 25 \Fn Not quite:
_ Fﬁ§1 Rs1—(Rs/Rn)? » ... But this only a rough argument as Horton’s laws
Rs " Rn 1—(Rs/Rn) do not imply a strict hierarchy
1 » Need to account for sidebranching.
~RY 18—~ _asQ / -
1= (Rs/Ry) » Problem set 1 question....

» So, aq is growing like B2 and therefore:

Frame 63/121 Frame 64/121
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Equipartitioning:

Intriguing division of area:

» Observe: Combined area of basins of order w
independent of w.

» Not obvious: basins of low orders not necessarily
contained in basis on higher orders.

» Story:
R,= R, = ] n,a, = const
» Reason:
nw X (Rn)_w
a, x (Ra)* n;1
Scaling laws

The story so far:

» Natural branching networks are hierarchical,
self-similar structures

» Hierarchy is mixed
» Tokunaga’s law describes detailed architecture:
Tk = TiRE.
» We have connected Tokunaga’s and Horton’s laws
» Only two Horton laws are independent (R, = Ra)

» Only two parameters are independent:
(Ty,Rr) < (Rn, Rs)

Branching
Networks

Reducing Horton

Frame 65/121

F Dae

Branching
Networks

Frame 68/121
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Equipartitioning:

Some examples:

Mississippi basin partitioning
[

Amagzon basin partitioning

o ®
0f o o @ @

1 2 3 456 7 8 91011 12 3 456 7 8 91011
[ (O]

Nile basin partitioning

o] ]
T O0H o o o ®

1 2 3 456 7 8 910
[

Scaling laws

A little further...

>

Ignore stream ordering for the moment

» Pick a random location on a branching network p.

Each point p is associated with a basin and a longest
stream length

Q: What is probability that the p’s drainage basin has
area a? P(a) < a " forlarge a

Q: What is probability that the longest stream from p
has length ¢? P(¢) oc ¢=7 for large ¢

Roughly observed: 1.3 <7 <1.5and1.7 <~ <20

Branching
Networks

Reducing Horton

Frame 66/121
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Branching Branching

SC&' i ng IaWS Networks SCa| i ng IaWS Networks

Probability distributions with power-law decays Connecting exponents

» We have the detailed picture of branching networks
(Tokunaga and Horton)

» Plan: Derive P(a)  a ™ and P(¢) x £~ starting with
Tokunaga/Horton story [20- 1- 2]
» Let’'s work on P(¢)...

» Our first fudge: assume Horton’s laws hold
throughout a basin of order Q.

» (We know they deviate from strict laws for low w and
high w but not too much.)

» Next: place stick between teeth. Bite stick. Proceed.

» We see them everywhere:
» Earthquake magnitudes (Gutenberg-Richter law)
» City sizes (Zipf’s law)
» Word frequency (Zipf’s law) [
» Wealth (maybe not—at least heavy tailed)
» Statistical mechanics (phase transitions) °/

» A big part of the story of complex systems

» Arise from mechanisms: growth, randomness,
optimization, ...

» Our task is always to illuminate the mechanism...

Frame 70/121 Frame 71/121
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Branching

Branching

SC&' i ng IaWS Networks SCa| i ng IaWS Networks

Finding ~:

» The connection between P(x) and P~ (x) when P(x)
has a power law tail is simple:

» Given P(¢) ~ ¢~7 large ¢ then for large enough 4.

Finding ~:

» Often useful to work with cumulative distributions,
especially when dealing with power-law distributions.

» The complementary cumulative distribution turns out

gmax
to be most useful: P=(L.) = /é P(¢)de

=0

Emax
P K* :Pf E* — PEdg Cmax
()= P> t)= [P0 [
0=L,
> Y4
Po(t,)=1—P(l < 1,) A

» Also known as the exceedance probability.

o 7T for fmax > L

Frame 73/121

Frame 72/121
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Scaling laws Networke Scaling laws Networke

Finding ~: Finding ~:
» Aim: determine probability of randomly choosing a » Set /., =/{, forsome 1 < w < Q.
point on a network with main stream length > /, >
» Assume some spatial sampling resolution A P.(0) = N-(bo; D) fo,:wH N, Sy /A
» Landscape is broken up into grid of A x A sites TTUNL(0:8) T2 sy /A
» Approximate P (¢.) as
» A’s cancel
P ((,) = N (¢ A) » Denominator is aqpqq, a constant.
“NTUONS(0;A) .
>\ » So... using Horton’s laws...
where N (¢,; A) is the number of sites with main Q Q
stream length > /... P.(0,) x Z Ny Sy = Z (1 -R,?_“’)(§1~R;”_1)
» Use Horton’s law of stream segments: W' =w+1 W' =w+1
Sw/Su—1 = Rs...
Frame 74/121 Frame 75/121
&5 vae & vax
Scaling laws Networke Scaling laws Networke
Finding ~:
» We are here: Finding +:
Q >
Pa(b) o D (1- A7) - R ot o\ Rt
w'=w+1 s In
w P-(4,) x ZO (Rn) x ; <Rs>

» Cleaning up irrelevant constants:

» Since Rp < Rsand 1 < w « Q,

Q w’
Po(lu) o Y. As
" s (2 ()

w'=w+1

» Change summation order by substituting

n __ _ / . . :
W' =02 -w again using >_7 ,a" = (8t - 1)/(a— 1)
» Sumis now fromw” =0tow” =Q —w — 1
(equivalent to w’ = Q downto w’ = w + 1) Frame 76/121 Frame 77/121
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Branching Branching

Scaling IaWS Networks Scaling IaWS Networks
Finding ~:
Finding ~: » Therefore:

» Nearly there:

P-(0,) ox @« n(An/As) — (ewln Rs>_|”(Rn/Rs)/|ﬂ(Rs)

P. (L) x (R) 7 eein(An/A)

Rs
>
o £, ~n(Rn/Rs)/In R
» Need to express right hand side in terms of Z,,. .
» Recall that £, ~ 7y RZ . _ ¢y —(nRy—InRs)/In Rs
w
> >
w w wln Rs
{, x R =R¢ =e“" — ¢—INAn/In As+1
>
Frame 78/121 = ga:’\’/+1 Frame 79/121
&5 vae & vax
Scaling laws Networke Scaling laws Networke
Hack’s law: [°]
Finding ~: >

» Typically observed that 0.5 < h < 0.7.
» Use Horton laws to connect h to Horton ratios:

» And so we have:

v=InRy/InRs
| |

» Proceeding in a similar fashion, we can show ¢, x R¥ and a, o« RY

[T=2-1InRs/INR, =21/

» Observe:

» Such connections between exponents are called In As/In An

scaling relations
» Let’s connect to one last relationship: Hack’s law

0, o ewInRs (ewIan>

x (R;;))lnﬂs/lan — aInRs/InFn’n :>’h: In Rs/ln Rn‘

w

Frame 80/121 Frame 81/121
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Connecting exponents pETe
Only 3 parameters are independent:

Equipartitioning reexamined: Networke

Recall this story:

e.g., take d, R,, and R;

Mississippi basin partitioning

Amagzon basin partitioning

relation: scaling relation/parameter: *! e
f~ L9 d [ . 04 ot
T« =Ty(R)*' Ty =R,—Rs—2+2Rs/R, g:o-e ceee*” L eee’e
Rr = Rs 04
nw/nw+1::F% Rn 02 ;
é_w+1/g_1w = Ry R2= Ry 5
Ew—H/ew:RE REZRS 1234527891011 1234527891011
0~ a" h=log Rs/log R, Nile basin partitioning
an~LP D=d/h
L, ~LH H=d/h—1 .
Pla)~a™ T=2-—~h im-...°'
P()~¢  y=1/h = o4
A~ a° B=1+h 0.2 i
N~ LP 0 = d Frame 82/121 H Frame 83/121
&F LA 1 2 3 45 6 7 8 9 10 &F LA
Equipartitioning Natwors Fluctuations R

Moving beyond the mean:

» What about » Both Horton’s laws and Tokunaga’s law relate

P(a)~a™ 7 average properties, e.g.,
» Since 7 > 1, suggests no equipartitioning: 5,/5, 1 — Rs

~ 7T+1 . . . . . .
aP(a) ~ a 7 const » Natural generalization to consideration relationships

between probability distributions

» Yields rich and full description of branching network
structure

» See into the heart of randomness...

» P(a) overcounts basins within basins...
» while stream ordering separates basins...

Frame 84/121 Frame 86/121
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A toy model—Scheidegger’s model Generalizing Horton’s laws
> 7, o (R)* = N(l|w) = (RaR:)“Fy(¢/RY)

Directed random networks [12: 13 _
» a, x (Ra)“ = N(alw) = (R,%)_‘”Fa(a/F?ﬁ)

N N
S ¢ Mississippi: length distributions _, Mississippi: length distributions
1 10
) % ° “’:3 R, =4.60, R=2.38
4 Fo
6 w0t §
° ° g _ z |4
z o
(. < 5 3107 ¢
> &4 = e s
> 777 NS N K 2 1 i
10° w=
4
5
P(\) =P(/)=1/2 - L g
0 100 200 300 400 0 1 L, 2 3

| (km) |
» Scaling collapse works well for intermediate orders
» All moments grow exponentially with order

» Flow is directed downwards
» Useful and interesting test case—more later...

Frame 87/121 Frame 88/121
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Branching
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Generalizing Horton’s laws Generalizing Horton’s laws

Comparison of predicted versus measured main stream
lengths for large scale river networks (in 103 km):
» How well does overall basin fit internal pattern?

. Mississippi basin: la Lo ay E/EQ UK/KQ

40 — » Actual length = 4920 km Mississippi 4.92 11.10 5.60 0.44 0.51

1.4 o3 (at 1 km res) Amazon 575 918 6.85 063 0.75

é‘\ 1 E -- <> » Predicted Mean Iength Nile 6.49 2.66 220 2.44 0.83

irog Y 11100 km (éongo 5.07 10.13 575 050 0.57

Fof |  Prodicted Std dev - ansas 1.07 237 174 045 073

=1, 2600 km Mississippi 2?4 7325 50538 ?)/gg 05/719
0d J ississippi 2. : : . .

L& J- > powaiengibMean Amazon 540 9.07 804 060 0.89

° oy 19 gin =a4 7% Nile 3.08 0.96 079 3.19 0.82

| > Okay. Congo 3.70 10.09 828 0.37 0.82

Kansas 0.14 049 042 0.28 0.86

Frame 89/121

F Dae

Frame 90/121
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Combining stream segments distributions: Crnci

Networks

Generalizing Horton’s laws

» Next level up: Main stream length distributions must
combine to give overall distribution for stream length

Mississippi: length distributions

* %
+* '

* % w=3

1

10

N(I [o0)

=2

10

-4

10

» Stream segments
sum to give main
stream lengths

|

Fluctuations

H=w
L, = E S,

p=1

» P(¢,)isa
convolution of
distributions for
the s,

Frame 91/121

F Dae

Branching
Networks

> P(l) ~ (77

» Another round of
convolutions °!

» Interesting...

Frame 93/121

F Dae

Generalizing Horton’s laws

» Sum of variables ¢, =

of distributions:

'—1 Su leads to convolution

N(¢|w) = N(s[1) * N(s|2) * - - - * N(s|w)

Mississippi: stream segments

Rn =4.69, ﬁl: iﬁf

© P(Iu()s), w)
1

0
|

log,, R?Q R

Number and area
distributions for the
Scheidegger model
P(n ) versus P(ag).

1
N(S‘w) = Rwa
nMy

F(s/R)

F(x)=e*/¢
Mississippi: £ ~ 900 m.

Branching
Networks

Fluctuations

Frame 92/121
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Fluctuations

Frame 94/121
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Generalizing Tokunaga’s law

Branching
Networks

Scheidegger:
-1
% (@) (b)
_2% S
~ E‘%VVVVVVVWV =
= 8 %@ o a
LR e Fuchators
=) o B V& o
o % i WW ~5
- v o) v 5
4 %, Vv S S8R90
o o, v % o mo
@ m v " q
5 DD _3 M m
0 100 200 300 0 01 02 03 04 05 06
-
Tuw TR

» Observe exponential distributions for T, ,
» Scaling collapse works using Rs

Generalizing Tokunaga’s law

So
P(Tuw) = (Re)" ™"~ Py [T /(R ]

where

Pi(z) = ;te_z/&.

P(s.) < P(T,,.)

» Exponentials arise from randomness.
» Look at joint probability P(s,, T,..).

Frame 95/121

F Dae
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Fluctuations

Frame 97/121

F Dae

L Bi hi
Generalizing Tokunaga’s law Notworks
Mississippi:
2.5% us
W @ T o
1% - 1 %
~ ] B 2 5
21l v™® Yo = 25 R
£ Ve So o 0 e
E::,» v b Q%O% '>/-\ 2 O@ o
o I Vg 2® o @ TIHDO D
= v o0& o 90D ° 5
o o 0 d 813 @O@ODO@ 00 g
0.5 w om o 2 5% o
u} 0 oo@a@oo| — 4
%oV
GO 20 40 60 0.5
0 1 2 3\1 5
Tu,v Tu,v (RI ©)
» Same data collapse for Mississippi...
Frame 96/121
F DA
- Bi hi
Generalizing Tokunaga’s law Notworks

Network architecture:

—_—
> Inter-tributary i
lengths s
exponentially
distributed

» Leads to random
spatial distribution
of stream
segments

Frame 98/121
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Branching

Generalizing Tokunaga’s law Networks Generalizing Tokunaga’s law Nemwarks

» Joint distribution for generalized version of

» Follow streams segments down stream from their Tokunaga’s law:
beginning 1
- . (Su— .
» Probability (or rate) of an order u stream segment P(s,, T,,) = p#< ’f,_ )pl,TW(1 —p, — pu)SrTu,r1
w,v

terminating is constant:
Py ~1/(Rs)" &5

Probability decays exponentially with stream order
Inter-tributary lengths exponentially distributed

where
» p, = probability of absorbing an order v side stream
» p,, = probability of an order ;. stream terminating

» Approximation: depends on distance units of s,
» In each unit of distance along stream, there is one

v

v

» = random spatial distribution of stream segments . .
chance of a side stream entering or the stream
terminating.
Frame 99/121 Frame 100/121
&5 vae & vax
Generalizing Tokunaga’s law Networke Generalizing Tokunaga’s law Networke

> Now deal with thing: » Checking form of P(s,,, T,,,,) works:

. (S, —1
P(sy, Tyv) _Pu( ‘;-

w,v

Tuv(4 _ m 7 \Su—Tuw—1 Scheidegger:
)py (1 —py = Bu)> " :

@

0.8] 1

> Set (x,y) = (Su, Tup)and g =1—p, — Py,
approximate liberally.

» Obtain

0.6]

W

z

[FWI

0.4

0.2]
!
0

v=T /1©
[T

P(x,y) = Nx "2 [F(y/x)]"

- (50

where

Frame 101/121 Frame 102/121

F HaAe F DA




Generalizing Tokunaga’s law

» Checking form of P(s,,,

Scheidegger:

T

JTRY

) works:

Branching
Networks

Fluctuations

Frame 103/121

F Dae

Generalizing Tokunaga’s law

» Checking form of P(s,,

Scheidegger:

@

T

1) WOrKS:

®
W)
-

0.5

i

@)W
o

|0910(R|
A

[T

[

01 0 01 02
©)_ w2-vi2
v /Iu pJ(R®)

Branching
Networks

Fluctuations

Frame 104/121

F Dae

Branching
Networks

Branching
Networks

Generalizing Tokunaga’s law Models

Random subnetworks on a Bethe lattice [®]

» Dominant theoretical concept
for several decades.

» Checking form of P(s,,, T,,,,) works:

Mississippi: )
15 i » Bethe lattices are fun and
& @ = 0§ 5P () tractable.
EE = v Fo? o » Led to idea of “Statistical
= ¥ e 02 8V inevitability” of river network
3 °% & Voo 8]
= v v oo . .
'5—_,0 U . . 7. % o oo o°a statistics
g oo < o so » But Bethe lattices
- v Ow o o S -0.4 .
0 g ooo unconnected with surfaces.
o O - ov v O
o o, » In fact, Bethe lattices ~
0 0.15 0.3 0.45 0.6 -0.5 -0.25 0 0.25 0.5 T . .
TN T, 1190 JR )" infinite dimensional spaces
(oops).
Frame 105/121 > SO Iet’s move on... Frame 107/121
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Scheidegger’s model

Directed random networks ['2 1¢]
>
> <
v
) ) g% %
(
> ARNCA @Q D)

P(\) = P(/) = 1/2

» Functional form of all scaling laws exhibited but
exponents differ from real world '8 19 7]

e

/\//

Scheidegger’s model

Increasing partition of N=64 9 9

Branching

Networks

Frame 108/121

F Dae
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Frame 110/121

F Dae

A toy model—Scheidegger’s model

Random walk basins:

» Boundaries of basins are random walks

area a

Scheidegger’s model

Prob for first return of a random walk in (1+1)
dimensions:

>

L

and so P(¢) o« £73/2,
» Typical area for a walk of length nis o n®/2:

¢ oc a%/8.

» Find=4/3, h=2/3,v=3/2,d =1.
» Noter=2—hand~=1/h.
» R, and R, have not been derived analytically.

Branching
Networks

Frame 109/121
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Optimal channel networks Networks Theoretical networks Networks

Rodriguez-Iturbe, Rinaldo, et al.['"! Summary of universality classes:

» Landscapes h(X) evolve such that energy dissipation network h d
€ is minimized, where Non-convergent flow 1 1
_ . ., Directed random 2/3 1
€ o / dr (flux) x (force) ~ Y " a;Vhi ~ ) g Undirected random 5/8 5/4
i i Self-similar 1/2 1
OCN’s () 1/2 1
» Landscapes obtained numerically give exponents OCN's (1) 2/3 1
near that of real networks. OCN's (Ill) 3/5 1
» But: numerical method used matters. Real rivers 0.5-0.7 1.0-1.2

h= ¢ x a" (Hack’s law).

» And: Maritan et al. find basic universality classes are
d=(x Lﬁ’ (stream self-affinity).

that of Scheidegger, self-similar, and a third kind of

random network [/

Frame 112/121 Frame 113/121
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