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Introduction

Branching networks are useful things:

I Fundamental to material supply and collection
I Supply: From one source to many sinks in 2- or 3-d.
I Collection: From many sources to one sink in 2- or

3-d.
I Typically observe hierarchical, recursive self-similar

structure

Examples:

I River networks (our focus)
I Cardiovascular networks
I Plants
I Evolutionary trees
I Organizations (only in theory...)
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Branching networks are everywhere...

http://hydrosheds.cr.usgs.gov/ (�)

http://hydrosheds.cr.usgs.gov/
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Branching networks are everywhere...

http://en.wikipedia.org/wiki/Image:Applebox.JPG (�)

http://en.wikipedia.org/wiki/Image:Applebox.JPG
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Geomorphological networks

Definitions
I Drainage basin for a point p is the complete region of

land from which overland flow drains through p.
I Definition most sensible for a point in a stream.
I Recursive structure: Basins contain basins and so

on.
I In principle, a drainage basin is defined at every

point on a landscape.
I On flat hillslopes, drainage basins are effectively

linear.
I We treat subsurface and surface flow as following the

gradient of the surface.
I Okay for large-scale networks...
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Basic basin quantities: a, l , L‖, L⊥:

a
L?0

L? Lk = L
a0 ll0Lk0

I a = drainage
basin area

I ` = length of
longest (main)
stream (which
may be fractal)

I L = L‖ =
longitudinal length
of basin

I L = L⊥ = width of
basin
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Allometry

Isometry: dimensions scale linearly with each other.

Allometry: dimensions scale nonlinearly.
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Basin allometry

a
L?0

L? Lk = L
a0 ll0Lk0

Allometric
relationships:

I

` ∝ ah

I

` ∝ Ld

I Combine above:

a ∝ Ld/h ≡ LD



Branching
Networks

Introduction

River Networks
Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

References

Frame 12/121

‘Laws’
I Hack’s law (1957) [6]:

` ∝ ah

reportedly 0.5 < h < 0.7

I Scaling of main stream length with basin size:

` ∝ Ld
‖

reportedly 1.0 < d < 1.1

I Basin allometry:

L‖ ∝ ah/d ≡ a1/D

D < 2 → basins elongate.
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There are a few more ‘laws’: [2]

Relation: Name or description:

Tk = T1(RT )k Tokunaga’s law
` ∼ Ld self-affinity of single channels

nω/nω+1 = Rn Horton’s law of stream numbers
¯̀
ω+1/¯̀

ω = R` Horton’s law of main stream lengths
āω+1/āω = Ra Horton’s law of basin areas
s̄ω+1/s̄ω = Rs Horton’s law of stream segment lengths

L⊥ ∼ LH scaling of basin widths
P(a) ∼ a−τ probability of basin areas
P(`) ∼ `−γ probability of stream lengths

` ∼ ah Hack’s law
a ∼ LD scaling of basin areas
Λ ∼ aβ Langbein’s law
λ ∼ Lϕ variation of Langbein’s law
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Reported parameter values: [2]

Parameter: Real networks:

Rn 3.0–5.0
Ra 3.0–6.0

R` = RT 1.5–3.0
T1 1.0–1.5
d 1.1± 0.01
D 1.8± 0.1
h 0.50–0.70
τ 1.43± 0.05
γ 1.8± 0.1
H 0.75–0.80
β 0.50–0.70
ϕ 1.05± 0.05
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Kind of a mess...

Order of business:

1. Find out how these relationships are connected.
2. Determine most fundamental description.
3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...



Branching
Networks

Introduction

River Networks
Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

References

Frame 18/121

Stream Ordering:

Method for describing network architecture:

I Introduced by Horton (1945) [7]

I Modified by Strahler (1957) [16]

I Term: Horton-Strahler Stream Ordering [11]

I Can be seen as iterative trimming of a network.
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Stream Ordering:

Some definitions:
I A channel head is a point in landscape where flow

becomes focused enough to form a stream.
I A source stream is defined as the stream that

reaches from a channel head to a junction with
another stream.

I Roughly analogous to capillary vessels.
I Use symbol ω = 1, 2, 3, ... for stream order.
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Stream Ordering:

1. Label all source streams as order ω = 1 and remove.
2. Label all new source streams as order ω = 2 and

remove.
3. Repeat until one stream is left (order = Ω)
4. Basin is said to be of the order of the last stream

removed.
5. Example above is a basin of order Ω = 3.
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Stream Ordering—A large example:
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Stream Ordering:

Another way to define ordering:

I As before, label all source streams as order ω = 1.
I Follow all labelled streams downstream
I Whenever two streams of the same order (ω) meet,

the resulting stream has order incremented by 1
(ω + 1).

I If streams of different orders
ω1 and ω2 meet, then the
resultant stream has order
equal to the largest of the two.

I Simple rule:

ω3 = max(ω1, ω2) + δω1,ω2

where δ is the Kronecker delta.
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Stream Ordering:

One problem:

I Resolution of data messes with ordering
I Micro-description changes (e.g., order of a basin

may increase)
I ... but relationships based on ordering appear to be

robust to resolution changes.
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Stream Ordering:

Utility:

I Stream ordering helpfully discretizes a network.
I Goal: understand network architecture
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Stream Ordering:

Resultant definitions:
I A basin of order Ω has nω streams (or sub-basins) of

order ω.
I nω > nω+1

I An order ω basin has area aω.
I An order ω basin has a main stream length `ω.
I An order ω basin has a stream segment length sω

1. an order ω stream segment is only that part of the
stream which is actually of order ω

2. an order ω stream segment runs from the basin
outlet up to the junction of two order ω − 1 streams
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Horton’s laws
Self-similarity of river networks

I First quantified by Horton (1945) [7], expanded by
Schumm (1956) [14]

Three laws:
I Horton’s law of stream numbers:

nω/nω+1 = Rn > 1

I Horton’s law of stream lengths:

¯̀
ω+1/¯̀

ω = R` > 1

I Horton’s law of basin areas:

āω+1/āω = Ra > 1
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Horton’s laws

Horton’s Ratios:
I So... Horton’s laws are defined by three ratios:

Rn, R`, and Ra.

I Horton’s laws describe exponential decay or growth:

nω = nω−1/Rn

= nω−2/R 2
n

...

= n1/R ω−1
n

= n1e−(ω−1) ln Rn
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Horton’s laws

Similar story for area and length:

I

āω = ā1e(ω−1) ln Ra

I

¯̀
ω = ¯̀1e(ω−1) ln R`

I As stream order increases, number drops and area
and length increase.
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Horton’s laws

A few more things:

I Horton’s laws are laws of averages.
I Averaging for number is across basins.
I Averaging for stream lengths and areas is within

basins.
I Horton’s ratios go a long way to defining a branching

network...
I But we need one other piece of information...
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Horton’s laws

A bonus law:
I Horton’s law of stream segment lengths:

s̄ω+1/s̄ω = Rs > 1

I Can show that Rs = R`.
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Horton’s laws in the real world:
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Horton’s laws-at-large

Blood networks:
I Horton’s laws hold for sections of cardiovascular

networks
I Measuring such networks is tricky and messy...
I Vessel diameters obey an analogous Horton’s law.
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Horton’s laws

Observations:
I Horton’s ratios vary:

Rn 3.0–5.0
Ra 3.0–6.0
R` 1.5–3.0

I No accepted explanation for these values.
I Horton’s laws tell us how quantities vary from level to

level ...
I ... but they don’t explain how networks are

structured.
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Tokunaga’s law

Delving deeper into network architecture:

I Tokunaga (1968) identified a clearer picture of
network structure [21, 22, 23]

I As per Horton-Strahler, use stream ordering.
I Focus: describe how streams of different orders

connect to each other.
I Tokunaga’s law is also a law of averages.
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Network Architecture

Definition:
I Tµ,ν = the average number of side streams of order

ν that enter as tributaries to streams of order µ

I µ, ν = 1, 2, 3, . . .
I µ ≥ ν + 1
I Recall each stream segment of order µ is ‘generated’

by two streams of order µ− 1
I These generating streams are not considered side

streams.
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Network Architecture
Tokunaga’s law

I Property 1: Scale independence—depends only on
difference between orders:

Tµ,ν = Tµ−ν

I Property 2: Number of side streams grows
exponentially with difference in orders:

Tµ,ν = T1(RT )µ−ν−1

I We usually write Tokunaga’s law as:

Tk = T1(RT )k−1 where RT ' 2

.
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Tokunaga’s law—an example:

T1 ' 2

RT ' 4
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The Mississippi

A Tokunaga graph:
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Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

I Horton’s laws appear to contain less detailed
information than Tokunaga’s law.

I Oddly, Horton’s law has three parameters and
Tokunaga has two parameters.

I Rn, R`, and Rs versus T1 and RT .
I To make a connection, clearest approach is to start

with Tokunaga’s law...
I Known result: Tokunaga → Horton [21, 22, 23, 10, 2]
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Let us make them happy

We need one more ingredient:

Space-fillingness

I A network is space-filling if the average distance
between adjacent streams is roughly constant.

I Reasonable for river and cardiovascular networks
I For river networks:

Drainage density ρdd = inverse of typical distance
between channels in a landscape.

I In terms of basin characteristics:

ρdd '
∑

stream segment lengths
basin area

=

∑Ω
ω=1 nωsω

aΩ
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More with the happy-making thing

Start with Tokunaga’s law: Tk = T1Rk−1
T

I Start looking for Horton’s stream number law:
nω/nω+1 = Rn.

I Estimate nω, the number of streams of order ω in
terms of other nω′ , ω′ > ω.

I Observe that each stream of order ω terminates by
either:

ω=3

ω=4

ω=3

ω=3

ω=4

ω=4

1. Running into another stream of order ω
and generating a stream of order ω + 1...

I 2nω+1 streams of order ω do this

2. Running into and being absorbed by a
stream of higher order ω′ > ω...

I n′ωTω′−ω streams of order ω do this
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More with the happy-making thing

Putting things together:

I

nω = 2nω+1︸ ︷︷ ︸
generation

+
Ω∑

ω′=ω+1

Tω′−ωnω′︸ ︷︷ ︸
absorption

I Substitute in Tω′−ω = T1(RT ) ω′−ω−1:

nω = 2nω+1 +
Ω∑

ω′=ω+1

T1(RT ) ω′−ω−1nω′

I Shift index to k = ω′ − ω:

nω = 2nω+1 +
Ω−ω∑
k=1

T1(RT )k−1nω+k
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More with the happy-making thing

Create Horton ratios:
I Divide through by nω+1:

nω

nω+1
=

2���nω+1

���nω+1
+

Ω−ω∑
k=1

T1(RT )k−1 nω+k

nω+1

I Left hand side looks good but we have nω+k/nω+1’s
hanging around on the right.

I Recall, we want to show Rn = nω/nω+1 is a constant,
independent of ω...
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More with the happy-making thing

Finding Horton ratios:

I Letting Ω→∞, we have

nω

nω+1
= 2 +

∞∑
k=1

T1(RT )k−1 nω+k

nω+1
(1)

I The ratio nω+k/nω+1 can only be a function of k due
to self-similarity (which is implicit in Tokunaga’s law).

I The ratio nω/nω+1 is independent of ω and depends
only on T1 and RT .

I Can now call nω/nω+1 = Rn.

I Immediately have nω+k/nω+1 = R−(k−1)
n .

I Plug into Eq. (1)...
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More with the happy-making thing

Finding Horton ratios:

I Now have:

Rn = 2 +
∞∑

k=1

T1(RT )k−1R−(k−1)
n

= 2 + T1

∞∑
k=1

(RT /Rn)
k−1

= 2 + T1
1

1− RT /Rn

I Rearrange to find:

(Rn − 2)(1− RT /Rn) = T1
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More with the happy-making thing

Finding Rn in terms of T1 and RT :

I We are here: (Rn − 2)(1− RT /Rn) = T1

I ×Rn to find quadratic in Rn:

(Rn − 2)(Rn − RT ) = T1Rn

I

R 2
n − (2 + RT + T1)Rn + 2RT = 0

I Solution:

Rn =
(2 + RT + T1)±

√
(2 + RT + T1)2 − 8RT

2
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Finding other Horton ratios

Connect Tokunaga to Rs

I Now use uniform drainage density ρdd.
I Assume side streams are roughly separated by

distance 1/ρdd.
I For an order ω stream segment, expected length is

s̄ω ' ρ−1
dd

(
1 +

ω−1∑
k=1

Tk

)

I Substitute in Tokunaga’s law Tk = T1Rk−1
T :

s̄ω ' ρ−1
dd

(
1 + T1

ω−1∑
k=1

R k−1
T

)
∝ R ω

T
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Horton and Tokunaga are happy

Altogether then:

I

⇒ s̄ω/s̄ω−1 = RT ⇒ Rs = RT

I Recall R` = Rs so

R` = RT

I And from before:

Rn =
(2 + RT + T1) +

√
(2 + RT + T1)2 − 8RT

2
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Horton and Tokunaga are happy

Some observations:
I Rn and R` depend on T1 and RT .
I Seems that Ra must as well...
I Suggests Horton’s laws must contain some

redundancy
I We’ll in fact see that Ra = Rn.
I Also: Both Tokunaga’s law and Horton’s laws can be

generalized to relationships between statistical
distributions. [3, 4]
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Horton and Tokunaga are happy

The other way round

I Note: We can invert the expresssions for Rn and R`

to find Tokunaga’s parameters in terms of Horton’s
parameters.

I

RT = R`,

I

T1 = Rn − R` − 2 + 2R`/Rn.

I Suggests we should be able to argue that Horton’s
laws imply Tokunaga’s laws (if drainage density is
uniform)...
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Horton and Tokunaga are friends

From Horton to Tokunaga [2]

(�Rl)(a)
(b)
(c)

I Assume Horton’s laws
hold for number and
length

I Start with an order ω
stream

I Scale up by a factor of
R`, orders increment

I Maintain drainage
density by adding new
order 1 streams
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Horton and Tokunaga are friends

. . . and in detail:
I Must retain same drainage density.
I Add an extra (R` − 1) first order streams for each

original tributary.
I Since number of first order streams is now given by

Tk+1 we have:

Tk+1 = (R` − 1)

(
k∑

i=1

Ti + 1

)
.

I For large ω, Tokunaga’s law is the solution—let’s
check...
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Horton and Tokunaga are friends

Just checking:

I Substitute Tokunaga’s law Ti = T1R i−1
T = T1R i−1

`

into

Tk+1 = (R` − 1)

(
k∑

i=1

Ti + 1

)
I

Tk+1 = (R` − 1)

(
k∑

i=1

T1R i−1
` + 1

)

= (R` − 1)T1

(
R k

` − 1
R` − 1

+ 1
)

' (R` − 1)T1
R k

`

R` − 1
= T1Rk

` ... yep.
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Horton’s laws of area and number:
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I In right plots, stream number graph has been flipped
vertically.

I Highly suggestive that Rn ≡ Ra...
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Measuring Horton ratios is tricky:

I How robust are our estimates of ratios?
I Rule of thumb: discard data for two smallest and two

largest orders.
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Mississippi:

ω range Rn Ra R` Rs Ra/Rn
[2, 3] 5.27 5.26 2.48 2.30 1.00
[2, 5] 4.86 4.96 2.42 2.31 1.02
[2, 7] 4.77 4.88 2.40 2.31 1.02
[3, 4] 4.72 4.91 2.41 2.34 1.04
[3, 6] 4.70 4.83 2.40 2.35 1.03
[3, 8] 4.60 4.79 2.38 2.34 1.04
[4, 6] 4.69 4.81 2.40 2.36 1.02
[4, 8] 4.57 4.77 2.38 2.34 1.05
[5, 7] 4.68 4.83 2.36 2.29 1.03
[6, 7] 4.63 4.76 2.30 2.16 1.03
[7, 8] 4.16 4.67 2.41 2.56 1.12

mean µ 4.69 4.85 2.40 2.33 1.04
std dev σ 0.21 0.13 0.04 0.07 0.03

σ/µ 0.045 0.027 0.015 0.031 0.024



Branching
Networks

Introduction

River Networks
Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

References

Frame 61/121

Amazon:

ω range Rn Ra R` Rs Ra/Rn
[2, 3] 4.78 4.71 2.47 2.08 0.99
[2, 5] 4.55 4.58 2.32 2.12 1.01
[2, 7] 4.42 4.53 2.24 2.10 1.02
[3, 5] 4.45 4.52 2.26 2.14 1.01
[3, 7] 4.35 4.49 2.20 2.10 1.03
[4, 6] 4.38 4.54 2.22 2.18 1.03
[5, 6] 4.38 4.62 2.22 2.21 1.06
[6, 7] 4.08 4.27 2.05 1.83 1.05

mean µ 4.42 4.53 2.25 2.10 1.02
std dev σ 0.17 0.10 0.10 0.09 0.02

σ/µ 0.038 0.023 0.045 0.042 0.019
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Reducing Horton’s laws:

Rough first effort to show Rn ≡ Ra:

I aΩ ∝ sum of all stream lengths in a order Ω basin
(assuming uniform drainage density)

I So:

aΩ '
Ω∑

ω=1

nωs̄ω/ρdd

∝
Ω∑

ω=1

R Ω−ω
n ·

nΩ︷︸︸︷
1︸ ︷︷ ︸

nω

s̄1 · R ω−1
s︸ ︷︷ ︸

s̄ω

=
R Ω

n
Rs

s̄1

Ω∑
ω=1

(
Rs

Rn

)ω
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Reducing Horton’s laws:

Continued ...
I

aΩ ∝
RΩ

n
Rs

s̄1

Ω∑
ω=1

(
Rs

Rn

)ω

=
RΩ

n
Rs

s̄1
Rs

Rn

1− (Rs/Rn)
Ω

1− (Rs/Rn)

∼ RΩ−1
n s̄1

1
1− (Rs/Rn)

as Ω↗

I So, aΩ is growing like R Ω
n and therefore:

Rn ≡ Ra
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Reducing Horton’s laws:

Not quite:

I ... But this only a rough argument as Horton’s laws
do not imply a strict hierarchy

I Need to account for sidebranching.
I Problem set 1 question....
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Equipartitioning:

Intriguing division of area:

I Observe: Combined area of basins of order ω
independent of ω.

I Not obvious: basins of low orders not necessarily
contained in basis on higher orders.

I Story:
Rn ≡ Ra ⇒ nωāω = const

I Reason:
nω ∝ (Rn)

−ω

āω ∝ (Ra)
ω ∝ n−1

ω
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Equipartitioning:

Some examples:
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Scaling laws

The story so far:

I Natural branching networks are hierarchical,
self-similar structures

I Hierarchy is mixed
I Tokunaga’s law describes detailed architecture:

Tk = T1Rk−1
T .

I We have connected Tokunaga’s and Horton’s laws
I Only two Horton laws are independent (Rn = Ra)
I Only two parameters are independent:

(T1, RT )⇔ (Rn, Rs)
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Scaling laws

A little further...
I Ignore stream ordering for the moment
I Pick a random location on a branching network p.
I Each point p is associated with a basin and a longest

stream length
I Q: What is probability that the p’s drainage basin has

area a? P(a) ∝ a−τ for large a
I Q: What is probability that the longest stream from p

has length `? P(`) ∝ `−γ for large `

I Roughly observed: 1.3 . τ . 1.5 and 1.7 . γ . 2.0
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Scaling laws

Probability distributions with power-law decays

I We see them everywhere:
I Earthquake magnitudes (Gutenberg-Richter law)
I City sizes (Zipf’s law)
I Word frequency (Zipf’s law) [24]

I Wealth (maybe not—at least heavy tailed)
I Statistical mechanics (phase transitions) [5]

I A big part of the story of complex systems
I Arise from mechanisms: growth, randomness,

optimization, ...
I Our task is always to illuminate the mechanism...
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Scaling laws

Connecting exponents

I We have the detailed picture of branching networks
(Tokunaga and Horton)

I Plan: Derive P(a) ∝ a−τ and P(`) ∝ `−γ starting with
Tokunaga/Horton story [20, 1, 2]

I Let’s work on P(`)...
I Our first fudge: assume Horton’s laws hold

throughout a basin of order Ω.
I (We know they deviate from strict laws for low ω and

high ω but not too much.)
I Next: place stick between teeth. Bite stick. Proceed.
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Scaling laws

Finding γ:

I Often useful to work with cumulative distributions,
especially when dealing with power-law distributions.

I The complementary cumulative distribution turns out
to be most useful:

P>(`∗) = P(` > `∗) =

∫ `max

`=`∗

P(`)d`

I

P>(`∗) = 1− P(` < `∗)

I Also known as the exceedance probability.
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Scaling laws

Finding γ:

I The connection between P(x) and P>(x) when P(x)
has a power law tail is simple:

I Given P(`) ∼ `−γ large ` then for large enough `∗

P>(`∗) =

∫ `max

`=`∗

P(`) d`

∼
∫ `max

`=`∗

`−γd`

=
`−γ+1

−γ + 1

∣∣∣∣`max

`=`∗

∝ `−γ+1
∗ for `max � `∗
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Scaling laws

Finding γ:

I Aim: determine probability of randomly choosing a
point on a network with main stream length > `∗

I Assume some spatial sampling resolution ∆

I Landscape is broken up into grid of ∆×∆ sites
I Approximate P>(`∗) as

P>(`∗) =
N>(`∗;∆)

N>(0;∆)
.

where N>(`∗;∆) is the number of sites with main
stream length > `∗.

I Use Horton’s law of stream segments:
sω/sω−1 = Rs...
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Scaling laws

Finding γ:

I Set `∗ = `ω for some 1 � ω � Ω.
I

P>(`ω) =
N>(`ω;∆)

N>(0;∆)
'
∑Ω

ω′=ω+1 nω′sω′/∆∑Ω
ω′=1 nω′sω′/∆

I ∆’s cancel
I Denominator is aΩρdd, a constant.
I So... using Horton’s laws...

P>(`ω) ∝
Ω∑

ω′=ω+1

nω′sω′ '
Ω∑

ω′=ω+1

(1·R Ω−ω′
n )(s̄1·R ω′−1

s )
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Scaling laws

Finding γ:

I We are here:

P>(`ω) ∝
Ω∑

ω′=ω+1

(1 · R Ω−ω′
n )(s̄1 · R ω′−1

s )

I Cleaning up irrelevant constants:

P>(`ω) ∝
Ω∑

ω′=ω+1

(
Rs

Rn

)ω′

I Change summation order by substituting
ω′′ = Ω− ω′.

I Sum is now from ω′′ = 0 to ω′′ = Ω− ω − 1
(equivalent to ω′ = Ω down to ω′ = ω + 1)
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Scaling laws

Finding γ:

I

P>(`ω) ∝
Ω−ω−1∑
ω′′=0

(
Rs

Rn

)Ω−ω′′

∝
Ω−ω−1∑
ω′′=0

(
Rn

Rs

)ω′′

I Since Rn < Rs and 1 � ω � Ω,

P>(`ω) ∝
(

Rn

Rs

)Ω−ω

∝
(

Rn

Rs

)−ω

again using
∑n

i=0 an = (ai+1 − 1)/(a− 1)



Branching
Networks

Introduction

River Networks
Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

References

Frame 78/121

Scaling laws

Finding γ:

I Nearly there:

P>(`ω) ∝
(

Rn

Rs

)−ω

= e−ω ln(Rn/Rs)

I Need to express right hand side in terms of `ω.
I Recall that `ω ' ¯̀1R ω−1

` .
I

`ω ∝ R ω
` = R ω

s = e ω ln Rs
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Scaling laws

Finding γ:

I Therefore:

P>(`ω) ∝ e−ω ln(Rn/Rs) =
(

e ω ln Rs
)− ln(Rn/Rs)/ ln(Rs)

I

∝ `ω
− ln(Rn/Rs)/ ln Rs

I

= `−(ln Rn−ln Rs)/ ln Rs
ω

I

= `− ln Rn/ ln Rs+1
ω

I

= `−γ+1
ω
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Scaling laws

Finding γ:

I And so we have:

γ = ln Rn/ ln Rs

I Proceeding in a similar fashion, we can show

τ = 2− ln Rs/ ln Rn = 2− 1/γ

I Such connections between exponents are called
scaling relations

I Let’s connect to one last relationship: Hack’s law
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Scaling laws

Hack’s law: [6]

I

` ∝ ah

I Typically observed that 0.5 . h . 0.7.
I Use Horton laws to connect h to Horton ratios:

`ω ∝ R ω
s and aω ∝ R ω

n

I Observe:

`ω ∝ e ω ln Rs ∝
(

e ω ln Rn
)ln Rs/ ln Rn

∝ (R ω
n )ln Rs/ ln Rn = a ln Rs/ ln Rn

ω ⇒ h = ln Rs/ ln Rn
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Connecting exponents
Only 3 parameters are independent:
e.g., take d , Rn, and Rs

relation: scaling relation/parameter: [2]

` ∼ Ld d
Tk = T1(RT )k−1 T1 = Rn − Rs − 2 + 2Rs/Rn

RT = Rs
nω/nω+1 = Rn Rn
āω+1/āω = Ra Ra = Rn
¯̀
ω+1/¯̀

ω = R` R` = Rs
` ∼ ah h = log Rs/ log Rn
a ∼ LD D = d/h

L⊥ ∼ LH H = d/h − 1
P(a) ∼ a−τ τ = 2− h
P(`) ∼ `−γ γ = 1/h

Λ ∼ aβ β = 1 + h
λ ∼ Lϕ ϕ = d
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Equipartitioning reexamined:

Recall this story:
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Equipartitioning

I What about
P(a) ∼ a−τ ?

I Since τ > 1, suggests no equipartitioning:

aP(a) ∼ a−τ+1 6= const

I P(a) overcounts basins within basins...
I while stream ordering separates basins...
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Fluctuations

Moving beyond the mean:

I Both Horton’s laws and Tokunaga’s law relate
average properties, e.g.,

s̄ω/s̄ω−1 = Rs

I Natural generalization to consideration relationships
between probability distributions

I Yields rich and full description of branching network
structure

I See into the heart of randomness...
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A toy model—Scheidegger’s model

Directed random networks [12, 13]

I

I

P(↘) = P(↙) = 1/2

I Flow is directed downwards
I Useful and interesting test case—more later...
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Generalizing Horton’s laws

I ¯̀
ω ∝ (R`)

ω ⇒ N(`|ω) = (RnR`)
−ωF`(`/Rω

` )

I āω ∝ (Ra)
ω ⇒ N(a|ω) = (R2

n)−ωFa(a/Rω
n )
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I Scaling collapse works well for intermediate orders
I All moments grow exponentially with order
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Generalizing Horton’s laws

I How well does overall basin fit internal pattern?
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I Actual length = 4920 km
(at 1 km res)

I Predicted Mean length
= 11100 km

I Predicted Std dev =
5600 km

I Actual length/Mean
length = 44 %

I Okay.
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Generalizing Horton’s laws

Comparison of predicted versus measured main stream
lengths for large scale river networks (in 103 km):

basin: `Ω
¯̀
Ω σ` `/¯̀

Ω σ`/¯̀
Ω

Mississippi 4.92 11.10 5.60 0.44 0.51
Amazon 5.75 9.18 6.85 0.63 0.75
Nile 6.49 2.66 2.20 2.44 0.83
Congo 5.07 10.13 5.75 0.50 0.57
Kansas 1.07 2.37 1.74 0.45 0.73

a āΩ σa a/āΩ σa/āΩ

Mississippi 2.74 7.55 5.58 0.36 0.74
Amazon 5.40 9.07 8.04 0.60 0.89
Nile 3.08 0.96 0.79 3.19 0.82
Congo 3.70 10.09 8.28 0.37 0.82
Kansas 0.14 0.49 0.42 0.28 0.86
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Combining stream segments distributions:

I Stream segments
sum to give main
stream lengths

I

`ω =

µ=ω∑
µ=1

sµ

I P(`ω) is a
convolution of
distributions for
the sω
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Generalizing Horton’s laws

I Sum of variables `ω =
∑µ=ω

µ=1 sµ leads to convolution
of distributions:

N(`|ω) = N(s|1) ∗ N(s|2) ∗ · · · ∗ N(s|ω)
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N(s|ω) =
1

Rω
n Rω

`

F (s/Rω
` )

F (x) = e−x/ξ

Mississippi: ξ ' 900 m.
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Generalizing Horton’s laws

I Next level up: Main stream length distributions must
combine to give overall distribution for stream length
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I P(`) ∼ `−γ

I Another round of
convolutions [3]

I Interesting...
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Generalizing Horton’s laws

Number and area
distributions for the
Scheidegger model
P(n1,6) versus P(a 6).
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Generalizing Tokunaga’s law

Scheidegger:
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I Observe exponential distributions for Tµ,ν

I Scaling collapse works using Rs
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Generalizing Tokunaga’s law

Mississippi:
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I Same data collapse for Mississippi...
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Generalizing Tokunaga’s law

So
P(Tµ,ν) = (Rs)

µ−ν−1Pt

[
Tµ,ν/(Rs)

µ−ν−1
]

where
Pt(z) =

1
ξt

e−z/ξt .

P(sµ)⇔ P(Tµ,ν)

I Exponentials arise from randomness.
I Look at joint probability P(sµ, Tµ,ν).



Branching
Networks

Introduction

River Networks
Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

References

Frame 98/121

Generalizing Tokunaga’s law

Network architecture:

I Inter-tributary
lengths
exponentially
distributed

I Leads to random
spatial distribution
of stream
segments

��� 1�� 2
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Generalizing Tokunaga’s law

I Follow streams segments down stream from their
beginning

I Probability (or rate) of an order µ stream segment
terminating is constant:

p̃µ ' 1/(Rs)
µ−1ξs

I Probability decays exponentially with stream order
I Inter-tributary lengths exponentially distributed
I ⇒ random spatial distribution of stream segments
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Generalizing Tokunaga’s law

I Joint distribution for generalized version of
Tokunaga’s law:

P(sµ, Tµ,ν) = p̃µ

(
sµ − 1
Tµ,ν

)
pTµ,ν

ν (1− pν − p̃µ)sµ−Tµ,ν−1

where
I pν = probability of absorbing an order ν side stream
I p̃µ = probability of an order µ stream terminating

I Approximation: depends on distance units of sµ

I In each unit of distance along stream, there is one
chance of a side stream entering or the stream
terminating.
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Generalizing Tokunaga’s law

I Now deal with thing:

P(sµ, Tµ,ν) = p̃µ

(
sµ − 1
Tµ,ν

)
pTµ,ν

ν (1− pν − p̃µ)sµ−Tµ,ν−1

I Set (x , y) = (sµ, Tµ,ν) and q = 1− pν − p̃µ,
approximate liberally.

I Obtain
P(x , y) = Nx−1/2 [F (y/x)]x

where

F (v) =

(
1− v

q

)−(1−v)(v
p

)−v

.
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Generalizing Tokunaga’s law

I Checking form of P(sµ, Tµ,ν) works:

Scheidegger:
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Generalizing Tokunaga’s law

I Checking form of P(sµ, Tµ,ν) works:

Scheidegger:
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Generalizing Tokunaga’s law

I Checking form of P(sµ, Tµ,ν) works:

Scheidegger:
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Generalizing Tokunaga’s law

I Checking form of P(sµ, Tµ,ν) works:

Mississippi:
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Models

Random subnetworks on a Bethe lattice [15]

I Dominant theoretical concept
for several decades.

I Bethe lattices are fun and
tractable.

I Led to idea of “Statistical
inevitability” of river network
statistics [8]

I But Bethe lattices
unconnected with surfaces.

I In fact, Bethe lattices '
infinite dimensional spaces
(oops).

I So let’s move on...
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Scheidegger’s model

Directed random networks [12, 13]

I

I

P(↘) = P(↙) = 1/2

I Functional form of all scaling laws exhibited but
exponents differ from real world [18, 19, 17]
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A toy model—Scheidegger’s model

Random walk basins:
I Boundaries of basins are random walks

n

x

  area a
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Scheidegger’s model

n

2

6 6

8 8 8 8

9 9Increasing partition of N=64

x
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Scheidegger’s model

Prob for first return of a random walk in (1+1)
dimensions:

I

P(n) ∼ 1
2
√

π
n−3/2.

and so P(`) ∝ `−3/2.
I Typical area for a walk of length n is ∝ n3/2:

` ∝ a 2/3.

I Find τ = 4/3, h = 2/3, γ = 3/2, d = 1.
I Note τ = 2− h and γ = 1/h.
I Rn and R` have not been derived analytically.
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Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [11]

I Landscapes h(~x) evolve such that energy dissipation
ε̇ is minimized, where

ε̇ ∝
∫

d~r (flux)× (force) ∼
∑

i

ai∇hi ∼
∑

i

aγ
i

I Landscapes obtained numerically give exponents
near that of real networks.

I But: numerical method used matters.
I And: Maritan et al. find basic universality classes are

that of Scheidegger, self-similar, and a third kind of
random network [9]
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Theoretical networks

Summary of universality classes:

network h d
Non-convergent flow 1 1

Directed random 2/3 1
Undirected random 5/8 5/4

Self-similar 1/2 1
OCN’s (I) 1/2 1
OCN’s (II) 2/3 1
OCN’s (III) 3/5 1
Real rivers 0.5–0.7 1.0–1.2

h ⇒ ` ∝ ah (Hack’s law).
d ⇒ ` ∝ Ld

‖ (stream self-affinity).
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