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ABSTRACT

Fitting a line to a bivariate dataset can be a deceptively complex problem, and there

has been much debate on this issue in the literature. In this review, we describe for the

practitioner the essential features of line-fitting methods for estimating the relationship

between two variables: what methods are commonly used, which method should be used

when, and how to make inferences from these lines to answer common research questions.

A particularly important point for line-fitting in allometry is that usually, two sources of

error are present (which we call measurement and equation error), and these have quite

different implications for choice of line-fitting method. As a consequence, the point-of-

view in this review and the methods presented have subtle but important differences from

previous reviews in the biology literature.

Linear regression, major axis and standardised major axis are alternative methods that

can be appropriate when there is no measurement error. When there is measurement

error, this often needs to be estimated and used to adjust the variance terms in formulas

for line-fitting. We also review line-fitting methods for phylogenetic analyses.

Methods of inference are described for the line-fitting techniques discussed in this paper.

The types of inference considered here are testing if the slope or elevation equals a given

value, constructing confidence intervals for the slope or elevation, comparing several slopes

or elevations, and testing for shift along the axis amongst several groups. In some cases

several methods have been proposed in the literature. These are discussed and compared.

In other cases there is little or no previous guidance available in the literature.

Simulations were conducted to check whether the methods of inference proposed have the

intended coverage probability or Type I error. We identified the methods of inference

that perform well and recommend the techniques that should be adopted in future work.
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I INTRODUCTION

Fitting a line to a bivariate cloud of data would seem a relatively simple and fundamen-

tal procedure in data analysis. However, there has been lively debate in the literature

concerning which method is appropriate in what situation (Ricker, 1973; Jolicoeur, 1975;

Sprent & Dolby, 1980; Ricker, 1982; Jolicoeur, 1990; Sokal & Rohlf, 1995; Carroll &

Ruppert, 1996), and some of the issues discussed have never completely been resolved.

Authors have offered distinctly different reasons for using one method instead of another

(Sokal & Rohlf, 1995; Carroll & Ruppert, 1996, for example), and have advocated different

methods (McArdle, 1988; Isobe et al., 1990; Jolicoeur, 1990).

In this paper, line-fitting is discussed specifically in the context of allometry, the measure-

ment of how one size variable scales against another (Reiss, 1989; Niklas, 1994). Allometry

is a discipline in which alternatives to linear regression are routinely required, because

lines are usually fitted to estimate how one variable scales against another, rather than to

predict the value of one variable from another. Other disciplines in which such methods

are commonly required are astronomy, physics and chemistry (Isobe et al., 1990).

Describing the relationship between two variables typically involves making inferences in

some more general context than was directly studied. Given measurements of brain and

body mass for a sample of mammals, we would like to interpret results as being meaningful

for all mammals. Statistical procedures that assist in generalising – making claims about

a population, based on a sample – are known as methods of inference. In allometry, we

would like to make inferences about the slope and sometimes the elevation of lines that

are fitted to data.

This paper reviews the methods of line-fitting commonly used in allometry, their uses, and

how to make inferences from lines fitted to a dataset. We identify fundamental points

with a logical basis or a wide consensus in the literature, common misinterpretations,

points of controversy and ways forward from these.
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In describing line-fitting methods and their uses (Sections III and IV), we emphasise

the distinction between two types of error, equation error and measurement error. This

distinction leads us to a different viewpoint than that taken by most reviewers of this

subject in the past, and it leads us to discuss a method of line-fitting that has not been

used before (to our knowledge) for allometric problems when both forms of error are

present and non-ignorable.

In reviewing methods of inference for common methods of line-fitting (Sections V and

VI), we consider procedures for the major axis (MA), standardised major axis (SMA),

and modifications of these methods for instances where the line is constrained to pass

through the origin or when measurement error is accounted for in estimation. Methods

of inference for linear regression are not considered here, being well-known (Draper &

Smith, 1998, chapter 14) and available in standard statistics packages. We focus on the

techniques appropriate for:

• Testing if slope and elevation equal a particular value, and estimating confidence

intervals for slope and elevation (Fig. 1a)

• Testing if several lines have a common slope (Fig. 1b)

• Testing if several lines have a common elevation (Fig. 1c)

• Testing for no shift along lines of common slope (Fig. 1d)

Fig. 1 summarises schematically the hypothesis of interest in each of these situations, for

a particular dataset that is explained in more detail in the following section.

We have found methods for comparing several independent lines to be particularly useful,

and so devote considerable time in this paper to this topic. Such methods are useful for

exploring how the relationship between two variables changes across functional groups,

populations, environments, etc.

Some of the tests for comparing several bivariate allometric relationships (Figures 1b-c)
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are analogous to analysis of covariance, but for the MA and SMA lines rather than for

linear regression. Analysis of covariance is of limited usefulness in allometry, because linear

regression is often inappropriate. Despite this, analysis of covariance has often been used

in previous allometric work, because of an apparent unavailability of alternative methods

of inference (for example, by Wilkinson & Douglas, 1998). However, there is no longer a

need to resort to analysis of covariance in situations where it is considered inappropriate,

given the methods described in this paper.

This review contains several novel contributions to the literature on line-fitting in allom-

etry:

• Several points are made regarding usage and interpretation of methods that are new

to the biology literature.

• We discuss a method of line-fitting that has not been used before (to our knowledge)

for allometric problems when both equation and measurement error are present and

non-ignorable.

• A geometric interpretation of methods of inference is presented, where possible.

• Some useful developments for comparing several lines are reviewed that are not well

known in the biology literature (Flury, 1984; Warton & Weber, 2002).

• New methods are suggested in this paper, when no guidance is currently available.

• Simulations have been conducted (Appendix E) to explore the properties of the

methods discussed in this paper. The simulation results lead us to some new con-

clusions.

Guidelines on measurement error calculation are given in Appendix C, calculation formu-

las for the methods of inference considered here are provided in Appendix D, simulations

assessing the efficacy of these methods are presented in Appendix E, and algorithms for

resampling are given in Appendix F.
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II SOME ALLOMETRIC EXAMPLES

This section briefly introduces allometry and describes examples of where allometry is

used.

In allometry, typically there are two size variables y and x which are believed to be related

by the equation

y = γxβ

This is often referred to as the “allometric relation” (Harvey & Pagel, 1991) or “allometric

equation” (Reiss, 1989). The x and y variables are log-transformed, so that the above

equation can be reexpressed as

Y = log(γ) + βX

Y = α + βX

where we have made the substitutions Y = log(y), X = log(x), and α = log(γ). There is

a linear relationship between Y and X. The log transformation is used for two different

reasons. Firstly, it allows the relationship between the two size variables to be expressed

as a linear relationship, which simplifies estimation. Secondly, it puts the size variables

on a multiplicative or logarithmic scale. This is a sensible scale for interpreting most size

variables, since growth is a multiplicative process.

It should always be checked whether or not log-transformed size variables are linearly

related, because it may not be the case that two size variables are related by the allometric

equation. Experience shows, however, that it is commonly a good approximation to the

relationship between two size variables.

In some allometric work, it may not be considered desirable to log-transform variables.

In the remainder of this article, we refer to the fitting of a linear relationship between Y

and X, where these variables may or may not have been transformed. So, for example,

Y might represent log(seed mass), log(brain mass) or height.
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Throughout this paper we will refer to three examples, each of which is useful for high-

lighting different aspects of line-fitting for allometry.

Fig. 2 is a plot of brain mass against body mass for 62 mammal species, for data from

Allison & Cicchetti (1976). On the logarithmic scale, these two variables appear to be

linearly related, and the slope of the relationship has been hypothesised to be 2
3

or 3
4
,

based on arguments reviewed by Schoenemann (2004).

Fig. 3 is a plot of plant height vs basal diameter for Rhus trichocarpa saplings, from Osada

(in preparation). Note that whereas the points on the plot in Fig. 2 were species, the

points in this case represent individual saplings.

Fig. 1 represents a third example dataset that will be discussed in more detail below.

(1) Example with several independent lines

Fig. 1 refers to an example from our own experience (Wright & Westoby, 2002) which is

particularly useful for discussing methods of inference about allometric lines. All four of

the methods of inference described in this paper were of interest for this dataset.

The data in Fig. 1 are leaf longevity data (in years) against leaf mass per area (kg/m2),

for plant species sampled at four different sites (Wright & Westoby, 2002). Leaf mass per

area can be interpreted as the plant’s dry mass investment in the leaf, on a per unit area

basis. Leaves with higher LMA are more expensive, from the plant’s point-of-view, but

they tend to live longer. A consistent positive relationship between these two variables

has been documented in environments all over the globe (Wright et al., 2004).

One question of interest is whether leaf longevity is directly proportional to leaf mass

per area (Question a – depicted in Fig. 1a). If this is the case, then a doubling of mass

investment in leaves doubles lifetime. In terms of light capture, this would mean that

there is no lifetime advantage to putting more mass into leaves of a given area, because
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the potential lifetime light capture (leaf area×longevity) would be directly proportional to

the mass initially invested in the leaf. If leaf longevity and LMA are directly proportional

to each other, then the log-transformed variables will be linearly related with a slope one.

Hence we wish to test (for any particular site) whether or not the slope is one (Fig. 1a,

the dotted line has slope one).

Another question of interest is whether there are differences in the nature of the relation-

ship between leaf longevity and LMA, for different plant communities. In particular:

Question b Does the slope of the relationship between leaf longevity and LMA change

across different sites? If so, then across communities, this suggests different leaf

longevity gains from additional mass investment in leaves. This is depicted in

Fig. 1b, for two high rainfall sites that differ in soil nutrient levels.

Question c Is there a shift in elevation across different sites? If so, then across commu-

nities, leaf longevity differs for plants with similar LMA. This suggests that leaves

in different communities have different opportunities for total lifetime light capture,

for a given mass investment in the leaf. Fig. 1c shows two low nutrient sites with

different rainfall, which may differ in elevation (but have a common slope).

Question d Is there a shift along a common axis across different sites? If so, then LMA

and leaf longevity tend to vary across sites, but the relationship between the two

variables remains the same, i.e. species at neither site have an overall advantage in

terms of lifetime light capture for leaves of a given structure. Fig. 1d shows two

low rainfall sites with different nutrient levels, which may share a common axis but

differ in location along this axis.

It should be noted that if the slope of the relationship does change across sites, then

Questions c and d cannot be addressed. This is for the same reasons as in analysis

of covariance – elevation and location along the line are not comparable for lines with

different slopes.
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III LINE FITTING METHODS AND THEIR USES

The three methods of bivariate line-fitting of primary interest in this paper are best

known as linear regression, major axis (MA) estimation and standardised major axis

(SMA) estimation. The MA and SMA methods are sometimes collectively called “model

II regression”, and SMA is currently better known as the “reduced major axis”. We

deliberately avoid using such terms in this manuscript, and offer reasons not to use these

terms in Appendix A.

Linear regression, MA and SMA are all least squares methods – the line is estimated

by minimising the sum of squares of residuals from the line, and the methods can be

derived using likelihood theory assuming normally distributed residuals (Sprent, 1969, for

example). The differences in methods of estimation of the lines are due to differences in

the direction in which errors from the line are measured, which is illustrated graphically

in Fig. 4.

Some definitions will need to be made, based on Fig. 4, which will be useful later in

understanding methods of inference for these lines. An axis in the direction of the fitted

line can be defined as the “fitted axis”, and an axis parallel to the direction residuals

are measured in could be defined as the “residual axis”. We will refer to scores along

fitted and residual axes as “(fitted) axis scores” and “residual scores”, respectively. If the

residual scores were shifted to have a mean of zero, they would become residuals in the

conventional sense. The use of residual scores rather than residuals is important later

in discussions about elevation – but in other cases, use of residual scores rather than

residuals is not essential.

The fitted and residual axes are useful in understanding estimation and methods of infer-

ence for these lines. For example, the linear regression, MA and SMA slopes can all be

derived as the value of the slope such that the residual and fitted axis scores are uncorre-

lated (Warton & Weber, 2002). Further, for the methods of inference for MA and SMA
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considered in this paper, the only thing that differs between the MA and SMA cases is

the way that the residual and fitted axes are defined.

In interpreting Fig. 4, it is important to make the distinction between two possible sources

of error, described by Fuller (1987) as measurement error and equation error. Measure-

ment error is generally well understood, it is where measured values do not represent the

true values of the subjects being measured. Equation error is a term that is more often

neglected – it is where the actual values of the subjects do not fall exactly along a straight

line. For example, it is apparent that humans have an unusually large brain for their body

mass (the highlighted point in Fig. 2). There are various possible explanations for this,

none of which is error in measuring the average brain size or body mass of humans.

Note that what we describe as “measurement error” is not only error in measurement of

a particular subject, but it may also include sampling error, if the subject of interest is a

collection of individuals (a population or species). In fact Riska (1991) referred to mea-

surement error as “sampling error”, recognising variation introduced through sampling as

the main source of measurement error in most allometric work. For example, the subjects

in Fig. 2 are species, so measurement error for brain mass includes error measuring the

brain and sampling error due to the fact that not all individuals of a species have the

same brain mass. The subjects in Fig. 3 are individual plants, so there is no sampling

error in estimating basal diameter and height. However, if the Y variable in Fig. 3 were

leaf area, then there would be sampling error. Not all leaves on a sapling are the same

size, so the measured values of leaf area would depend on what leaves were sampled.

The distinction between measurement and equation error has been made by other au-

thors in the past. Equation error has been referred to as “natural variability” (Ricker,

1982), “natural variation” (Sokal & Rohlf, 1995), “biological error” (Riska, 1991) and

“intrinsic scatter” (Akritas & Bershady, 1996), amongst other terms. The implications of

measurement error for choice of line fitting method are different from the implications of

equation error, but in much of the literature (even the statistical literature) this has not
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been recognised (Carroll & Ruppert, 1996).

Whereas measurement error can be estimated from repeated measurement, equation error

can not, and its nature depends on the purpose of line-fitting. Do humans have unusually

large brains for their body size, or unusually small bodies for their brain size, or a bit of

both? Any of these statements is correct, so it can be appropriate to attribute equation

error to the Y variable, the X variable or both, depending on the purpose of line-fitting.

When equation error only is present, any of linear regression, MA and SMA might be

appropriate methods of analysis. When a non-ignorable quantity of measurement error

is also present, often this should be estimated and the line-fitting methods modified to

incorporate this, as will be described below.

(1) Linear regression

Regression is a method of fitting lines for prediction of the Y-variable. Regression involves

“conditioning on the X-variable” (Kendall & Stuart, 1973, chapter 26) – in other words,

regression can be used for questions of the form “if we observed a subject whose value on

the X-variable is x, what do we expect its value of Y to be?

Regression is useful whenever a line is desired for predicting one variable (which will be

called Y ) from another variable (which will be called X). The purpose of regression can

be seen in the method of line estimation – the line is fitted to minimise the sum of squares

of residuals measured in the Y direction,
∑N

i=1(yi − ŷi)
2. Such a line has fitted Y values

as close as possible to the observed Y values, which is a sensible thing to do if you are

interested in predicting Y values, once given a set of X values.

Regression is the appropriate method of line-fitting in most practical instances, because

most problems can be expressed as problems of prediction. One of the more common

research questions is “is Y associated with X?”, which can be rewritten as “for subjects

with different X values, are the expected Y values different?” This second question can
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be answered by fitting a regression line and testing if the slope is significantly different

from zero. “How strongly are Y and X associated?” is another question that can be

answered using regression. A suitable statistic to answer this question is the square of

the correlation coefficient, R2, the proportion of variation in the Y variable that can be

explained by linear regression on X.

Galton (1886) gave regression its name due to the property of “regression towards medi-

ocrity” (or regression to the mean), where predicted values of observations tend to be

closer to the mean than observed values, in general. Galton (1886) considered the height

of parents (“mid-parents”, with female heights transformed to a comparable scale as male

height) compared to the height of their children, which is reproduced in Fig. 5. For these

or any two variables that are expected to be scattered evenly around the one-to-one line,

a fitted regression line will be flatter than a slope of one no matter how large the dataset

is. In fact, the line will be close to a slope of r, the correlation coefficient. This situation

is natural from the point-of-view of prediction – if a father is really tall, then his son

would probably be tall too, but not as tall as him (in the same way that if a student got

a really high score in a subject in a test – higher than they had ever got before – then

they might expect to do well in the next test for this subject, but not quite as well as last

time). While regression to the mean is useful in prediction, it is not appropriate when

the value of the slope of the axis or line-of-best-fit is of primary interest.

The following are points concerning usage of linear regression that have occasionally been

confused in the literature:

• Regression can be used irrespective of whether the X variable is fixed by the ex-

perimenter or a random variable (Draper & Smith, 1998, chapter 1). To estimate

a regression line, the X-variable is conditioned on or “fixed”. This fixing of X is

a mathematical construction, but it has on occasion been confused with experi-

mentally fixing a variable at a particular value. Some appear to have interpreted

“regression requires fixing of the X variable” as meaning that X needs to be experi-
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mentally fixed to use regression (Niklas, 1994; Quinn & Keough, 2002, for example),

which we believe is a misunderstanding arising from different uses of the term “fixed”

in statistics and in experimental sciences.

• Linear regression can be used when X is measured with error, as long as results are

only interpreted in the context of predicting Y from X measured with error. If X has

been measured with error (as it usually is), linear regression gives a biased estimator

of the slope of the regression of Y against X (Fuller, 1987, page 3). This does not,

however, mean that the use of linear regression is no longer appropriate when there

is measurement error. On the contrary, a simple linear regression of Y can be used

to answer some common questions – is Y related to X (Fuller, 1987, page 4), what

is the predicted Y when X is observed (with error) to be x . . . Measurement error

and regression will be considered in more detail later.

• Regression can be used to predict a causal variable, i.e. the causal variable can be

treated as the Y variable and the outcome variable can be treated as the X variable.

Further, there does not need to be causation for regression to be applied (Draper &

Smith, 1998, for example). Regression only requires a desire to predict one variable

from another, not causation. Confusion can arise because of two distinct conventions

– the convention in graphing of always putting the causal variable (if there is one)

on the X axis, and the convention in regression of always putting the predictor

variable on the X axis. The variable being predicted needs to be a random variable,

so it must not be fixed by sampling method, but what type of random variable is

predicted (causal, outcome, etc) is entirely up to the researcher.

(2) Major axis and standardised major axis

When there are two variables, the major axis (MA) or standardised major axis (SMA)

can be used to describe some axis or line-of-best-fit. The purpose of line-fitting is not to

predict Y from X, it is simply to summarise the relationship between two variables. Such
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a line is a summary in the sense that a single dimension is used to describe two-dimensional

data. This is also known as data reduction or dimension reduction.

There are at least three contexts in which these methods are useful:

• Allometry – when the purpose of the study is to describe how size variables are

related, typically as a linear relationship on logarithmic scales.

• “Law like relationships” (Sprent, 1969) are essentially the same application as al-

lometry but in a more general setting – testing if a particular theoretical relationship

holds for data from any discipline, e.g. is pressure inversely related to volume.

• Testing if two methods of measurement agree. When the methods of measurement

are unbiased, this is a special case of “law-like relationships” where the true values

of subjects are known to lie on the line Y = X (the one-to-one line), i.e. there is no

equation error.

The major axis is the line that minimises the sum of squares of the shortest distances from

the data points to the line. The shortest distance from a point to a line is perpendicular

to it, so in this method residuals are measured perpendicular to the line. The major axis

is equivalent to the first principal components axis calculated from the covariance matrix,

and fitted through the centroid of the data.

Implicit in minimising the distance from a point to the line is the assumption that depar-

tures from the line in the X and Y directions have equal importance. This is expressed in

the errors-in-variables literature by assuming that the ratio of the variances of residuals

in the X and Y directions is one (although as discussed later, it is not advisable to think

of line-fitting in allometry as an errors-in-variables model).

The standardised major axis is the major axis calculated on standardised data, then

rescaled to the original axes. This is typically done when two variables are not measured

on comparable scales, in which case it might not seem reasonable to give the X and
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Y directions equal weight when measuring departures from the line. This technique is

equivalent to finding the first principal component axis using the correlation matrix, then

rescaling data.

The direction in which error is estimated for SMA is given in Fig. 4. See appendix B for

further explanation.

There are many competitors to the major axis and standardised major axis methods,

although these methods are relatively infrequently used. Examples include the “OLS

bisector” (Isobe et al., 1990, the average slope of the two linear regression lines: for

predicting Y and for predicting X) and Bartlett’s three group method (Nair & Shrivastava,

1942). The ad hoc nature of these approaches seems undesirable – the methods are not

model-based, and lack the geometrical interpretation of MA or SMA (MA being the major

axis of the bivariate ellipse, MA and SMA attributing errors from the line to a known

direction...).

It is important to recognise that when finding a line-of-best-fit through data, there is

no single correct method. The major axis, standardised major axis and alternatives all

estimate a line-of-best-fit in different ways, and measure slightly different things about

the data. The choice between the major axis and standardised major axis (and some

alternatives) is based on assumptions about how equation error is partitioned between

the X and Y directions (as in Fig. 4). However, because equation error is not a physical

entity that can be directly measured, there is no single correct way to partition it into the

X and Y directions. Statisticians describe the underlying line as “unidentifiable” (Moran,

1971; Kendall & Stuart, 1973) in this case.

The following are important points concerning the use of major axis or standardised major

axis methods.

• When collecting data with a view to fitting MA or SMA lines, subjects should

be randomly selected and not chosen conditionally on the values of the X or Y
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variable. In regression, it is common for samples to be selected systematically to

represent a large range of X values. In fact, this is a desirable sampling strategy in

regression, because it allows the line to be estimated much more efficiently than if

simple random sampling were used. However, when fitting MA or SMA lines, both

X and Y variables are treated as random and so need to be sampled so that they

are random. If the X variable were sampled so that the variance on this axis was

high, this would bias the major axis or standardised major axis slope towards zero

– the observed slope would usually be flatter than the true slope.

• MA/SMA methods should not be used simply because X is measured with error. It

has on occasion been claimed that the major axis or standardised major axis needs

to be used when the X variable is subject to measurement error (Niklas, 1994; Sokal

& Rohlf, 1995). However, if the purpose of the line-fitting can be expressed in terms

of prediction, a regression method should be used instead (Carroll & Ruppert, 1996;

Draper & Smith, 1998). Confusion can arise about the reason for using MA or SMA

because these methods attribute error from the line to the X variable as well as Y ,

whereas regression attributes error to just Y , as in Fig. 4.

• In allometry, you should not use information about measurement error to choose

between MA, SMA and related methods. In allometry, equation error will invariably

be present, and the direction in which equation error operates depends how you

look at the data and not on anything that can be measured. Harvey & Pagel (1991)

estimated the ratio of variances of measurement errors in X and Y , then used

an errors-in-variables model assuming known error variance ratio. This model is

known in the biology literature as the structural or functional relationship (Sprent

& Dolby, 1980; Rayner, 1985; McArdle, 1988; Sokal & Rohlf, 1995). The difficulty

that Harvey & Pagel (1991) encountered was that they were only able to estimate

measurement error and not equation error, so in using this approach they essentially

assumed that equation error was either zero or proportional to measurement error.

While this approach has received much consideration in the literature, it should not
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be used when equation error is present, a point made best by Carroll & Ruppert

(1996). In allometry, equation error is often large compared to measurement error,

in which case it would be more reasonable to assume there is no measurement error

than to assume no equation error. Alternative methods that explicitly account for

measurement error are described below.

(3) Line-fitting when accounting for measurement error

The presence of any measurement error will bias estimates of the slope of a line (Fuller,

1987), except in some special cases. In all studies, some amount of measurement error

is present. In this section, we will consider when measurement error needs to be taken

into account in analyses, and describe the most common method of modifying line-fitting

methods to take measurement error into account.

To discuss measurement error, some terminology is needed. The error in X will be written

as δX , and the error in Y as δY . The variables that are observed are not X and Y but

(X + δX) and (Y + δY ). Given a measurement (X + δX), it is not possible to tell exactly

what the true value of X is and what the error (δX) is. (If, for example we observe the

value 10.4, then we know that X + δX = 10.4 but can not solve for the values of X

and δX .) It is usually reasonable to assume that measurements are unbiased (so the true

means of δX and δY are zero), that δX and δY are independent of each other, and that δX

and δY only depend on X and Y through their variances.

It many instances it is not necessary to account for measurement error in X or Y when

fitting a line. Typically, this is either because measurement error is negligible, or because

the questions of interest can be answered using a regression of (Y + δY ) vs (X + δX),

and there is no need to estimate some relationship between Y and X measured without

error. The following are situations in which it is appropriate to use regression without

correcting for measurement error:
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• To test if Y and X are related. Testing for an association between (Y + δY ) and

(X + δX) is appropriate in this situation (Fuller, 1987). If there is no evidence of

an association between (X + δX) and (Y + δY ), then there is no evidence of an

association between X and Y .

• To predict values of Y from the observed values of X that have been measured

with error. In this case, we want to predict Y given a value of (X + δX), and so a

regression of Y against (X + δX) should be used, in the same way that a regression

of Y vs X should be used to predict Y given a value of X.

• In regression situations when there is measurement error in Y only, and the magni-

tude of the measurement error is not a function of Y . In this situation the regression

line of Y +δY vs X is unbiased. Measurement error would only need to be considered

if it was desirable to partition error variance into the components due to equation

error vs measurement error.

Note that the first two of these cases are particularly common in regression applications.

Consequently, a large proportion of instances where a regression line is fitted do not

require adjustment for measurement error.

It is only necessary to account for measurement error if it is important that the fitted line

describes a relationship between Y and X, rather than between the variables measured

with error (Y + δY and X + δX). The following are examples of this:

• When slopes or correlation coefficients are to be compared to those from other stud-

ies which may have different magnitudes of measurement errors. Different amounts

of measurement error bias results by different amounts (Fuller, 1987), which would

need to be accounted for in comparisons.

• When theory predicts that the slope of the line relating Y and X should take a par-

ticular value – in such a case clearly the slope needs to be estimated without bias.

For example, it is of interest to test if the slope of the relationship between log(brain
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mass) and log(body mass) in Fig. 2 is consistent with the value 2
3
, or 3

4
(Schoene-

mann, 2004), or to test if seed output of plant species is inversely proportional to

seed mass (Henery & Westoby, 2001, and others).

Note that the typical situations in which MA or SMA are fitted correspond to one or both

of these cases – so unless measurement error is negligible, it would need to be accounted

for.

When can measurement error be considered negligible? Akritas & Bershady (1996) were

reluctant to advise on this issue and instead recommended accounting for measurement

error no matter how small it may be – after all, this approach will never lead to a biased

estimator. McArdle (2003) suggested that when considering the influence of measurement

error on a linear regression slope, a useful procedure is to estimate the proportion of the

sample variance in the X variable that can be considered to be due to measurement

error, p, and to calculate p
1−p

. This is an estimate of the proportion of attenuation, i.e.

it is an estimate of the proportional decrease in the estimated regression slope due to

measurement error. If this decrease is of a scale that does not alter conclusions, it could

be ignored. When considering the effect of measurement error on MA and SMA slopes,

the simplest rule is to recalculate slopes accounting for measurement error and compare

these to the original slope estimates. We have done this for several datasets and found

relatively small effects of measurement error (slope changed by < 8%). Nevertheless,

we can not claim that measurement error is generally negligible in allometry because

its magnitude will vary with the type of variable measured and the number of repeated

measures taken on each subject.

To account for measurement error, the average measurement error variance of observations

on X and Y needs to be estimated based on repeated measures. There does not need

to be the same number of repeated measures for each subject, and the measurement

error variance does not need to be the same for different subjects, as described in Riska

(1991) and Akritas & Bershady (1996). More details and examples of how to estimate
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measurement error are given in appendix C.

Before taking repeated measures to estimate a measurement error variance, careful thought

is often required to identify what constitutes a repeated measurement. For example, if the

subjects in analyses are species occurring in some region, the repeated measurements are

observations of different individuals in the region. Note that if there are several popula-

tions in the region of interest, a representative sample should contain (randomly selected)

individuals across all populations. Now consider a situation in which the subjects are

individuals measured during a period of a week, but there may be systematic changes

in subjects over the course of the week (due to growth, for example). Then repeated

measurements of an individual would be measurements taken at random times over the

week.

In the presence of measurement error whose variance is estimated from repeated measures,

consistent estimators of slopes of lines can be obtained by replacing the sample covariance

matrix by a methods-of-moments estimator, as follows. If measurement errors in the X

and Y directions are independent of each other and of the true value of X or Y ,

V ar(X + δX , Y + δY ) = V ar(X, Y ) + V ar(δX , δY )

so

V ar(X,Y ) = V ar(X + δX , Y + δY )− V ar(δX , δY )

Writing out the sample estimates of these covariance matrices term-by-term:



s2
X sX,Y

sX,Y s2
Y


 =




s2
X+δX

sX+δX ,Y +δY

sX+δX ,Y +δY
s2

Y +δY


−




s2
δX

0

0 s2
δY




and so the covariance matrix of the true X and Y values can be estimated as


s2
X+δX

− s2
δX

sX+δX ,Y +δY

sX+δX ,Y +δY
s2

Y +δY
− s2

δY




The terms s2
δX

and s2
δY

would need to be estimated from repeated measures as in ap-

pendix C, the remaining terms in the above are the sample variances and covariances of

the observed variables.
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For example, consider the regression slope. The standard estimator of the regression slope

when measurement error is not accounted for is

β̂reg =
sX+δX ,Y +δY

s2
X+δX

Replacing the relevant terms to account for measurement error, this becomes:

β̂MM,reg =
sX+δX ,Y +δY

s2
X+δX

− s2
δX

=
s2

X+δX

s2
X+δX

− s2
δX

β̂reg

This is known as methods-of-moments regression (Carroll & Ruppert, 1996). Methods-

of-moments regression can also be derived as the maximum likelihood solution when all

variables are normally distributed (Fuller, 1987). An alternative and more complicated

method is available for the case where data are species means (Kelly & Price, 2004), and

it is unclear whether there are any advantages to the use of this method.

Adjusting for measurement error in estimating variance terms in a similar fashion leads

to the following methods-of-moments standardised major axis slope estimate:

sign(sX+δX ,Y +δY
)

√
s2

Y +δY
− s2

δY

s2
X+δX

− s2
δX

and the following methods-of-moments major axis slope estimate:

1

2sX+δX ,Y +δY

{
s2

Y +δY
− s2

δY
− s2

X+δX
+ s2

δX
+

√
(s2

Y +δY
− s2

δY
− s2

X+δX
+ s2

δX
)2 + 4s2

X+δX ,Y +δY

}

Akritas & Bershady (1996) proposed estimators equivalent to the above for major axis

and standardised major axis slopes that account for measurement error. Akritas & Ber-

shady (1996) proposed obtaining methods-of-moments regression slope estimators and

transforming these to find the MA and SMA slope using identities relating these slopes

(Isobe et al., 1990, Table 1). To our knowledge, no other authors have attempted to

account for measurement error when estimating MA and SMA slopes. Instead, most au-

thors have taken the view that MA and SMA inherently account for measurement error –

and as previously discussed, this will lead to biased slope estimators, except in particular

circumstances.
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There are some difficulties with the use of methods-of-moments estimators of the covari-

ance matrix in errors-in-variables models:

• While variance formulas are available for methods-of-moments regression (Fuller,

1987) and methods-of-moments MA and SMA (Akritas & Bershady, 1996), these

do not always perform well in small samples (Appendix E). Resampling methods

might need to be used to construct confidence intervals and test hypotheses.

• It is possible, although unlikely, for the variance estimates to be negative (if the

estimated measurement error for a variable were larger than its sample variance), in

which case the method should not be used until more accurate measurements can

be obtained. Something is very wrong if most of the variation in a variable is due

to inaccuracies in measurement.

• If measurement error variance is large compared to the sample variance, then the

slope estimator can behave erratically – the line may fit the data poorly, and the

slope estimator may be inefficient, having a large standard error.

The difficulties listed above can be addressed by using resampling for inference and ensur-

ing that measurement error is relatively small. The size of the measurement error variances

can be controlled by the number of repeated measurements. Whereas the precision of the

measurements themselves may not be able to be improved on, averaging independent

measurements dramatically reduces measurement error – the variance of measurement

error is then the variance of a mean, which has the form σ2

n
, and n can be chosen by the

experimenter. For example, the variance of measurement error is halved if the number of

repeated measurements that are averaged is doubled.

(4) Line-fitting for phylogenetically independent contrasts

Often it is of interest to investigate the evolutionary divergence of traits, rather than sim-

ply to investigate cross-species patterns across traits at present time. In such a situation,
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rather than asking “How are brain mass and body mass related?”, it is of interest to ask

“As mammals evolved, how were changes in brain mass related to changes in body mass?”

as in Schoenemann (2004).

There has been much discussion of the issue of how to calculate divergences (Harvey &

Pagel, 1991, for example), and of the general questions for which these types of analyses

are useful (Westoby, Leishman & Lord, 1995). In the following, we will pass over these

issues and discuss the method of fitting allometric lines given a set of divergences in

variable X and divergences in variable Y , across some set of divergence events. These

divergences should be independent and have equal variance for each variable, which may

require adjustments similar to those described in Felsenstein (1985).

It should be noted that whereas methods of analysing divergences for linear regression

are well established (Felsenstein, 1985; Grafen, 1989), no methods have previously been

described for fitting MA and SMA, to our knowledge. This is despite the fact that fitting

MA and SMA for divergence data is potentially of wide interest – much allometric work is

comparative across different taxa, and it is common in comparative work to study traits

in the context of evolutionary divergence.

All the line-fitting methods described in this paper can be modified for use with divergence

data by replacing the terms x̄ and ȳ with zero. This ensures that the line passes through

the origin, which is important for two reasons. Firstly, the origin represents the point

where there is no evolutionary divergence in the two variables measured (both X and Y

divergences are zero). Secondly, the sign attached to any divergence is arbitrary, which

implies that the mean difference on X and Y should be zero (Felsenstein, 1985), i.e. the

center of the data is the origin. Fitting lines through the origin for divergence data was

discussed by Harvey & Pagel (1991), although it should be emphasised that the same

logic applies equally well to MA or SMA.

Consider, for example, the standardised major axis slope in the absence of measurement
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error

β̂SMA =
sY

sX

=

√∑N
i=1(yi − ȳ)2

∑N
i=1(xi − x̄)2

where there are N samples denoted (x1, y1), . . . , (xN , yN), and x̄ is the sample mean

x̄ = 1
N

∑N
i=1 xi. For SMA fitted to divergences, x̄ and ȳ can be set to zero, so the slope

estimator is

β̂SMA =

√∑N
i=1 y2

i∑N
i=1 x2

i

IV REGRESSION, MA, OR WHAT?

The main contexts in which different methods of line-fitting are used have been sum-

marised in Table 1. This can be a useful guide in deciding which line-fitting method is

appropriate for a given situation. It can be helpful when going through this process to

think about which statistic is of primary interest (labelled “key statistic” in Table 1).

Usually, if the statistic of primary interest is the slope (β̂), then MA or SMA is appro-

priate rather than linear regression. On the other hand, linear regression can always be

used if primarily interested in the P -value for the test of no relationship between Y and

X, or predicted values (ŷ), or the strength of the linear relationship (R2).

Often there can be doubt about which method is appropriate, and one potentially confus-

ing point is that the same dataset could be analysed using different methods of line-fitting

depending on what the data are to be used for. This happened in the case of Moles &

Westoby (2004), who synthesised data across various demographic stages to see if the

various advantages of large seeded species (in predation, seedling development, etc) com-

pensated for the lower number of seeds produced by a parent plant of a large-seeded

species. In doing this, the question of interest was “do plants with big seeds have an

overall life-history advantage over small seeded species?”, which is a question of predic-

tion where seed mass is the predictor. This at first seemed to be an unusual line-fitting

method to adopt, however, because seed number vs seed mass is a classic example of

allometry and so such data is usually fitted with a major axis or standardised major axis.
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Feigelson & Babu (1992, page 64) similarly present an example dataset from astronomy

where either regression or MA/SMA could be appropriate, depending on the purpose of

fitting the line.

(1) Major axis or standardised major axis?

To this point, no guidance has been given concerning which is the more appropriate of the

major axis and the standardised major axis. This is an issue that has seen debate in the

biology literature for 30 years (Ricker, 1973; Jolicoeur, 1975; McArdle, 1988; Jolicoeur,

1990; Legendre & Legendre, 1998) a debate that was never really resolved. Interest-

ingly, there has been little debate in the principal components literature, which discusses

equivalent methods.

A key point to keep in mind is that MA and SMA slopes estimate different things about

the data, and so MA and SMA lines are not directly comparable, as emphasised by Isobe

et al. (1990) and Feigelson & Babu (1992).

In practice, these two methods give similar results if the variances of the two variables

are similar (say, within a factor of 1.2) or if correlation is high, in which case it does

not actually matter which method is used. In fact, the methods are identical for tests of

whether a slope is equal to ±1 or not, which is commonly the test of interest in allometry.

In other cases, however, the major axis and standardised major axis slopes can lead to

quite different results.

There have been several general recommendations regarding the use of MA vs SMA that

are essentially free from controversy. These recommendations are summarised in Table 2,

although some of the points require further elaboration:

Efficiency While it is not disputed that SMA slopes are estimated more efficiently than

MA slopes, this result has been interpreted in different ways in the literature. Isobe

et al. (1990) use efficiency as grounds for choosing a method for line-fitting, hence the
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relatively small confidence bands for SMA slopes are interpreted as advantageous.

On the other hand, Jolicoeur (1990) considered such narrow confidence bands as

“unrealistic”, given that they are so much narrower than the confidence bands for

MA slopes. However, the latter interpretation can be rejected, because the confi-

dence intervals for a SMA slope are known to be exact or close to exact in most

practical instances (as demonstrated in Appendix E).

Scale dependence and log transformation It has previously been argued that if vari-

ables are log transformed, the variables are on a comparable scale, in which case

the scale dependence of the major axis is irrelevant (Jolicoeur, 1975; Legendre &

Legendre, 1998). However, scale dependence remains an issue for log transformed

variables if the power of the X or Y variable is arbitrary. For example, it could be

argued that you could equally well plot height vs basal area rather than height vs

basal diameter in Fig. 3. But basal area is proportional to the square of diameter,

so this constitutes an arbitrary scale change if variables have been log-transformed.

Inference in complex problems It was explained previously that the essential differ-

ence between MA and SMA is that data are implicitly standardised before line-fitting

for SMA. This standardisation of data complicates inference (Anderson, 1984; Jol-

liffe, 2002, for example). For the more commonly encountered situations where a

method of inference might be required, methods have been developed for both MA

and SMA, as reviewed in sections V and VI. However, in some situations a proce-

dure may be available for MA but not for SMA. For example, if comparing the slopes

of several axes that have been constructed through three or more dimensions, the

methodology of Flury (1984) could be used in the major axis case, but no equivalent

approach is currently available for the standardised major axis.

Some more controversial claims have also been made concerning whether MA or SMA

should be preferred. We have summarised these in Table 3, and included some arguments

why these claims can be disputed, to emphasise that these claims do not provide a strong

basis for preferring SMA to MA, or vice versa.
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The authors tend to prefer using SMA, while also considering the use of MA or the OLS

bisector approach (Isobe et al., 1990) as reasonable alternatives in most situations. Despite

fitting both MA and SMA in many contexts, we have not yet encountered a situation where

use of MA instead of SMA led to a qualitatively different interpretation of results, and

we believe that such an instance would be exceptional. However, we emphasise that it

is good practice to quote with a slope estimate the method by which it was obtained, as

emphasised by Feigelson & Babu (1992). Different line-fitting methods estimate (slightly)

different things about the data, so a slope estimate needs to be interpreted in the context

of the method used to estimate it.

V INFERENCE FOR A SINGLE MA OR SMA LINE

In this section, we will discuss methods of inference about slope and elevation for a major

axis or standardised major axis. Table 4 summarises the calculation formulas for the

recommended methods.

(1) One-sample test of the slope

To test if the true slope is equal to some value b, a simple approach to use is to test if

the residual and axis scores are uncorrelated, when these are calculated using b as the

slope. For example, to test if the standardised major axis slope is equal to 2
3
, calculate the

variables Y + 2
3
X and Y − 2

3
X and test the hypothesis that these variables are uncorrelated

(as in Fig. 6). Using this approach leads to the standard F tests for the linear regression,

major axis and standardised major axis cases (Draper & Smith, 1998; Creasy, 1957;

Pitman, 1939). These test statistics are equivalent to the likelihood ratio tests derived

assuming bivariate normality (Warton & Weber, 2002), and are exact∗ if errors from the

∗An exact test has a test statistic that exceeds the critical value for the significance level p with

probability exactly p.
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line are normally distributed, although there is an additional assumption for exactness

in the MA and SMA cases. For MA and SMA, the test does not make the distinction

between whether it is the fitted axis or the residual axis that has a slope close to b, so

it must be known a priori which of the sample axes is estimating the true MA/SMA

axis. This is not a restrictive assumption in allometry, where it is usually known a priori

whether a positive or negative relationship is to be expected, and there is usually an axis

along which the vast majority of the variation is explained, as in Figures 1-3.

For the test that b = 1 (testing for isometry), the MA and SMA tests are mathematically

identical. The test in this case is whether Y − X is uncorrelated to Y + X, or in other

words, if the data were rotated by 450, would the subsequent values be uncorrelated?

This approach is related to Tukey’s mean-difference plots (Chambers et al., 1983), or in

the medical literature, Bland-Altman plots (Bland & Altman, 1986).

(2) One-sample test for elevation

For all types of lines considered in this paper, the sample elevation is calculated so that

the fitted line goes through the centroid of the data (x̄, ȳ). This leads to the formula

ȳ − β̂x̄ for all line-fitting methods. Another way to think about the sample elevation is

as the sample mean of residual scores Y − β̂X.

The sample elevation is approximately normally distributed, and so a one-sample t-test

can be used to test if the true elevation is equal to some value a. Irrespective of whether

linear regression, MA or SMA is used, the variance of α̂ is approximately

σ2

N
+ µ2

xvar(β̂)

where σ2 is the variance of residual scores Y − β̂X when β̂ is treated as fixed, and µx is the

mean of the X variable (Robertson, 1974). This expression consists of two components

– the first is due to uncertainty estimating the centroid (x̄, ȳ), and the second is due to

uncertainty estimating the slope (β̂), as in Fig. 7. In practice, σ2 and µx need to be
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replaced by their sample estimates, which leads to the standard formula for the variance

of elevation for linear regression (Draper & Smith, 1998, for example). The estimated

variance of elevation is the same for SMA as for linear regression, because the variance of

the slope is the same.

(3) Confidence intervals for slope and elevation

A confidence interval for a parameter can always be constructed based on a one-sample

test for the parameter, by finding the range of values for which the one-sample test is non-

significant at the chosen level of confidence. So, for example, a 95% confidence interval for

a major axis slope could be constructed as the interval containing all values of b such that

the correlation coefficient between the variables bY + X and Y − bX is not significantly

different to zero at the 0.05 level. This is the method by which the expressions for

confidence intervals in Table 4 were calculated, which are the recommended expressions for

calculating confidence intervals (as in Jolicoeur & Mosimann, 1968; Jolicoeur, 1990, and

elsewhere). We will refer to this as the exact method of calculating confidence intervals.

Several alternative methods exist for making inferences about MA or SMA slopes. Al-

though some of the alternative methods usually work well, the exact method is preferred

on theoretical grounds and on the basis of simulation work presented in appendix E. In

brief:

• Given the variance of the MA or SMA slope, the tN−2 distribution can be used to

find approximate confidence intervals (Ricker, 1973; Sokal & Rohlf, 1995; Quinn &

Keough, 2002). This requires the assumption that the sampling distribution is nor-

mal, which is usually reasonable, although not exactly true for MA and SMA slopes.

Hence confidence intervals are not exact, although they are a good approximation

(Appendix E).

• Clarke (1980) derived confidence limits for log(β̂SMA), given that the sampling distri-
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bution of SMA (and indeed MA) slope is closer to a log-normal distribution than to

a normal distribution. This enables good approximate inference about SMA slopes

in small samples (Clarke, 1980; McArdle, 1988).

• Isobe et al. (1990) proposed a method that is asymptotic (i.e. valid for large sample

sizes) of making inferences about slope that makes less restrictive assumptions than

the exact method. We found the asymptotic method performed poorly in small

sample simulations for both normal and non-normal data, while the exact method

was robust to non-normality, suggesting that it is not necessary to seek more robust

methods of inference (Appendix E).

• Legendre & Legendre (1998) described a method of constructing confidence intervals

for elevation, which uses the relation α̂ = ȳ− β̂x̄ to estimate confidence limits for α̂

by substituting in the upper and lower confidence limits for β̂. This method treats ȳ

and x̄ as fixed, i.e. it accounts for sample variation in estimating the slope (Fig. 7b)

but not the centroid (Fig. 7a). This method performs very poorly (Appendix E)

and should not be used, particularly when x̄ is close to zero because in this case

most sample variation in α̂ is due to uncertainty in estimating the centroid of the

data.

VI INFERENCE FOR COMPARING SEVERAL MA

OR SMA LINES

It is often of interest to compare several MA or SMA lines, as in the leaf allometry example

(section II, Fig. 1b-d). The types of hypotheses of interest are analogous to analysis of

covariance, although for lines calculated using MA or SMA estimation rather than using

linear regression. Most of the testing procedures described here were proposed relatively

recently (Warton & Weber, 2002) or are proposed in this paper.

Calculation formulas for the multi-sample tests are described in Appendix D. These
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formulas tend to have a more complicated form than for one-sample tests.

(1) Testing for common slope

Testing for common slope amongst several lines, as in Fig. 1b, is a first step in making

inferences about several lines. This test is a necessary preliminary to testing for equal

elevation or no shift along the axis, given that such tests make little sense unless the lines

being compared share a common slope. However, testing for common slope is of interest

in its own right, because in allometry inferences about the slope of the line are usually of

primary interest.

In the case of linear regression, an F -statistic is constructed to compare the sums of

squares when a common slope is fitted and the sums of squares when each group is

fitted with a regression line of different slope (Sokal & Rohlf, 1995, for example). One

might think that a similar approach could be used in the MA and SMA cases, but with

sums of squares defined differently, as suggested by Harvey & Mace (1982) and others.

However, this statistic does not follow the F distribution needed for comparing several

MA or SMA slopes (Appendix E, Table 11), presumably because the numerator and

denominator sums of squares are not independent. Further, this method assumes equal

residual variances across groups, which is not always reasonable, and does not need to be

assumed in alternative test statistics (Clarke, 1980; Flury, 1984; Warton & Weber, 2002).

We recommend using a likelihood ratio test for common MA or SMA slope (Flury, 1984;

Warton & Weber, 2002). Calculation details can be found in Appendix D. The test was

derived assuming bivariate normality, although it is known to be robust to non-normality

(Warton, in review). This same test was proposed for MA slopes in the appendix of Harvey

& Mace (1982) and attributed to J. Felsenstein, although an algorithm for estimating the

common slope was not described. Flury (1984) developed common principal components

analysis, and described a method of common slope estimation that can be used for major

axes (and can also be used for more than two variables). Warton & Weber (2002) modified
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the method due to Flury (1984) for the bivariate standardised major axis case. Warton

& Weber (2002) also demonstrated that when the test statistic is used with Bartlett

corrections, it is well approximated by the chi-squared distribution even when sample

sizes in each group average 10 and when data are not bivariate normal, but errors from

the line are normally distributed.

When using the likelihood ratio tests of Flury (1984) or Warton & Weber (2002), the com-

mon MA/SMA slope estimator does not have a closed form solution, and so is calculated

by iteration (and available software does this in negligible time). Alternative slope esti-

mators could be used, for example, the pooled sums of squares could be calculated across

groups and the standard slope estimator used (Krzanowski, 1984), which is analogous to

the estimator of the linear regression common slope. This has the advantage of being

simpler to calculate, although it has the disadvantage of making more restrictive assump-

tions – pooling sums of squares implicitly assumes that the variance matrix is the same

for all groups, and the procedure performs poorly when groups have the same slope but

different variances or correlations (as in simulations, Appendix E Table 11). In practice,

variances and correlations can be quite different for different groups (as in the example

in Warton & Weber, 2002), so pooling of sums of squares can not be recommended in

general.

An alternative method of comparing two SMA slopes was proposed by Clarke (1980),

and reviewed in McArdle (1988). The test maintains close to exact significance levels in

small samples, as does the likelihood ratio test (Warton & Weber, 2002), although the

test due to Clarke (1980) does not compare more than two SMA slopes. The method due

to Clarke (1980) could be modified to compare several SMA slopes using a Wald test,

along the lines of the test for equal elevation described later. While this method is a

reasonable alternative, we lean towards using the likelihood ratio test, given that it is a

single procedure that can be used for both MA and SMA, and it is known to have good

properties.
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Warton & Weber (2002) describes a procedure for testing for common slope in a more

general context than MA and SMA – when the error variance ratio is unknown. The

error variance ratio determines the direction of the residual axis, which can be anywhere

from vertical to horizontal. Different choices of error variance ratio lead to different slope

estimates and (usually slightly) different results in multi-sample inference. Issues relating

to choice of error variance have been discussed previously. If one is uncomfortable with

the choice of MA vs SMA or an alternative slope estimator, then testing for common

slope with an unknown error variance ratio offers a conservative test, giving the smallest

possible test statistic across all possible choices of error variance ratio.

A confidence interval can be constructed for the common slope, using likelihood ratio

techniques. The method has not previously been described in detail in the literature,

although it is relatively straightforward in principle. A likelihood ratio statistic for testing

if the common slope equals some value b (H0 : βi = b Ha : βi = β 6= b for each i), can

be constructed, as in Appendix D. A confidence interval is then the interval containing

all possible values of b for which the test statistic is not significant (at the chosen level

of confidence). Although the confidence limits are not easily written in closed form, they

can be computed using an optimisation algorithm.

(2) Testing for common elevation

As was described in relation to Fig. 1c, it is often of interest to test for equal elevation

amongst several lines that have been fitted with MA or SMA lines of common slope. We

propose using a Wald statistic for inference, as described in Appendix D, in preference to

the F -statistic that has received some attention in the literature. We will briefly describe

the F statistic first, explain its problems, then describe the Wald statistic.

Harvey & Mace (1982) and others suggested using analysis of variance of residual scores

as a test for common elevation, which we refer to as using an F statistic. This method

was used by Wright, Reich & Westoby (2001). The reasoning behind this approach is
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that the sample elevation can be calculated as the sample mean of the residual scores,

Y − β̂X, so testing for equal means of the residual scores is equivalent to testing for equal

elevation. Note that in calculating the residual scores, β̂ is the estimated common slope,

because the lines being compared must have common slope for the test of elevation to

be meaningful. As far as we are aware, no other procedure for comparing elevations of

MA/SMA has previously been proposed.

The problem with the F -test is that while it accounts for uncertainty in estimating the

centroid of each group, it does not consider uncertainty estimating the common slope – in

Fig. 7, (a) is accounted for but (b) is ignored. This is not a problem if the mean of the X

variable is the same for all groups. However, the F statistic can depart considerably from

an F -distribution when there is a common elevation, but the means of the X variable

differ systematically among groups (Appendix E). In this situation the error estimating β̂

has different consequences for the sample elevation of groups with different X means, such

that the sample elevations have unequal and correlated error. In contrast, the F statistic

assumes that the sample elevations have equal and uncorrelated error. Resampling in an

appropriate fashion (as described in Appendix F) can ensure valid inference despite this,

however a simpler alternative is to use a different test statistic.

A Wald statistic, as described in Appendix D, can be recommended for comparing sev-

eral elevations. This is a simple type of statistic that is traditionally used for inference

(Rao, 1973, for example) in situations such as this one, when it is difficult to calculate

the null likelihood function hence the likelihood ratio statistic (a statistician’s first choice

test statistic). Wald statistics are commonly encountered – they appear in the standard

output from most statistics packages for multiple linear or logistic regression (often la-

belled “t” and “Z” statistics, respectively). A Wald statistic simply tests if parameter

estimates are significantly far from their hypothesised values, by comparing the distance

from hypothesised values to its standard error. In testing for common elevation, there are

several parameters of interest, so the Wald statistic involves a vector of parameters and

their variance matrix. By using the correct formula for the variance matrix, which is a
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multivariate version of s2
α̂ from Table 4, the Wald statistic incorporates both the sources of

uncertainty illustrated in Fig. 7. This statistic was demonstrated in simulations to main-

tain close to exact Type I error (Appendix E) irrespective of possibly unequal sample

sizes, correlations, and means of the X variable.

(3) Testing for no shift along a common axis

Fig. 1d describes a situation in which it was believed that data from two sites were

scattered around a common axis, with no difference in elevation, but it was hypothesised

that there might be a shift along the axis. It was believed that both sites would contain

species sharing a common trade-off between the two leaf traits, however in the higher

nutrient site, species would generally have shorter-lived leaves with higher leaf mass per

area.

We propose a Wald test for equal mean fitted axis scores. The fitted axis scores mea-

sure the location of a point along the fitted axis, so it is natural to test for shift along

the axis using the mean fitted axis score of each group. As explained in Appendix D,

this is equivalent to a test for equal elevation of the (standardised) minor axis of each

group, i.e. of the line fitted through the centroid which is in the direction of the residual

axis. Consequently, the method of testing is very similar to testing for common elevation

(Appendix D).

Wright et al. (2002) tested for no shift along a common axis using an analysis of variance

of the axis scores. This was done given the lack of an alternative procedure, and is

not recommended. This procedure does not account for sampling error in estimating

the common slope, as for the F statistic for common elevation, and so this procedure is

sensitive to differences in means of the X variable that are not attributable to shifts along

the fitted axis.
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VII INFERENCE FOR RELATED LINE-FITTING

METHODS

This section describes how the methods of inference described in this paper can be mod-

ified for use with related line-fitting methods: MA or SMA without an intercept, and in

the presence of measurement error.

(1) MA or SMA with no intercept

If MA or SMA lines are forced to go through the origin (as for divergence data), the

methods of inference described in this paper can still be used, after two simple changes:

• The averages of the X and Y variables are set to zero in all calculation formulas.

This affects calculation formulas via changes to the sample variances and covariance

of X and Y , which become sums of squares and products of xi and yi rather than

of (xi − x̄) and (yi − ȳ).

• All terms in calculation formulas of the form (N − 2) or (ni− 2) should be replaced

by (N − 1) and (ni− 1), respectively. These terms represent the residual degrees of

freedom. Because the elevation is fixed at zero, there is one less parameter to be es-

timated, so the residual degrees of freedom are increased by one. Note that this only

affects one-sample inference about the slope, because the recommended methods of

multi-sample inference about slopes do not involve using a t or F distribution.

For example, when given N pairs of phylogenetically independent contrasts (x1, y1), . . . , (xN , yN),

the estimated SMA slope with the line forced through the origin is

β̂SMA =

√∑N
i=1 y2

i∑N
i=1 x2

i

A 100(1− p)% confidence interval for β has the same form as previously:

β̂(
√

B + 1±
√

B)
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except now B =
1−r2

xy

N−1
f1−p,1,N−1, where rxy is the sample correlation coefficient calculated

without centering the data:

r2
xy =

(∑N
i=1 xiyi

)2

∑N
i=1 x2

i

∑N
i=1 y2

i

The only changes that have been made here to the relevant formulas of Table 4 are that

sample means have been replaced with zero, and N − 2 has been replaced by N − 1.

Note that if the lines are forced through zero, it is no longer of interest to make inferences

about elevation, because the elevation of all lines is exactly zero.

(2) MA or SMA adjusting for measurement error

Methods-of-moments MA was proposed by Akritas & Bershady (1996, section 3) and

discussed together with methods-of-moments SMA in section III. Akritas & Bershady

(1996) presented a variance formula for methods-of-moments MA, which can be extended

to methods-of-moments SMA using the relevant formula in Table 1 of Isobe et al. (1990).

A simple alternative to the method of Akritas & Bershady (1996) is to use the recom-

mended methods of inference for when there is no measurement error, after adjusting the

variance estimates to account for measurement error. This is in fact the method that

Akritas & Bershady (1996) used, although they modified the formulas from Isobe et al.

(1990) rather than the formulas for exact methods.

Simulations in Appendix E suggest that it is better to use the asymptotic method due

to Akritas & Bershady (1996) than to modify exact methods of inference, but only in

moderate to large samples (N > 30). In small samples where there is non-negligible

measurement error, it may be necessary to use resampling, given that no suitable alter-

native has been found. Carroll et al. (1995, Appendix A.6) provide some guidelines for

resampling measurement error models.

Further studies investigating methods of inference for measurement error models would
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be useful. In particular, we only conducted simulations to consider confidence interval

estimation of methods-of-moments MA or SMA slopes, and we did not consider other

types of inference problems.

VIII ROBUSTNESS OF INFERENTIAL PROCE-

DURES TO FAILURE OF ASSUMPTIONS

Several assumptions are made in the above inferential procedures, and it is important to

know how sensitive inferences are to these assumptions, and what can be done to check

that the assumptions are satisfied. These issues are summarised in Table 5, drawing on

general design principles (Cox, 1958), robustness of linear models in general (Miller, 1986),

and recent work on the robustness of inferences about MA and SMA (Warton, in review).

Some of the points in Table 5 require some further elaboration:

• Normality is the least important assumption, because the central limit theorem

ensures robustness to failure of this assumption (see Appendix E for examples of

this robustness). However, an important consideration with non-normality is loss of

power – least squares methods have low power for data from long-tailed distributions

(Staudte & Sheather, 1990, for example).

• Resampling will rarely help ensure robustness to failure of assumptions for linear

models. Resampling algorithms are described in Appendix F, but these implicitly

assume independence, linearity and equal variance. Even when residuals are non-

normal, resampling only ensures valid inference, it does not generally ensure higher

power, if the same test statistic is used. Resampling might be useful for small

samples, when residuals are moderately non-normal, but its main use is for inference

when alternative methods are unavailable, not as a method of robust inference.

• Robust alternatives to MA and SMA could be drawn from the principal components
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analysis literature (reviewed by Jolliffe, 2002, section 10.4). There are two general

approaches for robust principal components lines – using robust estimators of the

variance matrix, or using different criteria for line estimation. A simple example of

using robust estimates of variances is to calculate the robust SMA slope as the ratio

of median absolute deviations, and calculate the elevation so that rather than passing

through the centroid, it passes through the point (x̃, ỹ) where x̃ and ỹ are sample

medians rather than means. An example of an alternative line-fitting criterion is

to estimate a robust MA slope by finding the rotation of the data for which some

robust measure of correlation is zero (Isler et al., 2002). In using such techniques,

resampling-based inference may be required, because of a lack of development of

alternative methods of inference.

IX SOFTWARE

Most of the inferential procedures described in this paper are not available in standard

software packages. With the exception of one-sample tests of slope, specialised computer

software is required for all methods of inference. Such software is available in several

formats:

• As a stand-alone package known as (S)MATR (Falster et al., 2003), with accompa-

nying documentation http://www.bio.mq.edu.au/ecology/SMATR/.

• As spreadsheet formulas in Microsoft Excel.

• As an R package.

• As a Matlab toolbox.

All software can be found from the first author’s website

http://web.maths.unsw.edu.au/~dwarton/programs.html. The Excel spreadsheets

do not include software for testing hypotheses about elevation or shift along the axis.
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X CONCLUSIONS

1. In selecting a method of line-fitting, it is essential to consider what the line is to be

used for and whether measurement error is negligible or not (Table 1).

2. The distinction between equation and measurement error has often been made in

previous reviews, however we believe that the different consequences of the different

sources of error has not been sufficiently appreciated.

3. When equation error is present, the type of line-fitting method to use is determined

by the research question of interest, as in Table 1, and not by estimates of error

magnitude.

4. When measurement error is present, its magnitude should be estimated. This allows

the impact of measurement error on results (in particular, on the estimated slope)

to be considered and corrected for, if required.

5. For the first time, users of the major axis and standardised major axis have available

a set of tools for the most commonly encountered tasks in allometric analysis – for

inference about the slope or elevation of a single line, and for comparing several

lines in a framework analogous to analysis of covariance.

6. We have described how to modify methods of inference for use when data are phy-

logenetically independent contrasts or are measured with error.

7. There are several areas where further methodological research would be useful:

• Improved inference about method-of-moments lines – currently, methods of

inference about such lines are only approximate, and in small samples the

approximation can perform poorly (Appendix E).

• Robust alternatives to MA and SMA – the MA and SMA methods are special

cases of least squares approaches. Such methods of estimation are known to

lack robustness to outliers, hence they are inefficient for long-tailed distribu-

tions.
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• Inference for SMA when there are more than two variables – whereas the meth-

ods of inference for MA have natural extensions to more than two dimensions,

the data standardisation for SMA complicates inference.
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A Terminology

This appendix briefly reviews some alternative terminology used for line-fitting methods.

Methods of line-fitting have been known under a variety of names, as reviewed in Table 6.

A few of these terms are misleading, hence not recommended for general use:

• “Model II regression” (Sokal & Rohlf, 1995). This commonly used term is misleading

on two counts – the method does not involve regression, and is not model II, in the

senses in which these terms were first used. The term “regression” was first used

because of the property of “regression to the mean”, a property that the user is

trying to avoid with MA and SMA methods. The term “model II” was originally

suggested under the belief that what distinguishes MA and SMA methods from

linear regression is that the X variable is random not fixed, which is the difference

between model I and model II ANOVA as defined by Eisenhart (1947). However,

the distinction is not random vs fixed X, it is that a line-of-best-fit is required rather

than a line for predicting Y . It is true that the X variable must be random to use

MA or SMA, but it is not the case that X has to be fixed for linear regression (for

more details, see section reviewing regression). A closer analogy to MA or SMA is

ANOVA where between group differences are in part attributed to misclassification
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of subjects (this is rare in practice).

• “Errors-in-variables models” is a term used widely in the statistical literature for

line-fitting when there is measurement error in both variables. However, MA and

SMA are not used because there is measurement error (as described previously).

• “Functional relationship” and “structural relationship” are terms that were used to

describe major axis and standardised major axis methods in the statistics literature

throughout most of the second half of the 20th century. However, these terms have

different meanings in other literatures. For example, to many biologists, a functional

relationship is a causal relationship.

There are two further terms that are not misleading, however more appropriate terms are

available:

• “Geometric mean functional relationship” is an alternative to “standardised major

axis” that gets its name from the fact that the slope estimator is the geometric mean

of the two linear regression slope estimators. While this is an interesting property,

the method is more naturally described as a standardised version of the major axis.

• “Reduced major axis” is not as specific a term as “standardised major axis”, which

makes it clear that the modification that has been made to the major axis method

is standardisation of data. According to Jolicoeur (1975), the term “reduced” was

introduced by Kermack & Haldane (1950) as an inaccurate translation of the French

work “reduit”, which is better translated as “standard” or “standardised” than as

“reduced”.
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B Equation error estimation for the standardised ma-

jor axis

This appendix briefly describes how equation error is treated in the standardised major

axis model.

The standardised major axis can be considered to measure residuals in a direction that

is the fitted standardised major axis reflected about the Y axis. This interpretation has

not often been used in the past, however it can be derived as follows. For standardised

bivariate data, the major axis always has slope either 1 or -1, or more specifically, sign(r)

(the sign of the correlation coefficient multiplied by 1). The residuals are measured

perpendicular to this line, and so have slope −sign(r). Rescaling to the original axes, the

slope of the fitted line is sign(r) sy

sx
, the ratio of standard deviations with the same sign

as the correlation coefficient, and the residuals are measured in the direction −sign(r) sy

sx
,

which is the fitted line reflected about the Y axis. This result was implicitly used in

deriving methods of inference that are used for the standardised major axis (Pitman,

1939; Warton & Weber, 2002).

A less useful derivation of the standardised major axis finds the line that minimises the

sum of triangular areas between the line and each data point (Teissier, 1948). This

derivation is best considered a geometric peculiarity – statistical theory offers no reason

why you would wish to minimise such a quantity.

C Estimating measurement error variance

This appendix outlines how to estimate the variance of measurement errors, or the average

measurement error variance if this differs across subjects. If the variable being measured

is X, and it is measured with error as X + δ, then we would like to estimate a quantity
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s2
δ such that an unbiased estimator of the variance of X is

s2
X+δ − s2

δ

where s2
X+δ is the sample variance of the X subjects that were measured with error. Note

that δ is used in this appendix rather than δX , which was used in the remainder of the

manuscript. To estimate s2
δ , the only requirement is that repeated measurements of X +δ

must be available.

To define some notation – let us say that N values of X were sampled, and random

variables representing each of these N subjects are X1 + δ1, X2 + δ2, . . ., XN + δN . There

are ni repeated measurements of the ith subject (Xi + δi), where the number of repeated

measurements is not necessarily equal for all subjects (and so ni is a function of i). The

repeated measurements of Xi + δi measured with error are xi + δi,1, xi + δi,2, . . ., xi + δi,ni
.

Note that measurement error variance should be estimated on the scale on which the lines

are to be fitted. For example, in Fig. 2, error variance is estimated for log(brain mass)

not for brain mass.

Note also that it can require careful thought to determine what units represent replicate

measures of a subject – individuals of a species from throughout their known distribution

(for Fig. 2) or repeated measurements on an individual (for Fig. 3), etc.

The repeated measurements are most often averaged to estimate X1 + δ1, X2 + δ2, . . .,

but this does not need to be the case. In particular, the log of a variable might be

analysed (as in Figures 2 and 3), but the species means might be estimated before log

transformation, to preserve the interpretation of the species value as an average. In this

appendix, methods of estimating the average measurement error variance s2
δ are described

for the following cases:

• When all V ar(δi) are equal.

• When not all V ar(δi) are equal.
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• In a leaf mass per area example, where repeated measurements are not averaged on

the log scale.

(1) All measurement errors have equal variance

The first case to be considered is the simplest one – where the variance of measurement

error on each subject is equal.

In this case, the variance of measurement error can be estimated using one-factor analysis

of variance. The factor used in analysis is the subject (X1, X2, . . .), which is species

in Fig. 2 or individual in Fig. 3. The observations within groups are the measurements

taken of the subject, which are measurements of log(brain or body mass) for different

individuals of a species in Fig. 2, or remeasurements of log(height or basal diameter) for

the same individual in Fig. 3. An estimate of average measurement error variance can be

obtained using the mean squared error of the analysis of variance (MSE) as

s2
δ =

MSE

N

N∑
i=1

1

ni

(2) Measurement error variances not equal

It is often the case that measurement errors do not have equal variance for different values

of X. For example, in measuring average seed weight for an individual plant, measurement

error will largely be due to the measurement process itself (rather than due to sampling

error). The standard error of repeated measures on a set of scales might be 0.05 grams, for

example, irrespective of the size of the seed. While this is not a function of seed weight,

it will be a function of log(seed weight), as 0.05 grams is relatively larger for small seeds

than for large seeds.

To estimate average measurement error variance, the sample variances of repeated mea-
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sures of each subject are first calculated, s2
δ1

, s2
δ2

, . . . , s2
δN

. These are then combined as:

s2
δ =

1

N

N∑
i=1

s2
δi

ni

(1)

If the same number of repeated measures are taken for all subjects, this estimate will

be the same as the one proposed in the previous section. Riska (1991) and Akritas &

Bershady (1996) independently arrived at this estimator of measurement error for linear

regression.

(3) When the data are not averages of repeated measures

On some occasions, a variable used in line-fitting might be a function of repeated measures,

but it might not simply be an average of these measures on the scale on which data are

analysed. In these cases a simple formula such as equation (1) does not apply. Alternatives

are either to derive an alternative formula, or to use a resampling approach to estimate

measurement error variance.

One approach that can be used to arrive at an estimate of measurement error variance is

to use the following result:

V ar(g(X)) ≈ g′(µ)2V ar(X)

where g′(µ) is the derivative of the function g(·) evaluated at µ (Kendall & Stuart, 1969,

sections 10.6 and 10.7). This result is only an approximation, made by assuming that

over the range of values of X that are observed, g(·) is approximately linear. The approx-

imation will work better when X is less variable and when g(·) is closer to linear.

Using this result, if repeated measurements are averaged on the untransformed scale, and

then averages are used in analysis on the log scale,

s2
δi
≈ 1

x̄2
i

s2
x,i (2)

where x̄i is the sample mean and s2
x,i is the sample variance of the repeated measures for
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the ith subject. If data are transformed using log10(·) for analysis, then s2
δi

is approximated

as (log10 e)2 multiplied by the expression in equation (2).

(4) Example – log(LMA) using species averages

Consider the calculation of measurement error when estimating leaf mass per area (LMA)

in kg/m2 for the data used in Wright, Reich & Westoby (2001). Measurements were

taken of LMA and other leaf traits, for about 20 species in each of four sites. Several

individuals were sampled of each species, and the average of LMA calculated for each

species. Standardised major axes were estimated to find the slope of the line of best fit

relating LMA and a measure of photosynthetic rate (Amass), when both variables were

log-transformed.

Although the log-transformation was used for analysis, the species means and measure-

ment error were not estimated from repeated measurements on the log-transformed data.

Instead, species means were estimated on the untransformed scale (kg/m2 for LMA), for

two reasons:

• So that the summary statistic for species is average LMA value – LMA being the

variable of interest, rather than log(LMA), and the average being a statistic that is

simpler to interpret than the back-transformed average or “geometric mean”.

• The distribution of repeated measurements of LMA within a species is not usually

long-tailed or strongly skewed, and so the sample mean is usually a good summary

statistic.

The averaging on the untransformed scale slightly complicates estimation of the measure-

ment error variance s2
δi

for log(LMA) – equation (2) needs to used.

Table 7 gives a summary of the repeated measures of LMA for each species, for one of the

sites sampled by Wright et al. (2001). The term sδi
is estimated using equation (2), with
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a correction factor of (log10 e)2, because log10(LMA) is used in further analyses in Wright

et al. (2001) rather than loge(LMA).

The average measurement error variance s2
δ , can be calculated using equation (1), from

the values of ni and s2
δi

in Table 7. The estimated value is 0.00014. This is small compared

to the sample variance of the log(LMA) values for the 18 species means, s2 = 0.0034.

For all species, the sample mean and measurement error variance are similar to the val-

ues they would otherwise be if the repeated measurements were log-transformed before

averaging. However, this may not always be the case.

An alternative method of measurement error estimation would be to estimate the terms

s2
δi

by resampling. For each species, the repeated measurements could be resampled with

replacement, the sample mean reestimated for each resampled dataset, and the variance

of the log-transformed means across the resampled datasets could be used to estimate s2
δi
.

For the other three sites and other variables measured in Wright et al. (2001), we similarly

found that measurement error variance was small compared to sample variance (usually <

3%, but 10% in one case). Measurement error was larger for log(Amass) than for log(LMA),

and so SMA slopes of log(Amass) vs log(LMA) were slightly flatter when accounting for

measurement error (the most substantial reduction being from a slope of 1.24 to 1.15).

D Calculations for multi-sample tests

In this appendix, we describe calculation formulas that can be used to conduct tests for

comparing the lines estimated from several independent samples (section VI). First we

will define some terms that are used in the calculation formulas below.

We will assume there are g groups, and that the ith group consists of ni pairs of obser-

vations (xi1, yi1), (xi2, yi2), . . . , (xini
, yini

), and that the total sample size is N =
∑g

i=1 ni.

We will use standard definitions of the sample mean, variance, covariance, and correlation
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coefficient of the X and Y variables in each group:

x̄i =
1

ni

ni∑
j=1

xij ȳi =
1

ni

ni∑
j=1

yij

s2
x,i =

1

ni − 1

ni∑
j=1

(xij − x̄i)
2 s2

y,i =
1

ni − 1

ni∑
j=1

(yij − ȳi)
2

sxy,i =
1

ni − 1

ni∑
j=1

(xij − x̄i)(yij − ȳi) ri =
sxy,i

sx,isy,i

We will also define s2
f,i(b), srf,i(b) and s2

r,i(b), the sample variances and covariances of fitted

axis and residual scores from a line of slope b, for the ith group. The residual axis from

a line of slope b can be defined as Y − bX, so the sample variance of residual scores is

s2
r,i(b) = s2

y,i − 2bsxy,i + b2s2
x,i

This should be multiplied by the factor ni−1
ni−2

when b is estimated from the sample data

(Sprent, 1969), although this will make negligible difference in large samples. For MA,

the fitted axis is bY + X, and for SMA the fitted axis is Y + bX, so

s2
f,i(b) =





b2s2
y,i + 2bsxy,i + s2

x,i for MA

s2
y,i + 2bsxy,i + b2s2

x,i for SMA

srf,i(b) =





sxy,i + bs2
y,i − bs2

x,i − b2sxy,i for MA

s2
y,i − b2s2

x,i for SMA

and as previously, these terms are multiplied by the factor ni−1
ni−2

if b is estimated from the

data. (In passing, note that the MA or SMA slope for the ith group is the value β̂i that

satisfies sxy,i(β̂i) = 0, i.e. the value that ensures residual and axis scores are uncorrelated.)

(1) Common slope test

To conduct a test for common slope, first the common slope must be estimated. A

maximum likelihood estimate for the common slope is the value β̂ satisfying the equation
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(Warton & Weber, 2002)

0 =





∑g
i=1 ni

(
1

s2
r,i(β̂)

− 1

s2
f,i(β̂)

)
s2
rf,i(β̂) for MA

∑g
i=1 ni

(
1

s2
r,i(β̂)

+ 1

s2
f,i(β̂)

)
s2
rf,i(β̂) for SMA

This equation can be solved iteratively, given an initial estimate (such as that suggested

by Krzanowski, 1984, below). In iteration, the current estimate of β̂ is used to calculate

s2
r,i(β̂) and s2

f,i(β̂), then these values are plugged into the above equation, which is solved

for the new estimate of β̂ (Warton & Weber, 2002).

To test if there is a common slope, a (Bartlett-corrected) likelihood ratio statistic (Warton

& Weber, 2002) is

−
g∑

i=1

(ni − 2.5) log
(
1− r2

rf,i(β̂)
)
∼ χ2

g−1

In the context of estimating common principal components, Krzanowski (1984) suggested

that instead of estimating the common slope iteratively by maximum likelihood, it could

be found in a single step by pooling sums of squares:

β̃ =





1
2sxy,p

(
s2

y,p − s2
x,p +

√
(s2

y,p − s2
x,p)

2 + 4s2
xy,p

)
for MA

sign(sxy,p)
sy,p

sx,p
for SMA

where

s2
x,p =

g∑
i=1

(ni − 1)s2
x,i sxy,p =

g∑
i=1

(ni − 1)sxy,i s2
y,p =

g∑
i=1

(ni − 1)s2
y,i

Note, however, that a test statistic using this pooled estimator will not have a chi-square

distribution when residual variances are different in different groups, as demonstrated in

simulations (Table 11).

An alternative test proposed by Harvey & Mace (1982) and others is to use an F test

analogous to that in the linear regression case. A measure analogous to sums of squares

for a line of slope b fitted to the ith group is

SS(b, i) = (ni − 2)k(b)s2
r,i(b)
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where k(b) is a correction factor so that residual scores are measured on an appropriate

scale (mathematically, so that the Jacobian matrix of the transformation to residual and

axis scores has determinant 1):

k(b) =





1 + b2 for MA

2b for SMA

In the major axis case, SS(b, i) is the minimum possible sum of squares of distances from

the points to a line of slope b, for the ith group. In the standardised major axis case,

SS(b, i) is the analogous term calculated on standardised data then back-transformed, or

equivalently, it is the sum of triangular areas discussed by Teissier (1948).

An F test is then constructed to compare fitting a common slope (β̃, estimated by pooling

sums of squares) to fitting each group with its own slope (β̂i):

(N − 2g)
∑g

i=1

(
SS(β̃, i)− SS(β̂i, i)

)

(g − 1)
∑g

i=1 SS(β̂i, i)

While in the linear regression case a test statistic of this form is distributed as Fg−1,N−2g,

simulations have shown that this distribution is generally a poor approximation when

comparing the slopes of MA or SMA lines (Table 11).

(2) CI for common slope

If it is believed that there is a common slope, to test if the common slope is equal to b, a

(Bartlett corrected) likelihood ratio test statistic is

g∑
i=1

(ni − 2.5) log

(
s2
f,i(b) s2

r,i(b)

s2
f,i(β̂) s2

r,i(β̂)

)
∼ χ2

1

A 100(1− p)% confidence interval for the common slope can be estimated by finding the

range of values for b for which this test statistic is non-significant at level p. Use of this

approach to constructing confidence intervals was suggested by Warton & Weber (2002).

Solving for the confidence interval is best done using an optimisation routine.
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(3) Test for common elevation

Two statistics will be described here for testing for common elevation – an F statistic and

a Wald statistic. The Wald statistic makes less restrictive assumptions and was shown in

simulations (Appendix E) to maintain nominal significance levels in a range of scenarios

we consider to be realistic. Hence the Wald statistic is recommended for general use.

The F statistic described here is the test statistic for an analysis of variance of residual

scores Y − β̂X, but with denominator degrees of freedom of N − g − 1 not N − g. As

previously, the term β̂ is an estimator of the common slope. An F statistic of this form

can be used because the elevation is the sample mean of the residual scores, α̂i = ȳi− β̂x̄i.

If ᾱ = 1
N

∑g
i=1 niα̂i, then the F statistic can be written as

(N − g − 1)
∑g

i=1 ni(α̂i − ᾱ)2

(g − 1)
∑g

i=1(ni − 2)s2
r,i(β̂)

This test statistic does not account for the possibility that the X means might not be

equal, or that the residual variances (estimated by s2
r,i) might not all be equal. The

estimated variance of α̂i is

s2
r,i

ni

+ x̄2
i s

2
β̂

but an analysis of variance of residual scores ignores the second part of this expression,

and replaces s2
r,i with a pooled estimate. This is only reasonable if the true mean of the

X variable (µx,i) is the same for all groups, and if all residual variances are the same.

If the µx,i can not be assumed to be equal, then a Wald statistic is more appropriate, as de-

scribed in the following. First we will define the vector containing the g sample elevations

as Â = [α̂1 . . . , α̂g]
′, the g-vector of sample means of the X variable as X̄ = [x̄1 . . . x̄g]

′,

and the g-vector of residual mean standard errors as s2(R̄) = [s2
r,1/n1 . . . s2

r,g/ng]
′. Then

the variance matrix of the g sample elevations is approximately

s2(Â) = diag(s2(R̄)) + X̄X̄′s2
β̂

where diag(v) indicates a diagonal matrix with the vector v along the diagonal, and where

the variance of the estimator of the common slope (s2
β̂
) is a function of the variances of
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the one-sample estimates of slope (which are calculated using the formula in Table 4):

s−2

β̂
=

g∑
i=1

s−2

β̂i

This expression for the variance of the common slope estimator can be derived by cal-

culating the Fisher information (Kendall & Stuart, 1973, section 18.16) of the common

slope estimator.

If the null hypothesis is written in the form H0 : LÂ = 0 for some matrix L, then the

Wald statistic for testing H0 is

(LÂ)′
(
Ls2(Â)L′

)−1

(LÂ)
approx∼ χ2

g−1

The chi-squared approximation applies if Â is normally distributed (Kendall & Stuart,

1969, section 15.10), which is true in large samples (Robertson, 1974, for example) and a

reasonable approximation in small samples, as suggested by simulations (Table 13).

When testing for common elevations, a suitable choice of L is L =
[
1(g−1)×1 | − I(g−1)×(g−1)

]
,

where 1a×b is the a× b matrix in which every element is one, and Ia×a is the a×a identity

matrix.

If an estimate of common elevation is desired, this can be calculated as

α̂ =
11,g

(
s2(Â)

)−1

Â

11,g

(
s2(Â)

)−1

1g,1

This is the mean elevation, accounting for unequal and correlated error of the different

sample errors.

Another statistic that could be used to test for common elevation is a likelihood ra-

tio statistic, although estimation would not be straightforward in general, because there

would need to be iteration between three different steps: estimating common slope, com-

mon elevation, and variance terms.
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(4) Test for no shift along the fitted axis

To test for no shift along a common fitted axis, the F test analogous to that used for

testing for common elevation is

(N − g − 1)
∑g

i=1 ni(µ̂f,i − µ̄f)
2

(g − 1)
∑g

i=1(ni − 2)s2
f,i(β̂)

where µ̂f,i is the mean fitted axis score,

µ̂f,i =





β̂ȳi + x̄i for MA

ȳi + β̂x̄i for SMA

and µ̄f = 1
N

∑g
i=1 niµ̂f,i.

A Wald statistic for testing for no shift along a common fitted axis has a similar form as

when testing for common elevation. The covariance matrix of M̂f = [µ̂f,1 . . . , µ̂f,g]
′ is

s2(M̂f) =





diag(s2(F̄)) + ȲȲ′s2
β̂

for MA

diag(s2(F̄)) + X̄X̄′s2
β̂

for SMA

where s2(F̄) = [s2
f,1/n1 . . . s2

f,g/ng]
′, and the Wald statistic for testing H0 : LM̂f = 0 is

(LM̂f)
′
(
Ls2(M̂f)L

′
)−1

(LM̂f)
approx∼ χ2

g−1

As previously, the Wald statistic is recommended in favour of the F statistic, because its

distribution is not sensitive to unequal variances along different fitted axes, nor to shifts

along the residual axis (i.e. differences in location along the X or Y axes that are not due

to shifts along the fitted axis).

A test for equal average fitted axis mean is equivalent to a test for equal elevation of the

(standardised) minor axis. For the SMA case, this is obvious, since the fitted axis mean is

in fact the elevation of the standardised minor axis. In the MA case, the fitted axis mean

is proportional to the Y -intercept of the minor axis, and hence the equivalence holds in

this case also.
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E Simulations

This appendix presents results of simulations that check the coverage probability of con-

fidence intervals that have been proposed, and checks the Type I error of test statistics

that have been proposed. In all cases, 95% confidence and the 5% significance level will

be used.

As a general rule, the values of parameters used in simulations were in the range we

consider to commonly arise in practice, although for sample size, values were chosen to be

on the smaller side of this range. In all simulations, the variances of both variables were

chosen to be equal, without loss of generality. Methods of inference are scale independent

for SMA, and it can reasonably be assumed that properties of inferential methods do not

change with scale for MA.

In all simulations, coverage probabilities and Type I error were estimated from 10000

datasets. This means that an exact confidence interval will usually (95% of the time)

have an estimated coverage probability in the range (94.6%, 95.4%), and an exact test

will usually (95% of the time) have an observed Type I error rate in the range (4.6%, 5.4%).

The sign of the slope was assumed known to be positive a priori in all simulations, given

that the sign of the slope is almost always known in practice. Hence coverage probability

was estimated for the portions of (primary or secondary) confidence interval that were

positive, and the (standardised) minor axis was used in calculations in the rare instances

when it had positive slope, rather than using a (standardised) major axis with negative

slope.

Three distributions were considered in simulations – bivariate normal with variances 1, a

9:1 mixture of bivariate normal distributions with variances 1 and 4, and a 9:1 mixture

with variances 1 and 9. Note that the last of these distributions is particularly long-tailed

– its kurtosis coefficient is larger than that for the double exponential, for example. For

conciseness, results are often presented for the bivariate normal distribution only, and it
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can be noted that the effect of using a different distribution was negligible.

(1) Confidence intervals for slope

Simulations were conducted to measure the coverage probability of confidence intervals for

slopes of the major axis (βMA) and the standardised major axis (βSMA), using the exact

method described in this paper (Pitman, 1939; Creasy, 1957; Jolicoeur & Mosimann,

1968), using the tN−2 distribution with variances taken from Table 4, and using a tN−2

distribution but with variance estimates taken from Isobe et al. (1990). The exact method

gives exact confidence intervals if sufficient information is known a priori to distinguish

the (standardised) major and minor axes, and if residuals are normally distributed. Other

methods are asymptotic, i.e. they approach exactness as sample size increases.

Results demonstrate that although the exact method is only exact for normally distributed

residuals, it remained very close to nominal levels for the non-normal distributions consid-

ered here, even for small samples (Table 8). This justifies recommendation of this method

in practice. It is also apparent from Table 8 that although the tN−2 method is not exact,

it still works very well. In these simulations, coverage probabilities for the tN−2 method

were practically indistinguishable from those for the exact method, except for slightly

liberal confidence intervals for βMA in small samples. The method due to Isobe et al.

(1990) performed reasonably except when N = 10, and coverage probabilities were not as

close to nominal levels as for alternative methods, so this approach is not recommended.

(2) Confidence intervals for the slope when the line if fitted

through the origin

Some simulations were conducted to demonstrate that when the line is fitted through

the origin, the major axis (βMA) and the standardised major axis (βSMA) slopes and

confidence intervals can be calculated by modifying existing formulas – setting all sample
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means to 0, and replacing N − 1 with N − 2, in the formulas of Table 4. As previously,

the exact method allows exact inference for normally distributed residuals, and close to

exact inference for non-normal residuals (Table 9). This remained true even when the

data were not actually centered at zero, as long as the true line passed through the origin.

(3) Confidence intervals for elevation

Simulations were conducted to measure the coverage probability of confidence intervals for

elevation (α) in small samples, when calculated using the method described in this paper

or the method of Legendre & Legendre (1998). Confidence intervals were considered for

the major axis elevation and standardised major axis elevation.

Data were generated from the bivariate normal distribution with sample size 20, correla-

tion 0.5, variances 1. The location of the centroid was varied over four points (which make

up a square): (0, 0), (0, 10), (10, 10), (10, 0). This allowed consideration of the effects of

shifts along the X-axis and Y -axis separately. The respective true elevation in the four

simulations was 0, 10, 0,−10.

Results in Table 10 illustrate that the confidence intervals for elevation proposed in this

paper can work well. In contrast, the method proposed by Legendre & Legendre (1998)

worked well for µx = 10 but was particularly poor when µx = 0. See the main body of the

manuscript for an explanation of the behavior of the method due to Legendre & Legendre

(1998).

(4) Type I error of tests for common slope

Some simulations were conducted to measure the Type I error of different tests for common

slope. Simulations were conducted for two groups of data generated as bivariate normal

with variances 1, total sample size 40, sampling either balanced or unbalanced, and corre-

lation either the same for the two groups or different. These simulations compared three
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test statistics:

• An F statistic, analogous to what is done in linear regression to compare several

slopes. Results demonstrated that this statistic does not have an F distribution –

the critical value at the 0.05 significance level was exceeded as much as 30% of the

time (Table 11).

• The likelihood ratio test described in Warton & Weber (2002). Results here (Ta-

ble 11) and elsewhere (Warton & Weber, 2002; Warton, in review) demonstrate that

this statistic maintains close to exact significance levels at the 0.05 level under a

broad range of conditions, for samples of size 20 and indeed smaller.

• The likelihood ratio test, but with common slope estimated by pooled sums of

squares (as suggested by Krzanowski, 1984) instead of by maximum likelihood es-

timation as in Flury (1984) or Warton & Weber (2002). Type I error remained

close to nominal levels for this method only when correlation was the same across

groups. In other instances, Type I error was inflated (Table 11). The inflation

arose because the common slope was not estimated using the maximum likelihood

estimator, so the null likelihood function was underestimated and the test statistic

was overestimated.

(5) Confidence intervals for common slope

Simulations have been conducted to measure the coverage probability of confidence in-

tervals for the common slope of the major axis (βMA) and the standardised major axis

(βSMA) in small samples. Details on how these confidence intervals are calculated can be

found in Appendix D. The same set of simulation conditions were used as for Table 11.

Confidence intervals for a common SMA slope are close to exact for all simulations, and

a reasonable approximation for a common MA slope (Table 12).
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(6) Type I error of tests for common elevation

Simulations have been conducted to measure the Type I error of F and Wald statistics

to test for common elevation. These tests are described in more detail in Appendix D.

Simulations were conducted for data generated as bivariate normal with variances 1, for 2

groups with a total sample size of 40. Simulations considered difference relative locations

of the centroids of the two samples, different sampling designs, and different correlations.

In all cases, the null hypothesis is true (the true elevations of both groups are equal). All

the test statistics are invariant under any location change applied to all groups, so the

centroid of the first group is fixed at the origin without loss of generality.

From simulation results it is clear that the Wald statistic should be used in practice (Ta-

ble 13). This statistic can maintain close to nominal levels for the chi-squared distribution

irrespective of differences between groups in sample size, residual variances, or means of

the X variables. In contrast, the F statistic based on ANCOVA is sensitive to unequal

X means, and to unequal residual variances in unbalanced designs.

Simulations including resampling of these test statistics have also been conducted (results

not shown). If any of the above test statistics were resampled by bootstrapping residuals

within each group (as described in Appendix F), then the resampled statistic maintains

close to nominal significance levels. On the other hand, if residuals are permuted between

groups, the F statistic can depart substantially from nominal levels if residual variances

are not equal across groups, analogous to the situation described for analysis of variance

by Boik (1987).

(7) Confidence intervals for methods-of-moments slope

Simulations were conducted to measure the coverage probability of confidence intervals

for slopes of the methods-of-moments major axis (βMM,MA) and the methods-of-moments
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standardised major axis (βMM,SMA). The methods of confidence interval construction

considered were: ignoring measurement error and using exact methods (Pitman, 1939;

Creasy, 1957; Jolicoeur & Mosimann, 1968), correcting variance terms for measurement

error and using exact methods, using the tN−2 distribution but with variance estimates

taken from Akritas & Bershady (1996). For the simulation results of Table 14, bivariate

normal data were used, and measurement errors were also normally distributed. Sample

sizes were 10, 30 or 90, with measurement error variances estimated from 2, 4 or 8 repeated

measures of each observation. Measurement error variances were either 0.4 or 0.2.

Note that the repeated measures were averaged before line-fitting, which reduces the size

of the measurement error variance as a factor of the number of repeated measures. For

example, with σ2
δy

= 0.4 and nrep = 4, the variance of averaged repeated measures is

0.4
4

= 0.1. Because the variances of Y is one, this means that the variance of averaged

repeated measures is 10% of the size of the variance of Y . However, the variance of

average repeated measures can be large compared to the variance of residual scores (σ2
r )

– σ2
r = 1− ρ when variances are one, which is 0.5 and 0.25 in simulations.

Measurement error was introduced into Y only, because if measurement error is not cor-

rected for, the most extreme situation in which measurement error biases slope is when

measurement error is in one variable only.

Results can be summarised as follows:

• Exact methods ignoring measurement error were poor at larger sample sizes and

larger measurement errors, because of bias. However, this method often led to more

accurate confidence intervals than the competing methods in small samples, and had

reasonably accurate coverage probability when measurement error was not large.

• There was substantial undercoverage for methods that correct for measurement

error whenever sample size and number of repeated measures were small (n = 10

and nrep = 2). This suggests that to use these methods, measurement error variance
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needs to be estimated reasonably well (i.e. from more than 30 observations in total,

including repeated measures).

• All methods performed better when the measurement error was smaller compared

to error from the line (i.e. compared to residual variance) – hence they performed

better when σ2
δy

was smaller, nrep larger, or ρ smaller.

• The exact method adjusted for measurement error usually had good coverage prob-

abilities when variance of measurement error was less than 20% of the variance of

residual scores. However, in other situations it performed poorly, and it was quite

slow to converge to a coverage probability of 95% with increasing sample size.

• The only method that lead to consistently good coverage probabilities in moderate-

large samples was the method due to Akritas & Bershady (1996). However, this

method was usually too liberal for N = 10.

As a tentative rule, measurement error could be ignored if the variance of measurement

error were less than 20% of the variance of residual scores. Under this rule, the “exact”

confidence intervals ignoring measurement error performed reasonably well in simulations.

However, the rule should be used with caution: the estimated slope without correcting for

measurement error is biased (in our simulations, the bias was up to 10%), and confidence

intervals ignoring measurement error are not consistent (i.e. in very large samples, the

confidence intervals will not contain the true slope, due to bias).

If measurement error needs to be accounted for, the method due to Akritas & Bershady

(1996) can be used if sample size is not small. Unfortunately, none of the methods

considered here is reliable if sample size is small (N ≈ 10), so the use of resampling

methods is suggested in these instances.
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F Resampling-based procedures

This appendix outlines the algorithms for resampling-based inference for the procedures

described in the main text. The two techniques of resampling that will be considered are

permutation testing under the reduced model (Freedman & Lane, 1983) and bootstrapping

data to reflect H0 (Hall & Wilson, 1991). The approach due to Freedman & Lane (1983)

was originally proposed for the regression context, but it can be applied to residual and

axis scores, since linear transformation to these variables essentially reduces MA or SMA

to a regression problem. The approach due to Freedman & Lane (1983) has been found

to maintain nominal significance levels more closely than other available permutation

algorithms when residual variances are constant (Anderson & Robinson, 2001).

Bootstrapping and permutation testing arise from quite different models and philosophies

(Westfall & Young, 1993, pages 169-177). Permutation tests arise from studies in which

randomisation has been used in assigning treatments to subjects (e.g. in randomly choos-

ing the mice to receive an injection of a hormone treatment), whereas bootstrapping arises

from approximating the sampling distribution(s) of the population(s) being studied. Of

these two, the latter is closer to the underlying model in allometry – there is usually no

treatment applied by randomisation, and instead samples from different populations are

being compared.

If resampling in allometry, we recommend bootstrapping in preference to permutation

tests, although acknowledging that in practice the performance of the two methods will

be almost identical. The only situation in which one might expect qualitatively different

results is in multi-sample tests when the residual variances are unequal – in this situa-

tion, the bootstrapping algorithms are still applicable, but a different permutation testing

algorithm is necessary for valid inferences.
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(1) One-sample test of slope

The one-sample test that the slope equals some value b reduces to a test for correlation of

the appropriate residual plot, (bY +X, Y − bX) for the major axis, and (Y + bX, Y − bX)

for the standardised major axis. A resampling-based test would involve constructing this

plot and resampling as appropriate. The following algorithm is proposed:

1. Construct the residual plot

2. Calculate the test statistic (rrf(b)
2, in the notation of Table 4)

3. Set count to 0 (or 1 for permutation testing).

4. For bootstrap testing, calculate residual and axis scores using the estimated slope β̂:

residual scores are Y − β̂X, and axis scores are β̂Y + X for MA, Y + β̂X for SMA.

For permutation testing, consider the residual and axis scores calculated using b as

the slope instead of using β̂. These will be used in step 5.

5. For iter steps (or iter − 1 for permutation testing), repeat the following:

(a) Resample the residual scores (referred to as r∗). For permutation testing under

the reduced model, the residual scores are randomly reassigned to axis scores,

and for the bootstrap, residual scores are resampled with replacement and

assigned to axis scores.

(b) Recalculate the test statistic: rr*f(b)
2 for permutation testing or rr*f(β̂)2 for

bootstrapping.

(c) If r2
r*f > rrf(b)

2, add 1 to count.

6. Calculate the P -value as count
iter

.

Note that for the bootstrapped datasets, the residual and axis scores are calculated using β̂

rather than b. This is done to preserve the properties of the sample data in the resampled

data – in particular, the variances and covariances of the residual and axis scores will

resemble those of the sample data.
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(2) Test for common slope

In the case of testing for a common slope, some alterations to the above algorithm are

required. Obviously, the test statistic to be used will be different – the likelihood ratio

test statistic given in Appendix D will be used in steps 2 and steps 5b-c. Alterations to

the method of resampling are also required.

In this section, the notation of Appendix D will be used – so β̂ now refers to the common

slope, and α̂i refers to the sample elevation for the ith group, assuming common slope

(unless otherwise specified).

For resampling (steps 4 and 5a), residuals are resampled rather than residual scores (al-

though this is not essential if bootstrapping), and a back-transformation to the original

axes is required. The fitted axis scores (F ) and residuals (R) are:

(F,R) =





(β̂Y + X,Y − α̂i − β̂X) for MA

(Y + β̂X, Y − α̂i − β̂X) for SMA

which means that the back-transformation to the original variables, X and Y , is

(X, Y ) =





(
1

1+β̂2
(F − β̂R + α̂iβ̂), 1

1+β̂2
(β̂F + R− α̂i)

)
for MA

(
1

2β̂
(F −R− α̂i),

1
2
(F + R + α̂i)

)
for SMA

Because the test statistics are location and scale invariant, the back-transformations can

be replaced by

(X ′, Y ′) =





(F − β̂R, β̂F + R) for MA

(F −R, F + R) for SMA

In the case of common slope testing by permuting residuals under the reduced model,

steps 4 and 5a are:

4. Using the lines fitted with a common slope, construct the residuals, and axis scores.

5(a). Randomly reassign the residuals to axis scores. Back-transform to the original axes.

When testing for a common slope by bootstrapping, these steps become:
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4. For the lines fitted with different slopes (i.e. using β̂i and αi calculated using data

from the ith group only), construct the residuals and axis scores.

5(a). Resample residuals with replacement within each group, assign each to an axis score.

Back-transform using the transformation based on the common slope estimator β̂

(not using the β̂i).

When bootstrapping, the common slope β̂ is used in back-transformation rather than β̂i

so that the resampled data reflect H0 (Hall & Wilson, 1991), i.e. so that the resampled

data are generated from distributions with a common slope. Also, resampling of residuals

is done within each group rather than across groups to ensure that any differences between

groups in variances of residuals are preserved.

(3) Test for common elevation

In the case of tests for common elevation, a resampling algorithm can be used that is

similar to the one used for common slope testing, with only two differences:

• The test statistic is changed to the Wald statistic for equal elevation.

• In step 4, residuals need to be calculated using the estimated common elevation (α̂)

rather than using the sample elevations for the different groups (α̂i). This ensures

that all groups of resampled data have common elevation.

(4) Test for no shift along the fitted axis

In the case of tests for no shift along the fitted axis, there are several changes to the

resampling algorithm for common slope testing:

• The test statistic is changed to the Wald statistic for no shift along the fitted axis.
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• In step 4, the axis scores must be subtracted by the common elevation of the (stan-

dardised) minor axis, i.e. fitted axis scores are replaced by β̂Y + X − α̂r for MA,

and Y + β̂iX − α̂r for SMA. This ensures that all groups of resampled data have a

common location along the fitted axis.

• The fitted axis scores are resampled rather than the residuals.

• Residual scores may be used rather than residuals, for permutation testing and

bootstrapping.
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Table 1. Which method of line-fitting should be used when

Purpose Key statistic Appropriate method

Predict Y from X (X may even be random or may include

measurement error)

ŷ Linear regression

Test for an association between Y and X P Linear regression

Estimate the line best describing the bivariate scatter of Y

and X

β̂ MA or SMA

Test if the slope equals a specific value (1, or 3
4
, etc) for

the line best describing the relationship between Y and X

β̂ MA or SMA

Estimate the strength of the linear relationship between Y

and X

R2 Correlation

Predict Y from some underlying X that has been measured

with error, so that only (X + δ) is observed

ŷ Method-of-moments

regression

Estimate the line best describing the bivariate scatter of Y

and X, when only (X + δX) and (Y + δY ) are observed

β̂ Method-of-moments

MA or SMA
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Table 6. Terminology for methods of line-fitting. The first column contains terminology

that is used in this manuscript, and is recommended for general use, and the second

column contains terms that are equivalent to the proposed term, and have been used in

the past

Preferred term Other equivalent terms Example reference

Linear regression Model I regression Sokal & Rohlf (1995)

Principal components Principal components analysis Jolliffe (2002)

Model II regression Sokal & Rohlf (1995)

Errors-in-variables models Fuller (1987, page 30)

Structural or functional relationship Lindley (1947)

Major axis First principal component axis of the

covariance matrix

Jolliffe (2002)

Orthogonal regression Isobe et al. (1990)

Standardised major axis Reduced major axis Kermack & Haldane (1950)

Geometric mean functional relation-

ship

Ricker (1973)
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Table 7. Data on repeated measurements of LMA (in kg/m2) for measurement error

variance calculation. Data are for the 18 species sampled at West Head by Wright et al.

(2001)

Species ni LMAi s2
LMAi

s2
δi

Acacia floribunda 8 0.10 0.00057 0.00125

Astrotricha floccosa 8 0.08 0.00015 0.00054

Allocasuarina sp 7 0.15 0.00014 0.00017

Correa reflexa 7 0.06 0.00009 0.00057

Dodonaea triquetra 7 0.10 0.00012 0.00033

Eucalyptus paniculata 7 0.13 0.00133 0.00225

Eucalyptus umbra 7 0.22 0.00417 0.00238

Lasiopetalum ferrugineum 6 0.11 0.00015 0.00039

Leptospermum polygalifolium 8 0.08 0.00018 0.00068

Lomatia silaifolia 6 0.13 0.00159 0.00302

Macrozamia communis 7 0.28 0.00025 0.00009

Persoonia linearis 6 0.16 0.00123 0.00145

Pomaderris ferruginea 8 0.08 0.00025 0.00085

Pultenaea daphnoides 9 0.10 0.00014 0.00029

Pultenaea flexilis 7 0.09 0.00022 0.00077

Synoum glandulosum 6 0.09 0.00037 0.00145

Syncarpia glomulifera 6 0.16 0.00022 0.00027

Xylomelum pyriforme 8 0.17 0.00066 0.00054

For repeated measurements of LMA for the ith species, ni is the sample size, LMAi is the sample mean,

s2
LMAi

is the sample variance, s2
δi

is the estimated measurement error variance, calculated as described in

the text. Note that “repeated measurements” in this context are measurements on different individuals.
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Table 8. Simulations estimating the coverage probabilities (%) of 95% confidence intervals

for the slope of the major axis (βMA) and standardised major axis (βSMA), when using

the exact limits, a tN−2 approximation, or the variance estimates of Isobe et al. (1990),

for data with different sample size (N), correlation (ρ), and from different distributions.

Coverage probability was estimated from 10000 datasets.

βMA βSMA

ρ N exact tN−2 Isobe exact tN−2 Isobe

(a) Bivariate normal

0.5 10 94.9 93.0 86.7 94.9 94.7 88.0

30 95.3 94.3 92.1 95.3 95.4 92.6

90 94.9 94.8 93.9 94.9 95.0 93.9

0.75 10 94.8 93.8 86.9 94.8 94.6 87.3

30 95.2 95.1 92.2 95.2 95.2 92.1

90 94.9 95.1 94.0 94.9 95.1 93.9

(b) 9:1 mixture, variances 1 and 4

0.5 10 95.1 93.0 86.5 95.1 94.9 87.2

30 95.1 93.9 91.7 95.1 95.1 91.5

90 94.7 94.9 94.0 94.7 95.0 93.2

0.75 10 94.8 93.9 86.6 94.8 94.5 86.6

30 94.7 94.6 92.0 94.7 94.7 91.5

90 95.0 95.0 93.7 95.0 95.1 93.3

(c) 9:1 mixture, variances 1 and 9

0.5 10 94.8 92.1 85.0 94.8 94.7 84.9

30 94.8 93.7 91.9 94.8 94.8 90.4

90 94.9 94.5 95.0 94.9 95.0 93.1

0.75 10 94.3 93.4 85.9 94.3 94.4 85.3

30 94.8 94.4 91.9 94.8 94.7 90.7

90 95.2 95.1 94.2 95.2 95.1 93.4
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Table 9. Simulations estimating the coverage probabilities (%) of 95% confidence intervals

for the slope of the major axis (βMA) and standardised major axis (βSMA) when fitted

through the origin. Exact limits were used. Data were generated with different sample

size (N), correlation (ρ), and centroid (µx, µy). Coverage probability was estimated from

10000 bivariate normal datasets.

βMA βSMA

ρ N (µx, µy): (0, 0) (10, 10) (10, 10) (10, 10)

0.5 10 95.1 95.0 95.2 95.2

30 95.0 94.7 95.0 94.7

90 94.9 95.3 94.9 95.3

0.75 10 95.1 95.5 95.1 95.5

30 95.2 95.5 95.2 95.5

90 94.7 94.9 94.7 94.9

Table 10. Simulations estimating the coverage probabilities (%) of 95% confidence in-

tervals for the elevation of the major axis and standardised major axis, using the tN−2

distribution and the method due to Legendre & Legendre (1998, pages 512-513, denoted

“LL” below). Simulations varied the location of the centroid (µx, µy). Coverage proba-

bility was estimated from 10000 bivariate normal datasets.

αMA αSMA

(µx, µy) tN−2 LL tN−2 LL

(0, 0) 95.3 21.1 95.1 14.4

(0, 10) 95.4 21.7 95.4 15.1

(10, 10) 94.8 94.8 94.9 94.8

(10, 0) 95.0 94.8 95.2 94.8
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Table 11. Simulations estimating the Type I error (%) at the 0.05 significance level, of

tests for common major axis slope (βMA) and common standardised major axis slope

(βSMA). The test statistics are an F -test analogous to the linear regression case (F ), and

a maximum likelihood test where the common slope is either estimated using maximum

likelihood (β̂) or pooled sums of squares (β̃). Simulations varied the sample sizes of the

two groups (n1, n2) and the correlation between Y and X for the two groups (ρ1, ρ2).

Type I error was estimated from 10000 bivariate normal datasets.

βMA βSMA

(n1, n2) (ρ1, ρ2) F β̂ β̃ F β̂ β̃

(20, 20) (0.75, 0.75) 6.9 4.5 5.3 3.5 4.9 5.5

(0.6, 0.9) 10.8 4.7 13.7 3.5 4.7 9.5

(10, 30) (0.75, 0.75) 17.2 4.3 5.1 10.9 4.7 5.1

(0.6, 0.9) 32.6 5.0 10.8 18.4 5.3 9.2

(0.9, 0.6) 11.6 4.5 11.7 5.1 4.9 7.5

Table 12. Simulations estimating the coverage probability (%) of 95% confidence inter-

vals for the common major axis slope (βMA) and common standardised major axis slope

(βSMA). In simulations, bivariate normal data were generated, varying the sample sizes of

the two groups (n1, n2) and the correlation between Y and X for the two groups (ρ1, ρ2).

Coverage probability was estimated from 10000 bivariate normal datasets.

(n1, n2) (ρ1, ρ2) β̂MA β̂SMA

(20, 20) (0.75, 0.75) 94.8 95.2

(0.6, 0.9) 94.7 95.0

(10, 30) (0.75, 0.75) 94.0 94.5

(0.6, 0.9) 95.0 95.2

(0.9, 0.6) 93.3 94.6
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Table 13. Simulations estimating the Type I error (at the 0.05 level) of F -tests and Wald

tests (F and W , respectively) for common elevation. Simulations varied the sampling

design (n1, n2), correlation (ρ1, ρ2), and the location of the centroid of the second sample

(µx,2, µy,2). The location of the first centroid was always (0, 0). Type I error was estimated

10000 bivariate normal datasets.

αSMA αMA

ρ1, ρ2 (µx2, µy2) F W F W

(a) (n1, n2) = (20, 20)

0.75, 0.75 (0, 0) 5.5 5.3 5.4 5.5

(0.5, 0.5) 6.5 5.3 5.9 5.3

(1, 1) 10.7 5.6 8.0 5.2

0.6, 0.9 (0, 0) 5.3 5.3 5.3 5.5

(0.5, 0.5) 5.7 5.2 5.5 5.3

(1, 1) 8.5 5.8 7.3 5.8

(b) (n1, n2) = (10, 30)

0.75, 0.75 (0, 0) 6.0 6.2 5.8 6.1

(0.5, 0.5) 6.2 6.2 5.5 6.3

(1, 1) 9.8 6.7 8.0 6.5

0.6, 0.9 (0, 0) 1.1 5.6 1.0 5.7

(0.5, 0.5) 1.4 5.7 1.1 5.4

(1, 1) 3.3 6.3 2.1 5.8

0.9, 0.6 (0, 0) 15.3 6.2 15.3 6.3

(0.5, 0.5) 15.5 6.6 15.3 6.7

(1, 1) 17.8 6.3 17.1 6.4
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Table 14. Simulations estimating the coverage probabilities (%) of 95% confidence in-

tervals for the slope of the methods-of-moments major axis (βMM,MA) and methods-of-

moments standardised major axis (βMM,SMA), when there are repeated measurements

of observations with measurement error (in Y only). Confidence intervals used the exact

method ignoring measurement error (exact) or modified to account for measurement error

(exactadj), or used the method of Akritas & Bershady (1996, labelled AB). Simulations

varied sample size (N), correlation (ρ), the variance of normally distributed measurement

errors (σ2
δy

), and the number of repeated measures (nrep) of each subject. Repeated mea-

sures were averaged for each subject, and used to estimate measurement error variance.

Coverage probability was estimated from 10000 bivariate normal datasets.

βMM,MA βMM,SMA

ρ N nrep exact exactadj AB exact exactadj AB

(a) σ2
δy

= 0.4

0.5 10 2 94.2 87.3 86.2 89.9 87.3 88.6

4 94.8 91.6 85.9 89.1 91.6 87.5

8 94.9 93.5 86.5 88.6 93.5 87.8

0.5 30 2 91.8 90.2 90.7 92.5 90.2 92.0

4 93.8 92.8 91.2 92.7 92.8 91.5

8 94.9 94.1 91.8 92.9 94.1 92.3

0.5 90 2 84.5 91.2 93.6 87.0 91.2 93.8

4 92.2 92.9 93.5 92.8 92.9 93.4

8 94.2 94.4 93.8 94.3 94.4 94.0

0.75 10 2 93.7 80.8 86.2 89.0 80.8 88.3

4 94.5 88.8 87.0 88.7 88.8 87.7

8 95.2 92.5 87.3 88.3 92.5 87.4

0.75 30 2 89.8 86.2 91.1 89.7 86.2 91.5

4 93.4 91.8 92.0 92.3 91.8 92.1

8 94.7 93.6 92.4 92.7 93.6 92.3
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βMM,MA βMM,SMA

ρ N nrep exact exactadj AB exact exactadj AB

(a) σ2
δy

= 0.4

0.75 90 2 78.2 88.0 93.7 80.9 88.0 93.6

4 90.3 91.8 94.0 90.8 91.8 94.0

8 93.7 93.7 94.0 93.5 93.7 93.9

(b) σ2
δy

= 0.2

0.5 10 2 94.6 88.6 87.0 88.2 88.6 87.3

4 95.0 92.3 87.3 88.3 92.3 87.5

8 94.9 94.0 87.1 87.4 94.0 87.0

0.5 30 2 94.3 92.1 92.2 93.0 92.1 92.4

4 94.6 93.3 92.1 92.5 93.3 92.2

8 94.9 94.1 92.1 92.4 94.1 92.0

0.5 90 2 90.4 91.9 93.9 91.2 91.9 93.9

4 93.5 93.2 93.9 93.4 93.2 94.0

8 94.7 94.5 94.2 94.3 94.5 94.3

0.75 10 2 94.5 88.3 86.7 88.4 88.3 87.0

4 94.8 92.3 87.4 88.7 92.3 87.4

8 94.7 93.5 86.5 86.9 93.5 86.6

0.75 30 2 93.2 91.1 92.1 92.3 91.1 92.0

4 94.5 93.1 91.6 92.5 93.1 91.8

8 94.7 94.0 91.5 92.0 94.0 91.6

0.75 90 2 89.9 92.2 94.0 91.0 92.2 94.1

4 93.7 93.4 93.8 93.3 93.4 93.8

8 94.5 94.1 93.9 93.8 94.1 93.8
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Fig. 1. An illustration of the four different types of tests considered in this paper: (a)

testing if the slope equals a particular value (1 in this case, dotted line), (b) testing if

slopes are different, (c) testing if elevations are different, (d) testing for shift along the

axis. Data from Wright & Westoby (2002): leaf longevity (in years, log scale) vs leaf mass

per area (kg/m2, log scale), where each datapoint is for a different plant species. Species

come in four natural groups, corresponding to higher vs lower rainfall and higher vs lower

soil nutrient levels. Different pairs of groups have been plotted in (b-d), representing

different rainfall or soil nutrient contrasts.
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Fig. 2. A plot of brain mass against body mass for 62 mammal species. Humans are

plotted using a larger symbol, and they have an unusually large brain considering their

size (or is it a small body size considering their brain size...). Data from Allison &

Cicchetti (1976).
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Fig. 3. A plot of height against basal diameter (measured at 10% height) for individual

Rhus trichocarpa saplings. Data from Osada (in preparation).
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Fig. 4. The direction in which residuals are measured is (a) vertical for linear regression

(b) perpendicular to the line for major axis estimation (c) the fitted line reflected about

the Y axis for standardised major axis estimation. Axes are plotted on the same scale.

The dotted lines indicate residuals, and the arrows represent the fitted and residual axes,

which are useful for understanding methods of estimation and inference about these lines.
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(a)

(b)

Fig. 5. Galton’s height data for children and their parents, reproduced from Galton (1886).

(a) Frequency table containing the data. (b) Schematic demonstrating regression to the

mean, by comparing mid-parent height (line labelled “mid-parents”) with predicted child’s

height (line labelled “children”) for a regression based on the data in the table from (a).

A child’s predicted height is much closer to the mean than the mid-parent’s height (child’s

height is about two thirds as far), hence the slope of the fitted regression is much flatter

than expected from looking at the distributions of mid-parents and children separately.
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Fig. 6. A one-sample test of the SMA slope is a test for correlation between residual

and fitted axis scores. (a) An example dataset (Allison & Cicchetti, 1976), with residual

and fitted axes for SMA included, under the hypothesis that the SMA slope is 2/3. (b)

Residuals plotted against fitted axis scores under this hypothesis. Note there is a trend in

the residual plot for increasing residuals as axis scores increase – this is evidence against

a SMA slope of 2/3.
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Fig. 7. Schematic diagram showing the two sources of error in estimating elevation, α. (a)

Uncertainty estimating the centroid (µx, µy) affects elevation. (b) Uncertainty estimating

the slope of the line β affects elevation (and has greater effect the further µx is from the

Y -axis.)


