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Without doubt the basic reproductive ratio, R
0
, is the most widely used quantity in epidemic

theory. Standard compartmental models show how R
0

is related to the average age of
infection, vaccination thresholds for eradication and equilibrium solutions. However, many of
the basic formulae for R

0
break down when we consider transmission of infection to be

a stochastic process involving discrete individuals. This paper clari"es why and when these
di!erences arise and predicts when individual-based considerations are likely to be important
in modelling infection dynamics.
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Introduction

The basic reproductive ratio, R
0
, is the most

fundamental parameter used by epidemiologists.
For microparasites it is de"ned as &&the average
number of secondary cases caused by an infec-
tious individual in a completely susceptible
population'' (Anderson & May, 1992). As such, it
provides an important tool for understanding the
behaviour of infectious diseases (MacDonald,
1952; Dietz, 1975) and has been much studied
by both theoretical and empirical researchers
(Mollison, 1977; Grenfell & Anderson, 1985;
Diekmann et al., 1990; Mollison et al., 1993;
Green-halgh & Dietz, 1994; Sanchez & Blower,
1997; Knell et al., 1998).

The main use of R
0

is in the calculation of an
invasion threshold for the infection. The intro-
duction of a disease into a population is one of
the most studied and well-understood forms of
biological invasions in ecology (Kornberg &
Williamson, 1987). In the past ten years, there has
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been a proliferation of research into individual-
based systems (DeAngelis & Gross, 1992; Judson,
1994; Bolker et al., 1997) and stochastic systems
(Casdagli, 1991; Hiebeler, 1997; Wilson, 1998);
here we consider the changes to R

0
as a generic

method of understanding the e!ects of indi-
vidual-based modelling.

When R
0

is greater than one, infections can
invade a totally susceptible population and per-
sist in the short term; long-term persistence
is a more complex, stochastic phenomenon
(Keeling, 1997). Upon vaccinating against a dis-
ease, the e!ective reproductive ratio is reduced to
a level below R

0
(Anderson & May, 1992). For

successful eradication, it is necessary that the
level of vaccination forces the e!ective R

0
below

one; the disease then dies out and cannot re-
invade if vaccination is maintained. Thus, under-
standing R

0
is important from both a theoretical

and control perspective.
There are discrepancies however between the

de"nition of R
0
, its usual mathematical formula-

tion and estimation from "eld data. These
discrepancies only become apparent when
individual level behaviour is considered and we
( 2000 Academic Press
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relax the assumptions of mean-"eld (homogene-
ously mixed) models. Epidemiology has been at
the forefront of work pioneering the use of indi-
vidual-based, stochastic models to study popula-
tion dynamics (Mollison et al., 1993; Bolker
& Grenfell, 1995; Levin & Durrett, 1996; Swinton
et al., 1998), yet the general understanding and
use of R

0
still focuses on the mean-"eld para-

digm. This paper attempts to unify the various
approaches to the calculation of R

0
for micro-

parasites, starting from the most basic of de"ni-
tions; these calculations are then compared to the
standard mean-"eld results (Anderson & May,
1992). This section of the work concentrates ex-
clusively on the invasion of a susceptible popula-
tion, this means that we can ignore the spatial
correlations that develop during the epidemic
for which there is little quantitative data. As
epidemiology is a data-driven subject, we next
consider how the individual-based assumptions
a!ect the estimation of R

0
from sero-positive

data, this forces the consideration of the endemic
disease. Finally, the work leads to a means of
quantifying the relative strengths of the indi-
vidual-based to mean-"eld-type behaviour.

Theoretical Calculation of R0

Throughout this work, we shall consider the
simple SIR epidemic, without births or deaths
(Kermack & McKendrick, 1927; Anderson &
May, 1992), from an individual-based stochastic
perspective. Although R

0
can be calculated for

more complicated scenarios (Diekmann et al.,
1990), this reduced model is used since it simpli"-
es the algebra and is ideal for illustrating the
di!erences between mean-"eld and stochastic,
individual-based approaches. In many cases, R

0
is used to identify situations when a disease can
invade a population, in which case the dynamics
of host births and deaths are largely irrelevant
(Anderson & May, 1992). The deterministic dif-
ferential equations governing the SIR system are
then given as

dS
dt

"!bSI,

dI
dt

"bSI!gI, (1)
dR
dt

"gI,

where S, I and R are the proportions of suscep-
tible, infectious and recovered individuals, b is
the contact rate and 1/g is the mean infectious
period (Anderson & May, 1979, 1992). These
&&mean-"eld'' or homogeneous equations assume
that each infectious individual interacts weakly
with an in"nite set of other individuals, thus
ignoring the discrete nature of the population
(Durrett & Levin, 1994; Wilson, 1996, 1998;
Bolker et al., 1997).

INDIVIDUAL-BASED RESULTS

To incorporate an individual-based compon-
ent, we suppose that each infectious individual on
average comes in contact with*and could trans-
mit the disease in isolation to*exactly n suscep-
tible individuals. (In Appendix A the argument
has been generalized to the case where the mixing
is non-uniform.) It is important to realize that
although the average number of susceptible
neighbours will change during the progression of
an epidemic, for the calculation of R

0
we are only

interested in the initial spread of infection in
a susceptible population. Similarly, we can ignore
most of the complications of spatial structure
that develop as the epidemic progresses.

We now consider in detail how n, the potential
number of susceptible neighbours, is related to
the average neighbourhood size N. For the "rst
infectious individual landing in a totally suscep-
tible population, it is clear that n must be equal to
N. However, for all subsequent cases, as they
must have been infected by one of their neigh-
bours, n)N!1. In general, for the vast major-
ity of contact networks we "nd that within a few
generations the relationship between n and
N achieves its asymptotic limit (Keeling, 1999;
cf. Bolker & Pacala, 1997). The precise form of
this relationship can only be calculated by know-
ing the exact contact network, but in general,
networks with predominantly long-range con-
nections (such as the random graph) initially
have n+N!1, whereas networks with many
local connections (such as lattice-based models
or small world networks) have far lower n [see
Andersson (1998) for the treatment of R

0
on
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a random graph]. These local networks have
reduced n for two reasons: "rstly infectious indi-
viduals are aggregated so each infectious case has
fewer susceptibles in its neighbourhood, and sec-
ondly, some susceptibles are shared between
many sources of infection again reducing the po-
tential n. Although we could calculate n from the
contact network, as is e!ectively done in Keeling
(1999), there is only limited data from which to
estimate this network; therefore it is far simpler to
use n as an underlying epidemiological para-
meter.

From probabilistic considerations, we can
average over all possible numbers of new infec-
tions produced, to calculate the expected number
of the n individuals who contract the disease; this
is the average number of secondary cases an
infectious individual causes, or R

0
. The constant

decay rate, g, of infection in eqn (1) introduces the
assumption that infectious periods are exponenti-
ally distributed, giving

R
0
"n P

=

0
g e~pg(1!e~qp) dp

"n
q

q#g
, (2)

where q is the rate at which disease is transmitted
across a contact. Here, R

0
is calculated as the

integral over all infectious periods, of the prob-
ability of having that length infectious period
times the expected number of the n susceptibles
that will get infected.

On the other hand, for many diseases it is more
appropriate to assume that every individual is
infectious for a "xed time, exactly 1/g (cf. Keeling
& Grenfell, 1997), this leads to

R
0
"n (1!e~q@g). (3)

The derivation of these two forms is presented in
Appendix A; notice that the constant infectious
period model has a larger R

0
in this discrete

neighbourhood approach than its exponential
counterpart (Fig. 1). This is because in the ex-
ponential period model, the few individuals who
are infectious for a long time rapidly use up all
their neighbouring susceptibles, whereas for the
constant period model this is less of a problem
(Keeling & Grenfell, 1997).

COMPARISON WITH THE TRADITIONAL APPROACH

Most modellers calculate the basic reproduc-
tive ratio using the underlying mean-"eld equa-
tions (1), taking R

0
to be the rate of change in the

number of cases per infectious individual times
the average infectious period. Hence, de"ning R@

0
to be the basic reproductive ratio using this
method, we "nd

R@
0
"b]1

g
. (4)

An important di!erence is that any probabilisti-
cally estimated R

0
must lie between 0 and n,

whereas R@
0

can take arbitrarily large values. This
di!erence comes from the fact that the probabilis-
tic approach considers the number of susceptible
neighbours to be reduced every time an infection
event occurs; therefore the number of susceptible
contacts of an infectious individual decreases
with time. Under the mean-"eld assumptions, the
contact rate does not vary as the number of
neighbours is assumed to be in"nite.

To compare the individual approach given
above with the mean-"eld model, we set q"b/n
and hence preserve the initial infection rate. This
means that as the number of neighbours in-
creases so the strength of the contact with each
neighbour decreases, we could envisage this as
implying that as the number of contacts increases
so less time can be spent with each contact. As
expected, if we allow nPR, while keeping b con-
stant, the above three formulae for the basic
reproductive ratio (2)}(4) are equivalent. How-
ever, for "nite values of n (and particularly for
n small), the value from the deterministic equa-
tions (R@

0
) is greater than that from the probabil-

istic de"nition (R
0
). As shown in Appendix A, this

result is true for all assumptions about mixing
and infectious periods.

We illustrate these results by "nding the rela-
tionship between q, n and g when R

0
(or R@

0
)

is unity, and we are at the invasion threshold
(Table 1). Figure 1 shows the estimated basic
reproductive ratio for the above three cases
(mean-"eld, constant decay rate and "xed infec-
tious period). In graph (a), we "xed n"2 and



TABLE 1
From eqns (2)}(4), the relationship between the
individual level parameters (s, n and g) when
the estimated basic reproductive ratio is unity.
¹hese relationships clearly show that R0 for the
,xed period model lies between the deterministic

and exponential period estimates

Exponential Fixed Deterministic
period period model

g"(n!1)q g"
!q

lnA1!
1

nB
g"nq

+(n!1
2
)q

FIG. 1. The value of R
0

for the two assumptions of "xed
infectious periods and exponentially distributed periods,
and the value of R@

0
derived from the deterministic equa-

tions. Notice that R@
0

is always greater than R
0
. In graph (a)

the average number of susceptible neighbours n"2 and
q (and hence b"nq) is varied. Note that although n"2 the
actual neighbourhood size could be far bigger. As qPR we
"nd that R

0
asymptotes to n whereas R@

0
tends to in"nity.

For graph (b), the contact rate b"5 and n and also q"b/n
are varied. The mean-"eld estimate R@

0
is una!ected by

changes in n; the discrete models asymptote to the mean-
"eld limits as nPR. The dots on both graphs the position
of the invasion threshold where the basic reproductive ratio
is estimated to be one.
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vary q and hence b as well; for graph (b) the
contact rate is "xed at b"2, but n and hence q is
varied. The graphs also indicate the points where
R

0
is estimated as one (the invasion threshold).

The greatest discrepancies between the curves
occur when n is small and q is large.

Even at the fundamental level of calculating
whether a disease will spread, the standard mod-
elling approach is not consistent with the true
probabilistic argument, and our assumptions
about the infectious period have a strong e!ect.
Therefore, for a "nite neighbourhood, it is pos-
sible for the deterministic model to predict incor-
rectly the successful spread of the disease despite
the fact that in reality each infectious individual
triggers less than one new case*this is
commonly found for disease models on a lattice
(Mollison, 1977).

Estimation of R0 from Data

In practical situations, R
0

is usually estimated
from the proportion of susceptibles at equilib-
rium, S* (Anderson & May, 1992),

R
0
"

1
S*

. (5)

This formulation means that the long-term en-
demic behaviour of the disease must be con-
sidered, so many of the simplifying assumptions
are used for invasion break-down. For endemic
diseases many new facets arise which can compli-
cate the analysis and make quantitative predic-
tions di$cult. Instead, this section focuses on the
estimation of R

0
from the proportion of suscep-

tibles and considers the qualitative e!ects of each
new complication.
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Equation (5) relies on the three major assump-
tions about the distribution of cases,

(1) The total number of infectious cases is
small, so that each susceptible individual has at
most one infectious neighbour.

(2) At any one instant each infectious indi-
vidual on average triggers exactly one further
case, so that the infection is at equilibrium.

(3) The number of susceptibles around an in-
fectious individual is reduced to exactly a fraction
S* of the value when the entire population was
susceptible. That is, the distribution of infectious
and susceptible individuals is uncorrelated.

From Appendix B, it is clear that under these
assumptions this basic formula (5) still holds even
when we consider the number of neighbours, n, to
be "nite. However, as mentioned above some
new questions need to be addressed if we are to
fully understand this formula in a stochastic
spatial context. Below, we examine these
issues and suggest how they a!ect the estimation
of R

0
.

=hat happens if the number of infectious cases is
not small? When there are many infectious cases,
or the infectious cases are highly aggregated, it is
highly likely that a susceptible individual is sur-
rounded by more than one infectious neighbour.
Hence, because some of the susceptibles are
shared, the e!ective number of susceptibles per
infectious individual is reduced. This phenom-
enon can be viewed as a functional response, with
infectious individuals in competition for a limited
amount of susceptibles (Heesterbeek & Metz,
1993; de Jong et al., 1995). As the e!ective num-
ber of neighbouring susceptibles is lower than the
standard estimated value, we will consequently
underestimate the value of R

0
.

How is this calculation a+ected by temporal
-uctuations in the number of susceptibles? One of
our assumptions was that the population was at
equilibrium; we next consider the e!ects of both
deterministic and stochastic #uctuations. Let S (t)
be the average proportion of susceptibles sur-
rounding an infectious individual; S is assumed
slowly varying compared to the generation time
of the disease. Over a long period of time the
geometric mean of the number of cases produced
per infectious individual must be one if the dis-
ease is to remain extant and bounded. As detailed
in Appendix B, from this long-term behaviour we
obtain

R
0
"T

1
S(t)U, (6)

where S )T represents the long-term geometric
average value. Thus, simply taking the arithmetic
mean of the susceptibles leads to an underesti-
mate of R

0
. This underestimate is greatest when

there are large #uctuations and the level of sus-
ceptibles drops to low values.

It is interesting to consider the non-ergodicity
of this problem, that is, temporal and spatial
variations lead to di!erent averages. To "nd S at
a point in time, we necessarily take the arithmetic
spatial average of the susceptibles across the
population. However, eqn (6) reveals that tem-
poral #uctuations should be treated as geometric
averages. This may lead to complications when
we come to consider populations with large-scale
spatial heterogeneity*as the spatial scale over
which we aggregate will a!ect the size of the
temporal #uctuations. We "nd that averaging
over large-scale spatial heterogeneities within the
system will lead us to further underestimate R

0
.

How is this calculation a+ected by local hetero-
geneities? The "nal assumption was that each
infectious individual interacted, on average, with
nS(t) susceptible individuals and that it could
infect these in isolation. This is generally not true
due to the presence of spatial correlations be-
tween susceptible and infectious individuals.
Much of the research on the spread of disease
using lattice-based models (Mollison, 1977;
Durrett, 1992; Rhodes and Anderson, 1996;
Levin & Durrett, 1996) displays striking spatial
patterns, indicating strong spatial correlations.
Pair-wise approximations for the spread of a dis-
ease through a network show analytically that,
during the initial spread of a disease, infectious
and susceptible individuals become negatively
correlated in space, while infectious individuals
are highly aggregated (Altmann, 1995; Keeling
et al., 1997; Keeling, 1999). Once again, the stan-
dard approach has overestimated the potential
susceptible neighbours per infection source*and
hence underestimated R

0
. Although many dif-

ferent models have been used to examine the



TABLE 2
Basic epidemiological parameters and the minimum
e+ective neighbourhood for three common child-

hood infections

Measles Chickenpox Mumps

Estimated R
0

11}15 7}12 11}14
Infectious period (d) 7 11 6
Transmission prob. ¹ 0.75 0.6 0.3
Estimated q 0.198 0.083 0.059
Minimum e!ective

neighbourhood 15}20 12}20 37}47
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development of spatial correlations, it has be-
come clear that without a detailed description of
the network of contacts quantitative predictions
cannot be made. Contact networks with large
amounts of local structure and few connections
per individual lead to the strongest correlations,
and hence the largest errors in our estimation of
R

0
(Keeling, 1999).

All the above errors act in the same direction:
the standard estimate of R

0
is always an under-

estimate of the true value. As well as being of
theoretical importance there is also a practical
advantage in knowing the value of R

0
accurately.

The precise value of R
0

is most commonly used
for parameter estimation and hence the calcu-
lation of vaccination thresholds. As we have
underestimated R

0
, we will also underestimate

the level of vaccination required to eradicate the
disease and prevent it from re-invading. This
could potentially have very important public
health implications. Our underestimate of the
vaccination threshold is likely to be greatest
when there is a large number of infectious
individuals; each individual can only spread the
disease to a few near neighbours and there are
large deterministic #uctuations in the number of
cases.

There is seldom su$cient data to correct for all
of the above complexities; however, by combin-
ing observations at the individual and population
levels we can predict the strength of the indi-
vidual-based nature on the dynamics.

Minimum E4ective Neighbourhood

If we can "nd the values of the individual level
parameters (q and g) from detailed observations
(for example at the family level; Hope-Simpson,
1952), then the underestimated value of R

0
can

also be used to provide a lower bound to the size
of the e!ective local neighbourhood. To achieve
this, we de"ne a new quantity, the minimum
e!ective neighbourhood (MEN) as &&the number
of (potentially susceptible) neighbours n, which,
together with the individual level parameters,
produces the estimated value of R

0
''. This value

of n is clearly an underestimate of the actual
number of neighbours because it contains the
e!ects of spatial correlations, #uctuations and
many infectious individuals.
As shown in Fig. 1, the mean-"eld approach
works well for large neighbourhood sizes, but
di!ers greatly from the more accurate individual-
based estimation for small values of n (cf.
Diekmann et al., 1998). Therefore, a large MEN
generally implies that the mean-"eld limit models
are more accurate; each infectious individual in-
teracts with a larger environment and hence the
e!ects of stochasticity should be weaker and local
spatial correlations should be smaller and slower
to develop. This lower bound can therefore be
used to determine the reliability of the standard
models when individual-based stochastic ap-
proaches are necessary. We would expect the
MEN to be far lower for a sexually transmitted
disease than for airborne diseases which have far
more potential contacts; hence airborne infec-
tions are more rapidly modelled by mean-"eld
equations.

AN EXAMPLE*TRANSMISSION OF CHILDHOOD

VIRAL INFECTIONS

We consider three childhood diseases in de-
veloped countries: measles, chickenpox and
mumps (parameter estimates from Anderson
& May, 1992; Hope-Simpson, 1952). In primary
infections, all these diseases closely follow
the susceptible, infectious, recovered paradigm
(Anderson & May, 1979; Grenfell & Dobson,
1992). Table 2 shows the estimated values of basic
epidemiological parameters (R

0
, the infectious

period 1/g and the transmission probability or
infectiousness¹ ). The transmission probability is
de"ned as the proportion of susceptible contacts
who catch the disease; this is an increasing



FIG. 2. Relationship between the transmission probabil-
ity ¹, R

0
and the minimum e!ective neighbourhood (MEN).

The dark lines show where the three childhood diseases,
measles, chickenpox and mumps occur in parameter space.
As the transmission probability decreases and R

0
increases

the minimum e!ective neighbourhood becomes larger and
we approach the mean-"eld limit.
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function of the transmissibility and the infectious
period. The transmission probability and the
infectious period (1/g) are estimated from detailed
observations of transmissions within families
(Hope-Simpson, 1952; Bailey, 1956) and hence
provide parameterization at the level of the indi-
vidual. Note that as the transmission probability,
¹, is calculated from within-family observations
where contacts are strong, it is likely to be an
overestimate of the true value, leading to an even
larger underestimate of n.

Considering the chance of catching the disease
from a single contact, for the "xed infectious
period model we "nd

¹"(1!e~q@g).

Therefore, from R
0
, ¹ and g we can estimate

q and MEN,

q"!g ln(1!¹) and MEN"

R
0

¹

.

From the values in Table 2, we should expect
measles and chickenpox to behave less like their
mean-"eld counterparts than mumps, which has
a far larger MEN. Mumps has a lower transmis-
sion probability than the other two diseases,
therefore it requires far more potential contacts
to achieve the estimated levels of R

0
. Before vac-

cination, measles, chickenpox and mumps were
all predominantly spread by school children
of about the same age, which would suggest
the same contact network for all three diseases
(Edmunds et al., 1997). However, as mumps has
a larger MEN, we suggest that either mumps is
spread by a larger proportion of the adult popu-
lation (i.e. a di!erent contact matrix), or that
mumps can survive for longer out of the human
body, both of which will act to increase the e!ec-
tive neighbourhood size.

Figure 2 shows how the minimum e!ective
neighbourhood (MEN) varies with R

0
and the

transmission probability, ¹. The ranges of the
three childhood diseases, measles, chickenpox
and mumps, are given for comparison. As
R

0
increases and the transmission probability

decreases, MEN get larger and the system ap-
proaches the mean-"eld, homogeneously mixed
limit.
Discussion

This paper has highlighted how the discrete
nature of a population can alter our conclusions
about basic epidemiological processes. The re-
sults underline a fundamental idea in ecology*
that part (though not all) of our methodology,
derived from deterministic models, breaks down
when individuals with stochastic behaviour are
considered (Durrett & Levin, 1994; Levin &
Durrett, 1996; Wilson, 1998). For many systems,
mean-"eld models provide a robust means of
understanding the behaviour, yet for others it
is necessary to consider the individual nature of
the population. By introducing the minimum
e!ective neighbourhood (MEN) which links
local individual-based observations with global
behaviour, we are beginning to develop a means
to assess the likely validity of the standard homo-
geneous models. The existence of small contact
neighbourhoods has two important implications,
each individual experiences large #uctuations in
its local environment (Keeling & Rand, 1999) and
strong local correlations are likely to develop
(Keeling et al., 1997).

Fundamental to this work is the assump-
tion that the contact rate b is composed of
a transmission rate q and a potential susceptible
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neighbourhood of size n, hence enabling us to
scale between individual-based and mean-"eld
limits. Calculating R

0
from its basic de"nition by

a probabilistic approach shows that the value
derived from the mean-"eld equations is always
an overestimate. The error in the mean-"eld esti-
mate (and hence the error in the mean-"eld equa-
tions) increases for small numbers of interactions,
for long periods of contact (g small) and when the
transmission rate, q, is large. This would imply
that the standard mean-"eld models are most
accurate at capturing the spread of diseases such
as measles (where the number of potential trans-
missions per individual is large), but fail to de-
scribe the behaviour of sexually transmissible
diseases in a predominantly monogamous popu-
lation (Dietz & Hadeler, 1988). Even with simple
respiratory diseases problems may still occur if
the transmission rate is high and therefore the
spread of infection becomes limited by the num-
ber of contacts. For many childhood diseases,
spread within a small family group is considered
to be vitally important to the dynamics (Becker
& Dietz, 1995; Keeling, 1997) so the individual
nature of the system again becomes important.

Recent work using pair-wise models for disease
spread through a network provides a robust
method of capturing the dynamics when the
number of contacts is limited (Sato et al., 1994;
Altmann, 1995; Keeling et al., 1997; Keeling,
1999). These pair-wise models predict the
same invasion threshold as the probabilistic
calculation of R

0
, but also allow us to consider

the spread of infection when there is a high
degree of local spatial structure, which further
reduces R

0
.

Separating the contact rate b into two compo-
nents leads to a novel interpretation of the sea-
sonal forcing of childhood infections. Although
we may expect some variation in the transmis-
sion rate q, due to changes in the environment, it
is the potential neighbourhood size n which con-
tains the majority of the seasonal (term-time)
forcing. Results from a stochastic SEIR-type
model (Keeling & Grenfell, 1997) indicate that for
measles the MEN varies by a factor of two be-
tween term time and school holidays. Therefore,
the accuracy with which mean-"eld models pre-
dict the local dynamics varies greatly throughout
the year.
The use of the minimum e!ective neighbour-
hood has also highlighted another important
ecological consideration. An individual-based or
stochastic approach is often only adopted when
a population is considered small. However, the
MEN shows that an individual-based approach
may be necessary for all population sizes if the
number of interactions per individual is limited.

The standard method of estimating R
0

from
the density of susceptibles at equilibrium has
been shown to consistently underestimate the
value. Although it is possible to describe math-
ematically the errors in the estimation process,
a more reliable estimate cannot be produced
without detailed information about the indi-
vidual transmission rates, network of contacts
and correlation of susceptible and infectious
individuals. Such information is currently un-
available. The underestimation of R

0
from the

proportion of susceptible individuals (obtained
from serological data) leads to an underestimate
for the vaccination threshold necessary to eradi-
cate a disease. This could be a potential problem
when planning a vaccination strategy, as the level
of vaccination required may be far higher than
the level predicted. The inclusion of discrete indi-
viduals and "nite neighbourhoods means that the
(aggregation) of susceptibles and vaccinated indi-
viduals should ideally also be taken into account.
Successful vaccination strategies must not only
treat a high proportion of the population, but
must achieve an even coverage*pockets of sus-
ceptible individuals will allow a disease to re-
invade (Keeling, 1999).

In general, this work has demonstrated the
di$culties in ecological modelling with linking
individual-based parameters and probabilistic
arguments with global parameters and determin-
istic equations. For many ecological and
epidemiological problems the discreteness of in-
dividuals plays a major role*understanding
these e!ects and knowing when they must be
considered is still an open problem. It is therefore
essential to have good, quantitative measure-
ments for both the global dynamics and the local
behaviour if these two very di!erent modelling
approaches are to be reconciled.
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APPENDIX A

Let d(m, p) be the proportion of individuals
who are in contact with m susceptible neighbours
for a period p while they are infectious*note that
a single individual can be in contact with various
numbers of neighbours for di!erent amounts of
time. For the SIR model the contact parameter
b is given by

b"
=
+

m/0
P
=

0
mpqg d (m, p) dp.

For a "xed number of susceptibles m around an
infectious individual and assuming that the infec-
tion process is random, the number of neigh-
bours that are infected by this primary case is
binomially distributed. To calculate R

0
, we need

to sum this binomial distribution over all pos-
sible neighbourhoods and periods of contact,

R
0
"

=
+

m/0
P
=

0
d(m, p)

] m
+
i/0
A
m
i B i (1!e~qp)i(e~qp)m~idp

"

=
+

m/0
P
=

0
d(m, p) m(1!e~qp) dp. (A.1)

However, the calculation of the basic repro-
ductive ratio from the underlying mean-"eld
equations as the rate of change in the number of
cases per infectious individual times the average
infectious period, gives

R@
0
"

=
+

m/0
P
=

0
d (m, p)mpq dp.

As pq is always greater than 1!exp(!pq), R@
0

is
greater than R

0
for all possible distributions of

neighbourhoods and times.
In both of the above calculations, if it can

be assumed that the number of susceptible
neighbours and the contact period are indepen-
dent, such that

d (m, p)"N(m)P(p),

then the integral and sum in the above forms can
be naturally separated,

R
0
"n P

=

0
P(p)(1!e~qp) dp,

R@
0
"n P

=

0
pqP(p) dp,

where n is the average number of neighbours or
+ mN(m).

Two main assumptions can be made about the
infectious period (cf. Keeling & Grenfell, 1997).
The "rst is the more natural "xed infectious
period, and the second is the mathematically
simpler constant decay rate.

For the "xed period assumption, d(m, p) is only
non-zero when m"n and p"1/g. Thus,

R
0
"n (1!e~q@g).

The constant decay rate g, assumed by the SIR
model, means that infection periods are exponen-
tially distributed, hence,

d (m, p)"G
ge~pg when m"n,

0 otherwise.

So we "nd that

R
0
"n

q
q#g

.

APPENDIX B

If we assume that susceptibles are randomly
distributed with density S*, then this adds an
extra factor to the binomial distribution of
eqn (A.1). The probabilistic approach to calculat-
ing the e!ective reproductive ratio now has to
consider the probability that an individual is
susceptible and then the probability that it is
infected. Given that we are at equilibrium, the
average number of secondary cases produced by
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an infectious individual must be one, so that the
number of infectious individuals remains con-
stant. Therefore,

1"
=
+

m/0
P
=

0
d (m, p)

] m
+
i/0
A
m
i B i (S*[1!e~qp])i

](1!S*[1!e~qp])m~i dp

"

=
+

m/0
P
=

0
d (m, p)mS*(1!e~qp) dp

"S*R
0

NR
0
"

1
S*

.

This is the same formula as from the mean-"eld
model.

When the number of susceptibles has temporal
#uctuations the calculation is more complex. For
the infectious process to remain extant and
bounded in the long term, the geometric average
of the number of secondary cases produced
should tend to one. We require a geometric aver-
age because infection acts multiplicatively with
successive number of cases growing or decaying
exponentially if the geometric average is not
equal to one. Assuming that the number of sus-
ceptibles is slowly varying, that each infectious
individual has on average S(t)n susceptible indi-
viduals that it alone can infect, and taking logar-
ithms, we "nd

0" lim
T?=

1
¹ P

T

0
lnC

=
+

m/0
P
=

0
d(m, p)mS (t)

](1!e~qp) dpD dt,

0" lim
T?=

1
¹ P

T

0
ln[S(t)R

0
]dt as m"n,

Nln[R
0
]" lim

T?=

1
¹ P

T

0
lnC 1

S (t)Ddt.

Thus, under these assumptions, R
0
is given by the

geometric average of the inverse of the propor-
tion of susceptible individuals.
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