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INTRODUCTION

An organism’s size is perhaps its most apparent characteristic. The recent
outpouring of studies on the influence of body size on all aspects of biology
and evolution and the extension of the focus of such studies from physiology
and functional morphology to ecological characteristics has resulted in a spate
of books on the subject (17, 82, 99). As a result, the field of scaling, the study
of the influence of body size on form and function, has rather suddenly
become a prominent focus in ecology and evolutionary biology. [I prefer
Schmidt-Nielsen’s (99) term of “scaling” for this field over Gould’s (35)
“allometry,” since the latter refers also to departures from geometric sim-
ilarity; confusion of the two senses of “allometry” has further complicated an
already confused literature.]

Because the study of body size was long relegated to a minor position in
biology, standards within the field have tended to be lax and the literature is
replete with papers of dubious methodology, analysis, and conclusions.
Inappropriate comparison of different types of data is probably the most
common error in the scaling literature (e.g. 42, 73); data plots often treat
individuals and species as equivalent entities. Less obvious but just as
erroneous is the common tendency to equate intraspecific trends with
ontogenetic or evolutionary phenomena. In scaling studies, both the level of
analysis and the kinds of data included must be carefully chosen if the results
are to be meaningful. See Cock (22) for a clear and careful introduction to this
topic.

97
0066-4162/89/11/20-0097$02.00

-3



98 LABARBERA

Allometric Models

The study of scaling is more an empirical than a theoretical science, but a
number of attempts have been made to justify the assumption that size per se
influences the form and function of organisms. Central to the concept of
scaling is the idea of similarity—a null model describing the expected change
of some variable with change in size. In general, three kinds of similarity can
be distinguished:

PHYSICAL SIMILARITY  Often scale alone determines the relevant physical
variables; as Steven Vogel (personal communication) observed, “Reality is
size dependent.” Typically the similarity criteria are constancy-of-force ratios
such as the familiar Reynolds (inertial/viscous forces) or Froude (inertial/
gravitational forces) numbers (see 113). The relative importance of gravity,
inertia, viscosity, and surface tension all change with an organism’s size;
charming qualitative treatments can be found in Boycott (11) and Went (117)
and a more quantitative treatment in Vogel (113).

GEOMETRIC SIMILARITY  For any series of objects whose linear dimensions
differ only by a constant multiplier, surface areas are proportional to some
characteristic length squared (A « L?), and volumes are proportional to that
length cubed (V « L?). In biology, constancy in shape with change in size is
termed isometric growth (or isometry), the usual null hypothesis in morpho-
logical scaling studies. Departure from geometric similarity is termed al-
lometry. Measurement of volume is both inconvenient and imprecise; most
scaling studies assume that the density of different organisms is approximate-
ly the same and so they substitute mass for volume. There is much confusion
in the literature about what constitutes isometry, since the appropriate null
model depends on the geometric variables of interest. Isometry is specified by
the ratio of the dimensions of the variables; i.e. the expected slope of a plot of
log area vs log volume (see below) is A/V = L%L> = 2/3.

FUNCTIONAL SIMILARITY  Any pair of functionally related variables that
depend on different aspects of the geometry of the object—Iengths vs areas,
lengths vs volumes, or areas vs volumes—must change as size changes. For
example, surface-to-volume ratios (relevant in diffusive transfer, heat loss,
and settling velocities) are proportional to L¥L* = L™" and thus will change,
given a change in size alone. Most theoretical models which purport to
explain empirical scaling results are based on the maintenance of some
functionally relevant variable constant over a range of size—often the predic-
tion of a regular distortion of the organisms’ geometry to counter the function-
al changes which would occur under geometric similarity. Functional similar-
ity models underlie most of the scaling literature in ecology and physiology.
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The oldest of such models is Sarrus’ “surface law of metabolism.” The history
of the “surface law” is an object lesson in the seductive potential of scaling
“laws.” Despite the fact that its assumptions were never critically tested and
the vast majority of the data was at variance with its predictions, the “surface
law” was considered a fact until Kleiber demonstrated that mammalian
metabolic rates scaled more nearly as M° 7 (99). Discrepancies between the
“surface law” and relevant data were glossed over, in large measure because
of the satisfyingly “physical” nature of the theory. (Parallels with Lord
Kelvin’s rejection of Darwinism because physics “proved” the earth could not
be old enough for natural selection to have operated are probably not coinci-
dental; see 14.) All theoretical models which purport to predict scaling
relations should be subject to careful testing; empirical scaling relations are
“noisy,” and the desire of biologists for laws of the same power as those in
physics is remarkably strong.

Elsewhere (61) I have discussed the general areas of evolutionary and
ccological scaling. Here 1 focus on appropriate methodology for studies of
biological scaling and offer three examples of topics drawn from the ecologi-
cal and evolutionary literature to illustrate the problems common in many of
the controversies on scaling.

THE METHODOLOGY OF SCALING STUDIES

Virtually all work in biological scaling assumes a power function of the form
Y = a M", Huxley’s (47) “simple equation of allometry” where a is the
scaling coefficient and b is the scaling exponent. In morphometrics, a power
law relation is usually justified by noting that relative growth rates of different
components of the organism will follow such a relation (35, 47, 96, 107), but
it has also been derived from dimensional analysis and fractal geometry (43).
When the variable of interest is an ecological or demographic parameter, such
explanations do not seem tenable, but power law models are used in the
ecological scaling literature despite the lack of a rationale for their
appropriateness. The few attempts at a general justification for a power law
relation (e.g. 2, 55) have been unsuccessful. Whether a power law reflects a
basic biological truth, the underlying structure of the universe we are em-
bedded in, or whether it is simply fairly robust at approximating a variety of
data relations is yet to be determined.

For most of this discussion it will be assumed that a simple power law
function applies to most biological scaling problems. This assumption under-
lies much of the literature on scaling, but for some problems, a curvilinear or
bimodal scaling relation may be more appropriate (9; see Figure 1). In
extreme cases, much more complex models are required (see (29) for an
exemplary model). When scaling relations vary either during ontogeny or



100 LABARBERA

2l8 : ]2 1 A L
rd o &
E 2.6 - I = - L] B
; o
; el g 101 g
- 1 374 i ¢ | ° L
E’ 2.4 I lnﬁ 5 .
= i - 2 1.81 ° -
g & L 5 o .. 8
. N 1.6
20 2 Ll T Ll T . L] T T
08 10 12 14 1.6 18 0 1 2 3 4
Log diameter- -mm Log M

Figure 1 (left) Scaling of tibia length against tibia anlcrig-poslcrior diameter fo;blclw!ds. ::)lz
that a single scaling relationship does not adequatcly. describe the data ncross the :; m:;:;lrmir
studied. (right) The RMA scaling exponent for.r.adlus length asa function of rah|us i iy
plotted against log median body mass for six families of terrestrial mammals. Note the sygslc
decline in scaling exponent with increasing body mass. Both figures redrawn from (9).

over a range of body sizes, alternative models should be explprcd. E).(ar.nples
of complex power law relations and discussions of appropriate statistics to
dissect the relations can be found in (9, 19, 96).

Choice of Variables in Scaling Analyses

Virtually any variable can be (and has been) used in a scaling analysis, but not
all variables are amenable to the regression analyses u§ually cmploye.d (see
below). Care should be taken in the choice qf variables. In particular,
variables of the form A/B vs B or A vs B, where B is the sum of A p!us'anothcr
variable, should be avoided (4, 23, 52, 87-89, 107) since, if B is some
measure of size, the scaling relations will be dislortec.i and the corrclau'on
coefficient artificially inflated—a variable is always highly correlated V\{Ith
itself. This point is well made by Prothero (87), who shows tk‘lat a regression
of A/B vs B where A is a series of random numbers can yield correlathn
coefficients (in a somewhat artificial example) as hl‘gh as '—0.9.6. This
practice is unfortunately all too common in the physiolog%cal scaling literature
(see 80, 81) and can result in both false conﬁdcnc.e in the strength of a
relationship and the choice of an inappropriate regression model (§ce belm:v).

Since biological data arc noisy, if the range o‘f size included in a sF:allng
analysis is small (a range of an order of magmlud-e should be con'mdercd
minimal in ecological studies), the probability is h_lgh that the scaling ex-
ponent and coefficient will be distorted by sampl.mg error. In evaluating
literature values, the study incorporating the larger size range should general-
ly be given greater weight. Prothero (86, 87) recommends t_hat the mass range
considered should be reported as the log of the ratio of maximum to minimum
size: pWR = 10g(M 1,ax/M ). Such a convention would cons_ldcrab]y ease the
problem for the reader of estimating the range of size considered, but since
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absolute size may also be a biologically important consideration, the value of
M ax or My, should also be reported.

[t is common practice to estimate the scaling of a variable V as a function of
body mass M by determining the scaling of the individual components of V
(i.e. where V=C/DorV=C XD, determining the scaling of C with M and
D with M), and presenting the scaling of V with M by algebraic manipulations
of the scaling relations of the component variables. Such procedures are
particularly common in the physiological and ecological literature, and they
underlie Stahl’s (109, 110) allometric cancellation procedure (see 87 and 104
for critiques of this practice). In the ecological scaling literature, Calder’s (17)
recent book relies particularly heavily on this approach. Such manipulations
are valid if and only if the component variables are uncorrelated (1 16). If the
covariance of the component variables is known, applicable correction factors
can be found in (59, 116); direct determination of the desired relationship is

" preferable.

Fitting Data to the Allometric Equation

THE LOG TRANSFORM  To estimate scaling coefficients and exponents from
raw data, the simple equation of allometry is usually transformed by taking
logarithms: In ¥ = Ina + & In M. Although this procedure has been criticized
(43, 102, 103), it is appropriate in the majority of cases (85) where the focus
is “broad allometry” (103).

One rationale for log transforming raw allometric data is to normalize the
distribution of the Y variable at any given value of M on the assumption that
the values of Y at any given value of M are log-normally distributed (5, 6).
This can be seen in a variety of data from both plants and animals (5, 6, 103,
119, 120). According to Harvey (41), interspecific data tend to be log
normally distributed, while intraspecific data tend to be normally distributed.
The assumption of log normality in the data structure is rarely specifically
addressed in scaling studies.

A second rationale for performing a log transform is to equalize the
variances of the Y variates across the range of thé X variate. A log transform
will equalize variances only if the variance of the raw variable is proportional
to the square of the mean (13, 62). If the variance is directly proportional to
the mean, then a log transform will yield a distribution whose variance is
inversely proportional to the mean (13). Again, this consideration is rarely
addressed in the scaling literature.

A log transformation introduces a systematic bias into estimates of the
value of the scaling coefficient (6, 7, 108, | 19). Regression techniques fit a
line to the mean values of the y variables, but the mean of log transformed
variables is the median of the original, log-normal distribution. Thus, without
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across the range of log M, and (d) log M is an independent variable, i.e. one
whose values are known without error and are set by the investigator (see
105).

Values of M are never determined without error, and in many scaling
studies these values are derived indirectly (from other scaling equations or
secondary sources); such estimates are likely to have a large error term (see
22; p. 144). Attempts to circumvent this limitation of OLS regression by
asserting that “body size is a primary determinant of numerous biological
characteristics” (53; p. 151) or by recasting the definition of an independent
variable as an “assumption in regression analysis of precision in the de-
termination of the independent variable” (76; p. 37, and similar statements in
27, 82, 95) are invalid; neither causal relations or precision of measurement
are at issue. The valves of M are not set by the investigator; they are
determined by the choice of data to be included in the analysis. Because OLS
fits a line by minimizing the sum of squares of the residuals of the dependent
variable (log Y) only, the “best fit” line will not be an efficient estimator of the
functional relationship (56); the problem lies not in the technique, but in the
fact that the underlying assumptions have been violated. _

In Model II regressions such as major axis (MA) or reduced major axis
(RMA) regressions, on the other hand, both variables are assumed to have an
associated error term; there is no “independent” variable and the line is fit by
minimizing the sum of products of residuals of both log ¥ and log M. MA and
RMA techniques make different assumptions about the error structure and
variance relations of the variables. If o2, is the intrinsic variance of logM, a%
is the intrinsic variance of log ¥, o' is the error variance of log M, and o2 is
the error variance of log ¥, then MA regression techniques assume that

o + of = o} + o, ' L.
while RMA techniques assume that
o3lol — o¥o% = a constant. 2.

MA techniques are sensitive to the absolute scale in which the variables are
measured and are not robust to rotation of the coordinate axes; RMA tech-
niques are insensitive to scale and rotation (89). OLS, MA, and RMA
regressions are all special cases of the “general structural relation” (56, 71,
89), itself a version of canonical variates analysis reduced to two uimensions.

The choice of regression model to use in scaling studies is not a trivial
consideration, for the various techniques yield different results. OLS regres-
sion consistently yields the lowest values for the scaling exponent, while
either RMA or MA may yield the highest value depending on the variance
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A MENU FOR SCALING ANALYSES Cock’s (22, p. l81)_corr_|mem that ‘The
standard of reporting and analyzing metrical growth data is still often deplor-
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ably low” unfortunately remains true 20 years later. Some conventions on

appropriate analysis and reporting of data should be adhered to. Future studies
should report characteristics of the data including:

the type of data (static, longitudinal, cross-sectional),

the range of each variable, their units, and pWR,

an estimate of measurement error for each variable,

the total sample size, and

the intrinsic and error variances for each variable (if available), or the
results of the exploratory data analysis procedures recommended by (6).
The variance of the errors associated with each variable may be de-
termined in some cases using “instrumental variables” (60, 68, 71).

L L ) e

Descriptions of analysis techniques and results should include:

1. the log transform used (base 10 or base €)

2. confidence intervals for the scaling exponent and coefficient,

3. the standard error of the log transformed coefficient or a value of the
coefficient corrected for bias due to a log transform,

the regression technique (OLS, MA, RMA) used, and

5. the correlation coefficient.

e

MULTIVARIATE TECHNIQUES FOR THE ANALYSIS OF SCALING  An alterna-
tive allometric model was proposed by Jolicoeur (49) for data sets where no
independent measure of size was available. The first principal component of
the covariance matrix of log transformed data in a principal components
analysis (PCA) represents a measure of size internal to the data set (49); the
scaling exponents of the n dimensions in the multivariate analysis are equal to
the loading of each dimension divided by n™ 2. Jolicoeur’s proposal has been
expanded on (77, 107), and variants of the technique proposed (12, 78). This
multivariate approach has been extensively used (e.g. 20, 64, 70, 92) where
no independent measure of the size of the animals was available.

Critical tests of the technique have been performed by Jungers & German
(54) and Shea (101), using both Jolicoeur’s (49) PCA method and con-
ventional regression techniques on bivariate data. According to Jungers &
German (54), the size variable derived from PCA was not isometric with
actual body mass, although PCA correctly rank ordered the scaling exponents
of the variables. By definition, the squares of the coefficients for each
dimension in the principal components analysis must average to one (22). The
largest coefficient will thus appear to be positively allometric and smaller
coefficients will be more negative; inclusion of another dimension must
change the coefficients for all other variables (54). Reanalysis of Jungers &
German's (54) results shows that the relative magnitudes of the PCA coeffi-
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cients were very similar to those derived from bivariate regression analyses
(24, 44). If the true exponent relating one variable to size can be determined,
then the PCA coefficients may be appropriately scaled (101). Without inclu-
sion of a size variable in the analysis or appropriate scaling after the fact,
however, the scaling exponents derived from PCA will equal the traditional
bivariate-derived exponents only by accident; extreme care should be used
when results are taken from the older literature. If a measure of overall size is
available, it should be included in the PCA analysis; care should be taken to
exclude measures which are not size dependent, since they will grossly distort
the analysis. Note that PCA assumes that the variables are linear and multi-
variate normal; PCA will yield undistorted results only when all covariances
are approximately equal (106). An alternative PCA based on the correlation
rather than covariance matrix is available (106). It is claimed to remove size
from multivariate data more efficiently than Jolicoeur’s method but is not so
thoroughly explored.

EXAMPLES
The —3/2 Self-thinning “Law” in Plants

Yoda et al (121) proposed that competition in even-aged stands of plants
resulted in stunting and mortality such that the average plant mass (m) and
density of the stand (number of plants per unit area, N) were related by the
power law function m = kN~ or M = kN~"?, where M equals the total
plant mass per unit area (i.e. mN). The lines described by these functions were
proposed to represent an absolute limit; as stands grew, the relation between
density and biomass might follow any number of trajectories, but on reaching
the limit defined by the above equations, all plant stands were proposed to
track along the defined slopes. The “—3/2 law” (also known as the self-
thinning rule) was soon applied by plant ecologists and foresters to situations
beyond the original formulation, including mixed plant communities (34),
ramets of clonal plants (85), marine macroalgae (25}, and even phytoplankton
in laboratory culture (I). The theoretical basis of the hypothesis as presented
by Yoda et al (121) involved trade-offs between light interception and me-
chanical support. This explanation was soon realized to be flawed, but the
self-thinning rule remained popular, and new theoretical developments based
on the theory of elastic similarity (73, 74) were proposed (31, 118). [For a full
historical development, see (115, 124); for a critique of elastic similarity, see
M. LaBarbera, J. E. A. Bertram (unpublished ms)]. The fact that these
theoretical explanations could not apply to, e.g. marine macroalgae, was
glossed over, as were counterexamples to some of the more extreme applica-
tions of the “law” (e.g. 94, 98). White (118, p. 479) stated that “The
empirical generality of the rule in its original formulation (Yoda et al 1963) is
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now beyond question . . .,” while Harper (cited in 72, p. 234) referred to it as
“the first basic law demonstrated for ecology.”

The theoretical basis and evidence for the self-thinning rule have been
critically reviewed (115, 124). Methodological problems abound. As Weller
(115) notes, M = kN ™" is the correct formulation if regression analysis is to
be applied to the problem (as it nearly universally was) since plotting log m vs
log N is equivalent to plotting (total plot biomass/number of plants) against
(number of plants/total area). Since the number of plants appears in both
variables, statistical properties are grossly altered and correlation coefficients
artificially inflated. OLS regressions were the norm in these analyses despite
the absence of any statistically independent variable, and no correction was
made for the log transform despite the importance attached to empirical values
of the thinning coefficient & in supporting theoretical expositions (e.g. 31).
For a discussion of a (distressing) number of further methodological difficul-
ties, see (115, 124).

Analyzing a total of 488 data sets using PCA to establish the slopes of the
log transformed data, Weller (115) concludes that, although there is a clear
relationship between stand biomass density and plant density, there is little
support for a single rule describing this relationship in all plants. The ex-
ponent relating M and N is a function of the plant species and degree of shade
tolerance, and different relations appear to apply to interspecific and in-
traspecific situations. The exponent is not a constant but rather a variable, one
describing specific aspects of the plants involved and the biological situation.
Using different methods, Zeide (124) comes to the same conclusion; “the law
is neither precise nor accurate” (124, p. 532). But self-thinning is an empirical
observation; should one conclude that the effects of competition among plants
are totally random? In a separate analysis, Weller (114) demonstrates that
50% of the variation in thinning exponents can be explained by empirical
scaling relations of shape and biomass allocation for the individual species
involved; a significant proportion of the remainder is presumably due to other
biological characteristics of the plants such as shade tolerance, moisture
requirements, etc. Although plant ecology has apparently lost a “law,” it
would seem to have acquired a tool in the process—the thinning exponent has
the potential of being a useful metric to compare plants in competitive
situations, and those biological characteristics that influence its value (growth
form, scaling relations, physiological characteristics) can be evaluated to
determine their relative importance and to clarify the strategies that plants use
in competition. The present situation, if less simple, is more satisfying.

Cope’s Law

Cope’s Law, the axiom that species within a lineage trend toward larger body
size with evolutionary time, has been generally accepted in paleontology and
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cvolutionary biology (see e.g. 36, 79, 111). Most of the evidence in support
of Cope’s-Law has, however, been anecdotal. Newell (79) outlined evidence
that Cope’s Law is applicable to some groups of forams, corals, bryozoans,
echinoderms, brachiopods, and molluscs, but claimed that size increase in
arthropods is rare and virtually nonexistent in most bryozoans, brachiopods,
and graptolites. Newell (79) viewed Cope’s Law as a potential source of
evolutionary novelty and nonadaptive trends (via allometry)—in modern
jargon, that Cope’s Law might drive macroevolutionary trends. Such an
association between small size and morphological novelties in salamanders
has been recently documented (39).

Stanley’s (111) influential paper argued that Cope’s Law is better viewed as
evolution from small body size rather than roward large body size; most
higher taxa arise from relatively small, unspecialized ancestors (see Table 1 in
111), while their larger descendants tend to be more specialized (through
scaling constraints). That adaptive breakthroughs occur primarily at small
body sizes is confirmed by the observed Cambrian faunas; the first bivalves
(58, 97) are less than a few millimeters in maximum dimension and the
Tommotian-age shelly fauna (8) is characterized by small size.

The generality of Cope’s Law or its inverse, dwarfing (evolutionary de-
crease in body size), are subjects of contention; for a discussion, see (61).
Hallam (38) documents persistent trends toward larger size in 41 species or
lineages of Jurassic bivalves and 19 of ammonites; 70% of these lineages
double in size, and some increase by as much as four times. Chaffee &
Lindberg (18) present data for size of 149 molluscan taxa in the Cambrian;
maximum size certainly increases (from about 10 to over 50 mm), but it is
unclear whether this represents an increase in size within clades-of molluscs or
simply an increase in the variance in size for molluscs as a group.

The best evidence offered to date to test Cope’s Law is MacFadden’s (67)
restudy of the evolution of horses, one of the “classic cases™ of Cope’s Law.
Body sizes of fossils were estimated from OLS regressions of log body mass
vs the log of v-..ious osteological characters in the five living species of Equus
(Wmin = 27.7 kg; pWR = 1.28). Unlike the case of self-thinning in plants, the
use of OLS regression in this study is perfectly appropriate; MacFadden’s
goal was to predict the body size of fossil equids from dimensions of the
preserved bones. One might question whether MacFadden’s confounding of
intraspecific and interspecific allometry (use of multiple strains of Equus
caballus) was appropriate, but the question in this context is not clear cut.
[Parenthetically, MacFadden (67) devotes considerable space ix. this paper to
u discussion of the higher coefficients of variation for body mass than for
linear dimensions; this is exactly what would be expected (62) given the
different dimensionality of these variables. ]

Contrary to the common wisdom, 5 of the 24 species lineages that MacFad-
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den (67) studied were characterized by dwarfing rather than an increase in
body size, and those lineages that did increase in average size did not do so
consistently through their history (Figure 2). Cope’s Law in its strictest form
does not hold, although size increase is pervasive. It is probably generally true
that maximum size in a group tends to increase after the group’s origin, but
until further studies are published that follow the history of body size in all
branches of well-defined clades, the proper form in which Cope’s Law should
be cast will remain unclear.

Scaling of Home Range and Population Density in Mammals

HOME RANGE McNab (75) was the first to point out that there is a regular
scaling of home range size with adult body size in mammals. The scaling
exponent he calculated using OLS (b = 0.64) was not significantly different
from the scaling exponent of metabolic rate (o« M™7%), and McNab concluded
that home range size was determined by metabolic rate. The RMA scaling
exponent that I calculate for McNab’s (75) data (b = 0.74) is even closer to
the scaling exponent for metabolic rate than McNab’s original value, but these
exponents differ strongly from those in subsequent studies (see Table 1); the
quality of the data McNab used must be considered suspect. Harestad &
Bunnell (40) found that the home range of herbivores scaled as M'%? (RMA:
1.18), the home range of omnivores scaled as M"%? (RMA: 0.97), and the
home range of carnivores scaled as M'3® (RMA: 1.51). Their in-
terpretation—that home range increases more rapidly with size than does
metabolic rate, reflecting a declining ability of the habitat to support a
population as body size increases—is consistent with the corrected (RMA)
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Figure 2 (left) Estimated body mass as a function of age for fossil horses. Note that size
increase docs not occur at a constant rate and does not affect all lineages. (right) Rate of evolution
of body size change in darwins () as a function of age for fossil horses. Open circles represent
species in ancestor-descendant pairs in which size decreased from the ancestral species. Both
figures redrawn from (67).
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scaling exponents. Mace et al (66) found lower scaling exponents within
rodents: 0.97 for omnivores, 0.81 for herbivores, and 0.88 for granivores (all
RMA slopes in the original), but sample sizes were small (3—14- species);
these results cannot be statistically distinguished from Harestad & Bunnell’s.
Lindstedt et al (65) report a scaling exponent of 1.03 (RMA: 1.27) for a
smaller sample of carnivores, but the 95% confidence interval that I calculate
for the RMA scaling exponent (0.97-1.85) overlaps with the corrected Hares-
tad & Bunnell value. Lindstedt et al (65) report differences in home range
scaling between carnivores with habitats above 45° latitude (b = 1.08) and
those below 45° (b = 0.94), but these differences disappear when the slopes
arc recalculated using RMA (1.22 and 1.20, respectively). The various
studies of scaling of home range in mammals are summarized in Table 1. Toa
first approximation home ranges of herbivores scale as M'-%, those of carni-
vores to a higher value, about M'-*, and those of omnivores to M"". For all
mammals, home range scales approximately as M'*. Obviously, more data is
needed to refine these estimates, but it is remarkable how well published
studies agree when the appropriate regression model is applied.

POPULATION DENSITY  Damuth (26) found a strong allometry in population
density of terrestrial herbivorous mammals inhabiting a variety of habitats
worldwide, with the number of animals per square kilometer proportional to
M~975 (RMA: —0.87). Multiplying the scaling relationship for population
density times that for individual metabolic rate (e« M~ -7 by his calculations),
Damuth concluded that secondary production was independent of body size
and that no mammalian herbivore species had an energetic advantage over any
other on the basis of size alone. Unfortunately RMA yields a higher exponent
for the functional relation of popultion density to body mass, thus negating

Table I Scaling of home range area with adult body size in terrestrial mammals.
The scaling exponent, its standard error (SE), the correlation coefticient (1), the
number of species (N) involved, the minimum body mass (W, ;). and log weight
range ratio (pWR) are given for cach regression.

Exponent Wi
(OLS)  (RMA) SE r N (kg)  pWR  Source

Herbivores 1.02 1.18 1 .87 28 016 4.41 40
Carnivores 1.36 1.51 6 .90 20 005 4.7 40

1.12 1.34 .20 .84 15 07 2.90 65"
Omnivores 0.92 0.97 A3 .95 7 016 4,10 40
All 0.65 0.74 .07 .87 26 005 4.86 75"

1.08 1.39 A2 .7 55 005 4.96 40

1.42 1.65 18 .86 23 030 3.37 112

*Recalculated from the data presented, averaging multiple entires for each species
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Damuth’s conclusion. (And, of course, adding the exponents for these two
relations to get total population energy use is invalid without knowledge of the
covariance of the variables.) Peters & Raelson (83) expanded on Damuth’s
(26) geographic data base, specifically focusing on differences in scaling
relations with latitude. They found that a single relationship for all geographic
regions was inappropriate; herbivore and carnivore densities differed in their
scaling relations in different regions. Recalculating Peters & Raelson’s (83)
exponents using RMA, however, eliminates all significant differences in
exponents. On a global basis, Peters & Raelson (83) found that herbivore
density was proportional to M™% (RMA: —1.082), and carnivore (including
omnivore) density was proportional to M~ "' (RMA: —1.32). For all mam-
mals on a global basis, density was proportional to M~%¢ (RMA: —1.09).
From these relationships, they concluded that the average biomass per species
of herbivore was proportional to M~%'?, while that of carnivores was pro-
portional to M~°'5 (83); using RMA slopes, these values would be M 008
and M~%32 respectively. Peters & Raelson repeat Damuth’s mistake of
adding exponents without knowledge of their covariances, but in a different
context. Robinson & Redford’s (95) estimate of the scaling of population
density to body mass for a very small sample of neotropical herbivores (n = 6;
b = —1.33) does not differ significantly from previous estimates even after
correction of the slope (RMA: —1.55), nor does their estimate for neotropical
mammals in general (b = —0.61; RMA: —0.91). Damuth (27) used a
considerably larger data base (n = 467) to address the question of the scaling
of population density in terrestrial mammals. His scaling exponent for herbi-
vores, —0.73, is very close to the —0.75 reported in Damuth (26); both values
convert to —0.87 using RMA. Damuth’s (27) scaling exponent for population
density of all mammals (b = —0.78; RMA: —0.98) differs markedly from
Robinson & Redford (95), but these differences become insignificant using
RMA to calculate the slopes. All of these studies are summarized in Table 2.
Using an RMA regression model, the population density of terrestrial herbi-
vores appears to be approximately proportional to M~', while carnivores
show an apparently higher value, about M~"-'. To a first approximation, the
population density of mammals, regardless of trophic mode, scales as M~ 0]
Again, the agreement between published studies when the appropriate regres-
sion model is applied is remarkable.

A number of papers have addressed the question of the relation between
population density and body size in birds (see 51 for references), but correla-
tion coefficients for log-log regressions have been so low (r* = .03 to .27) as
to make the exercise of questionable ecological significance.

A large body of literature exists on the scaling of other ecological paramet-
ers. For example, Garland (30) discusses the ecological cost of transport,
daily movement distances, daily food consumption, etc; Calder (15, 16)



1?2 LABARBERA

Table 2 Scaling of population density with adult body size in terrestrial mammals.
(Conventions as in Table 1.)

Exponent Wonin
(OLS) (RMA) SE r N (kg) pWR Source

Herbivores —,75 -0.87 026 —.86 307 0.005 2.43 26
-.88 -1.08 035 —.81 108 0.01 5.40 83

-1.33 —1.55 .39 —-.86 6 24 1.22 95

-.73 —0.87 .024 -84 368 0.005 5.76 27

Carnivores &  —1.15 —1.32 060 —.87 66  0.004 4.57 83
Omnivores -.94 =111+ 117 —.84 28 0.045 3.18 95°
Carnivores -1.03  ~—1.14 052 -.90 92  0.004 5.01 2
All -.86 —1.09 032 =79 174 0.004 5.80 83
—.61 -0.91 .07 —-.67 103 0.015 4.30 95

-.78 -0.98 027 —.80 467 0.004 5.83 27

- Calculated from the pooled “insectivore-omnivore™ and “carnivore” categories in (95)
"Calculated from the pooled “mammals: insect-eaters”™ and “mammals; vertebrate-flesh-eaters”
categories in (27)

discusses foraging time, efficiency, growth rates, litter size, and r and K
selection; Peterson et al (84) discuss the allometry of population cycles. All of
these works suffer from inappropriate regression models, addition or subtrac-
tion of empirical scaling exponents without knowledge of the covariance of
the variables, or both. Swihart et al (112) measure the scaling of “time to
independence” in home range use and relate this scaling to “physiological
time” (reported as o M~ "), but their calculated slopes are all significantly
elevated when recalculated as RMA slopes; their conclusions, and similar
ones by Lindstedt et al (65) and Reiss (91), are thus highly questionable.

CONCLUSIONS

Some may argue that I have deliberately chosen examples from the literature
where statistical conventions were weak and the conclusions thus vulnerable.
Let me assure the reader that this is not true; I could have made these points
just as well by reanalyzing data from the literature on scaling of production to
biomass ratios, intrinsic rate of increase, reproductive effort, skeletal pro-
portions, or (in a different journal) metabolic rates. Some may find it dis-
couraging that many of the controversies in the literature are artifacts of bad
statistics. 1 find it encouraging that reanalysis indicates that there are indeed
robust generalities; in some ways this reanalysis is the ultimate in double blind
studies, a rarity in any form in the ecological literature.

I do not argue for hegemony in statistical methods—I have no doubt that
there are more robust techniques than I have recommended waiting for
someone to exploit them. I do urge that all involved abandon practices (such
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as failing to correct for the bias due to a log transform and use of OLS
regressions) that we know are inappropriate, and that future studies publish
enough statistical information (or better yet, raw data) so that studies do not
automatically become irrelevant as better techniques are developed. I freely
admit that | have sinned in this regard, but redemption takes only a little

thought and a few more keystrokes at the computer.

Scaling studies paint nature with a very broad brush; they are more akin to
the gas laws of physics than to Newton's laws. They do not afford much
precision in their predictions for individuals or perhaps even species, but the
broad view—whether in space or time—is of interest in itself. Properly
conducted, scaling studies can be one of our most powerful tools for achiev-
ing a broad overview of ecosystems and evolution.
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