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In many social networks, there is a high correlation between the
similarity of actors and the existence of relationships between
them. This paper introduces a model of network evolution where
actors are assumed to have a small aversion from being connected
to others who are dissimilar to themselves, and yet no actor strictly
prefers a segregated network. This model is motivated by Schel-
ling’s [Schelling TC (1969) Models of segregation. Am Econ Rev
59:488–493] classic model of residential segregation, and we show
that Schelling’s results also apply to the structure of networks;
namely, segregated networks always emerge regardless of the
level of aversion. In addition, we prove analytically that attribute
similarity among connected network actors always reaches a
stationary distribution, and this distribution is independent of
network topology and the level of aversion bias. This research
provides a basis for more complex models of social interaction that
are driven in part by the underlying attributes of network actors
and helps advance our understanding of why dysfunctional social
network structures may emerge.

The Problem of Segregation in Social Networks
Cooperation and conflict in social networks are central features
of many contemporary social and policy issues, including com-
mons governance, climate change policy, and economic develop-
ment. Of particular importance is the well-known tendency for
network linkages to concentrate between actors who are similar
to one another in terms of certain key attributes—a phenomenon
we refer to as “attribute closeness.” Attribute closeness is one
important indicator of segregation within a social network, as it
signals tightly knit communities of homogenous actors and may
reinforce divisions between disparate groups. These types of
networks have been observed in a wide variety of contexts (1–3),
including diverse examples such as race- and gender-oriented
segregation in high school friendship networks and value- and
belief-oriented segregation in environmental policy networks.
Thus, the literature provides many empirical examples of segre-
gation in terms of the structure of relationships, in addition to the
geographically explicit residential segregation studied in Schel-
ling’s classic model of this phenomenon (4, 5).

Network segregation is problematic when actors are faced with
the need to collectively address complex social, environmental, or
economic dilemmas. For example, social and policy networks are
an important part of the machinery of collective action (6, 7). If
the networks that form around social dilemmas are heavily frag-
mented, then it may be difficult for actors to develop the social
capital necessary for the emergence of cooperative behavior (8).
These fragmentations are observed in real-world policy networks,
such as in regional planning networks where segregation is often
observed between actors working in different functional domains
(e.g., when transportation planners fail to coordinate with land-
use planners), levels of government (e.g., when federal agencies
do not coordinate with state agencies), or ideologies (e.g., when
environmental groups do not coordinate with prodevelopment
groups). Moreover, these types of fragmented, segregated net-
works work against the diversity that is central to social learning,
innovation, and successful problem solving (9, 10).

In order to overcome network segregation, it is necessary to
develop a better understanding of the factors that shape social
networks. Given the similarity between residential and network
segregation patterns, it is natural to look toward Schelling’s

model of residential segregation (4, 5) for insights into why such
networks emerge and persist. Schelling’s model focused on the
role of individual preferences in shaping emergent segregation
patterns and demonstrated that seemingly mild preferences
against being a local minority can produce stark and counterin-
tuitive patterns of global segregation. This model challenged the
common view that discrimination—defined as a strict preference
for homogenous communities, potentially coupled with formal
regulations that inhibit integration—is a necessary condition
for segregation to emerge. Even though the point is still hotly
debated, research using agent-based models (such as Fossett’s
SimSeg model; see ref. 11) convincingly demonstrate the theore-
tical point that individual preferences can produce segregation
even in the absence of discrimination (11, 12). Moreover, empiri-
cal tests of Schelling’s model, beginning with Clark (13), have
demonstrated the existence of segregation-promoting prefer-
ences that are stronger than the preferences assumed by the
Schelling segregation model (12, 13).

Like residential segregation patterns, social network structures
are potentially influenced by both exogenous constraints (such as
“discriminatory” rules that create attribute-close linkages with
higher probability) and endogenous drivers, such as individual
preferences for certain relationships. Just as residential segrega-
tion scholars have sometimes assumed strict individual prefer-
ences for homogenous communities, the networks literature has
similarly focused on the role of “homophily,” or agents’ attraction
to others similar to themselves, in driving endogenous networking
choices.* However, despite the influence of homophily-based
models, the Schelling model suggests that the attraction aspect
of homophily may not be a necessary condition for the emergence
of network segregation. Rather, a mild aversion from dissimilar
network partners, coupled with a random selection of new part-
ners, may be sufficient to produce segregated networks.

In this paper, we introduce a mathematical, Markov-chain
model of network segregation based on the assumption that
actors have no strict preference for forming ties with similar
network partners, but are subject to a (potentially very small) bias
for cutting ties with dissimilar actors. This model is an effort
to analytically prove the emergence of segregated network struc-
tures under this process, given any initial network topology. As
with Schelling’s original model, we show that aversion processes
are sufficient to explain the emergence of segregated, attribute-
close network structures. Our results not only complement a long
line of analytical proofs and simulations of the Schelling model
(11, 12, 15–18) with some network analysis applications (19, 20),
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but we also contribute to the emergent literature on the dynamics
of network evolution where structure is influenced by the attri-
butes of individual network actors.

This paper makes four key contributions to the literature
on segregation and network evolution. First, we show that the
distribution of attribute similarity among connected actors always
converges to a stationary distribution over time, where linkages
are predominately concentrated between pairs of similar actors.
Second, the stationary distribution does not depend on the initial
network structure or the level of aversion bias, which may be in-
finitesimally small. Third, we are able to predict the distribution
of attribute similarity among connected actors at any point in the
Markov process, meaning that we not only predict convergence
states but also the convergence process. Finally, all of the results
presented here allow for actor attributes that may be multidimen-
sional and may take on any number of discrete, ordinal values.
This allows for great flexibility in modeling the complex, multi-
faceted nature of aversion processes within social networks,
because aversion processes may be a function of multiple inter-
acting attributes (such as race and religion and age) rather than
just single categorical attributes (such as race only). This general-
ization is motivated also by work in the residential segregation
literature, where it is noted that segregation occurs in a “multi-
cultural landscape” where preferences are affected by many
different factors including ethnicity, status, and housing quality
(11, 12).

A General Model of Network Segregation
We begin by outlining a general Markov-chain model of network
evolution that operationalizes the aversion aspect of the Schelling
segregation model. Although we define a general model, a
majority of this paper is committed to the analysis of a more
specific case for the sake of tractability. Major components to
the model include the initial network conditions, including the
assignment of attributes to network actors, as well as the basic
process of aversion-driven network rewiring.

Initial Conditions. Our model begins with an initial network,
denoted G ¼ ðV;EÞ, on n ¼ jV j vertices and m ¼ jEj links (also
known as “edges”). Vertices are referred to interchangeably as
“agents” or “actors” in the network. The initial network G
may have any structure and may include any number of agents.
In addition, each vertex is assigned a fixed attribute that will
be used to assess their similarity to other network actors. Vertex
attributes are represented by the function ω: V → ½−1;1%r , where
r ∈ N represents the dimensionality of attributes. In this paper
we focus on the case of unidimensional attributes (e.g., agents
make networking decisions based on similarities and differences
in only one trait, such as ethnicity or gender); however, the
general approach is applicable to multidimensional attributes
where r ≥ 2 (e.g., agents make their networking decisions based
on differences in both ethnicity and gender).†

The attribute distance between any two vertices in the network
is defined generally as d: ½−1;1%r × ½−1;1%r → ½0;1%. We refer
to large attribute distances as “long edges,” and small attribute
distances as “short edges,” because one may imagine that agents
occupy fixed positions within their attribute space. Distance
within this attribute space is congruent to the concept of social
distance described by Fossett (11); relationships between actors
with small social distances are “short;” whereas relationships be-
tween actors with large social distances are “long.”

Agents’ propensity to cut ties with dissimilar network actors
is represented by a single parameter that we call aversion bias,
represented by p ∈ ð0;1%. Larger values of p indicate that agents
have a strong aversion to maintaining linkages with actors

who are very different from themselves (e.g., when the attribute
distance d is large). This aversion parameter models the strength
of agents’ preferences and is congruent to the residential prefer-
ences originally measured by Clark (13).

The Network Evolution Process. The social process analyzed here
[PðG;p;r;ω;dÞ ¼ ðGtÞ∞t¼0] is defined as a Markov chain and
generates a stochastic sequence of graphs. The process begins at
t ¼ 0, with G0 ¼ G. Time step t, for t ≥ 1, is defined to be the
transition between Gt−1 and Gt.

Network evolution occurs through a stochastic process of link
termination, followed by random rewiring of terminated links.
This is modeled by choosing, at each time step, a random edge
uv ∈ EðGt−1Þ. The agents u and v then assess their attribute
distance dðωðuÞ;ωðvÞÞ and make a choice to delete or keep the
relationship between them based on their attribute distance
and p. Specifically, the probability of tie deletion between u
and v is dðωðuÞ;ωðvÞÞ · p.‡ When a tie is deleted, it is then rewired
by removing uv, choosing a vertex x ∈ V uniformly at random,
then finally adding either ux or vx with equal probability. Thus,
when a tie is deleted, it is randomly allocated to one of the actors
in the dyad, who then forms a relationship at random with
another actor in the network. A schematic of this process is pro-
vided in SI Text (Fig. S2). The total number of edges in the
network stays the same throughout the process, that is, is equal
to m ¼ jEj.§ Note that this assumption does not imply that actors
maintain the same number of relationships—degree distributions
are allowed to change dynamically. We assume only that the
overall density of the network remains constant throughout the
process.

Note that if by the times t1, t2 each edge of the initial network
G have both neighbors rewired at some point of the process, the
networks Gt1 and Gt2 are random objects, identical in distribu-
tion, whose properties depend onm, r, ω, and d only (p and prop-
erties of the initial network G other than m ¼ jEj do not affect
the distribution). We call the graph generated in this process the
social network and denote it as Pðm;r;ω;dÞ.¶

All our results are asymptotic, that is, form tending to infinity,
and thus for n tending to infinity as well. We say that an event
holds asymptotically almost surely (aas) if it holds with probability
tending to one as m → ∞. Finally, we will make frequent use of
the Chernoff bound; this is a standard result about the sum of in-
dependent random variables and is included in SI Text (section 2).

Predicting the Convergence Process: A Specific Case
Our analysis of the general model begins by assuming more
specific functional forms for the distribution of attributes in
the population of network actors (ω), and the attribute distance
between pairs of actors (d). These assumptions will allow us to
predict the process by which the initial network G is transformed
into the stationary social network P.

The Distribution of Attributes. Suppose that actors are assigned,
uniformly and at random, attributes drawn from an r-dimensional
space.∥ Distances between attributes are defined by the function
dð· ; ·Þ, which ranges from 0 (when two vertices were assigned the
same attributes) and 1 (when two vertices were assigned attri-
butes as far from each other as possible).

Although the distance metric dð· ; ·Þ is continuous, it is useful
to think of attribute distance as a discrete variable. This is done

†A proof of the convergence process for multidimensional attributes (r ≥ 2) is sketched in
SI Text (section 6).

‡Note that dðωðuÞ;ωðvÞÞ ∈ ½0;1% and p ∈ ð0;1%, so the probability distribution is well-defined.
§Note that this model allows loops and multiple edges. However, there generally will not
be very many of these, and it can be shown that excluding them will not significantly
affect the conclusions.

¶It can be shown that the stationary state will be reached afterOðm logmÞ steps. This result
will become important later and is explained in more detail in SI Text (section 1).

∥More details on how the distance functions are created are available in SI Text (section 3).
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by fixing K ∈ N and partitioning all possible distances dð· ; ·Þ into
K discrete bins. In particular, the attribute distance dK ð· ; ·Þ
between two vertices with attributes x and y is defined as
dKðx;yÞ ¼ ⌈Kdðx;yÞ⌉

K , if dðx;yÞ > 0, and dK ðx;yÞ ¼ 1
K, otherwise.**

This operationalization fixes a lower bound on attribute dis-
tance and therefore ensures that all edges have some nonzero
probability of being cut. For large values of K , the attribute
distance function dK ð· ; ·Þ approximates dð· ; ·Þ, and so this tech-
nique allows us to imagine attribute distances that are nearly
continuous.

Measuring Network Segregation. We track the emergence of
network segregation by defining several special-use measures
of attribute closeness.†† At this point we simplify the analysis
by assuming unidimensional attributes (that is, r ¼ 1), although
the same approach is applicable for r ≥ 2 as well; proofs for
the case of multidimensional attributes are provided in SI Text
(section 6).

Let EiðtÞ (where i ∈ f1;2;…;Kg) denote the total number
of edges in Gt that have attribute distance (or “length”) equal
to i

K, that is, dK ðωðvÞ;ωðuÞÞ ¼
i
K. Then

EK ðtÞ ¼ jEðGtÞj −
∑

K−1

i¼1

EiðtÞ ¼ m −
∑

K−1

i¼1

EiðtÞ;

because the number of edges stays unchanged during the social
process.

Next, let FðtÞ represent the total length of all the edges in the
graph; the probability of rewiring an edge at any time step will
depend on this quantity. We have

FðtÞ ¼
∑

uv∈EðGtÞ

dK ðωðvÞ;ωðuÞÞ ¼ m −
∑

K−1

i¼1

EiðtÞ
K − i
K

:

This result is derived in SI Text (section 4).

Expected Changes in Attribute Distance. Now we run the process
and focus on the random variable EiðtÞ for a given i ∈
f1;2;…;K − 1g. EiðtÞ will decrease if we rewire an edge vu that
has attribute distance dKðωðvÞ;ωðuÞÞ ¼ i

K. The probability that
this happens is equal to the probability that an edge with attribute
distance i

K is chosen, times the probability that the edge, if chosen,
is rewired. This probability is

EiðtÞ
m

dKðωðvÞ;ωðuÞÞp ¼ EiðtÞip
Km

:

Conversely, EiðtÞ may also be increased if we terminate an edge
vu and create a new edge vw with length dK ðωðvÞ;ωðwÞÞ ¼ i

K.
Using the Chernoff inequality, it can be shown that this happens
with probability ð1þ oð1ÞÞ∕K provided that an edge is rewired.‡‡
Because the expected number of edges that we rewire at time
step t is

1

m ∑

uv∈EðGtÞ

dKðωðvÞ;ωðuÞÞp ¼ FðtÞp
m

;

the expected change in the number of edges of a given length at a
given time step is

EðEiðtþ 1Þ − EiðtÞjE1ðtÞ;E2ðtÞ;…;EK−1ðtÞÞ

¼ FðtÞp
Km

ð1þ oð1ÞÞ − EiðtÞip
Km

: [1]

It turns out that as we run this process, over time most of the
edges become short in that they are concentrated between pairs
of agents with small attribute distances. In other words, this pro-
cess yields networks that are attribute-close and consistent with
the emergent behavior seen in the Schelling segregation model.
Although it is important to highlight this result, the main focus of
this research is to show how we may predict the process by which
these networks emerge. Before we take a rigorous look at the
convergence process, however, let us consider heuristically why
the end result makes sense.

A heuristic argument. We investigate the limit of the process, that
is, the social network Pðm;r;ω;dÞ, when a stationary distribution
of the Markov chain is obtained. For the moment, let us assume
that the expected change in edge lengths is zero (this will be
proven below). In this case, we have that EðEiðtþ 1Þ − EiðtÞj
E1ðtÞ;E2ðtÞ;…;EK−1ðtÞÞ ¼ 0 for i ∈ f1;2;…;K − 1g. It follows from
Eq. 1 that EiðtÞ ¼

FðtÞ
i . Thus,

m ¼ jEj ¼
∑

K

j¼1

EjðtÞ ¼ FðtÞ
∑

K

j¼1

1

j
;

hence

EiðtÞ ¼
m

i
∑

K
j¼1

1
j

:

Finally, we get that the number of edges of length at least s
K is

E≥sðtÞ ¼
∑

K

i¼s

EiðtÞ ¼ m∑

K
i¼s

1
i

∑

K
j¼1

1
j

: [2]

This summation can be approximated by the integral, yielding

E≥sðtÞ ≈m
logK − log s

logK
¼ m

logðK∕sÞ
logK

: [3]

Indeed, the ratio between the number of edges of length at least ε
(for a given ε > 0) to the total number of edges is well approxi-
mated by logð1∕εÞ

K , which is very close to zero for large values of K .

A closer look at the convergence process. Let us return to the social
process that gives rise to these attribute-close social networks.
It helps to define real functions eiðxÞ to model the behavior
of the scaled random variables 1

mEiðxmÞ, i ∈ f1;2;…;K − 1g.
Presuming that the changes in the function correspond to the
expected changes of the random variable (see Eq. 1), we obtain
the following system of differential equations (DEs):

e0iðxÞ ¼
f ðxÞp
K

− eiðxÞip
K

for i ∈ f1;2;…;K − 1g, where

f ðxÞ ¼ 1 −
∑

K−1

j¼1

ejðxÞ
K − j
K

:

Noting that the total number of edges is jEj (and therefore EK can
be calculated based on all other values), we have K − 1 functions
to discover, and K − 1 equations in the DEs system.

The initial condition to the system depends on the initial
graph. For example, when G is generated at random, then we
expect Eið0Þ ¼ jEj∕K for i ∈ f1;2;…;K − 1g, so we should use
eið0Þ ¼ 1∕K .§§ When G contains short edges only, we should
set e1ð0Þ ¼ 1 and eið0Þ ¼ 0 for 2 ≤ i ≤ K . Similarly, if G contains
long edges only, then the initial conditions are eK ð0Þ ¼ 1 and
eið0Þ ¼ 0 for 1 ≤ i ≤ K − 1.**⌈x⌉ denotes the ceiling of x, that is, the smallest integer not smaller than x.

††These measures complement other formal measures that have been proposed in the
social networks literature; see, for example, refs. 2 and 21.

‡‡More details are provided in SI Text (section 5); note that this claim follows from Eq. S2. §§In fact, aas Eið0Þ ¼ ð1þ oð1ÞÞm∕K for all i ∈ f1;2;…;Kg.
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Before turning to a general case, let us consider carefully
the case for K ¼ 4. We get the following system of differential
equations [recall that e4ðxÞ ¼ 1 − e1ðxÞ − e2ðxÞ − e3ðxÞ so it can
be removed from the consideration]:

e01ðxÞ ¼
p
4

!
1 − 7

4
e1ðxÞ −

1

2
e2ðxÞ −

1

4
e3ðxÞ

"
;

e02ðxÞ ¼
p
4

!
1 −

3

4
e1ðxÞ −

5

2
e2ðxÞ −

1

4
e3ðxÞ

"
;

e03ðxÞ ¼
p
4

!
1 −

3

4
e1ðxÞ −

1

2
e2ðxÞ −

13

4
e3ðxÞ

"
:

The general solution is

e1ðxÞ ¼
12

25
þ C1e−q1x þ C2e−q2x þ C3e−q3x;

e2ðxÞ ¼
6

25
þ 3C1e−q1x þ

C2

2
ð1 −

ffiffiffi
5

p
Þe−q2x þ C3

2
ð1þ

ffiffiffi
5

p
Þe−q3x;

e3ðxÞ ¼
4

25
− 3C1e−q1x þ C2ð2 −

ffiffiffi
5

p
Þe−q2x þ C3ð2þ

ffiffiffi
5

p
Þe−q3x;

where q1 ¼ 5p
8 , q2 ¼

ð5−
ffiffi
5

p
Þp

8 , q3 ¼
ð5þ

ffiffi
5

p
Þp

8 , and the constants Ci’s
depend on the initial values. For instance, for the random graph
as a starting point (eið0Þ ¼ 1∕K , i ∈ f1;2;…;Kg), we get
C1 ¼ − 3

100, C2 ¼ − 2
ffiffi
5

p
þ5

50 , C3 ¼ − 5−2
ffiffi
5

p

50 .
Note first that p plays an important role in the convergence

process, even though it does not (as noted above) influence
the stationary distribution of edge lengths in Pðm;r;ω;dÞ). The
smaller the value of p, the slower the rate of convergence
(although the rate of convergence is always exponential). In
Fig. 1 A and B, we compare convergence rates for large and small
values of p (p ¼ 1 and p ¼ 0.05, respectively) using a random
graph as a starting point. The diagrams track the proportion of
total edges of a given length (vertical axis) over time (horizontal
axis). Because k ¼ 4 in these scenarios, there are four possible
edge lengths, each represented by a curve in the graph. In a ran-
dom graph, we expect a uniform distribution of edge lengths—
that is, roughly 25% of edges will have any given edge length,
meaning that all curves begin at the same point (0.25) on the ver-
tical axis. As the network evolves, the distribution of edge lengths
changes as well and eventually reaches a stationary distribution
where most edges are short (far right side of each graph). Large
values of p (Fig. 1A) converge more quickly than small values of p
(Fig. 1B). Similar behavior may be observed for other scenarios.

Another noteworthy result, also illustrated in Fig. 1, is that the
initial graph does not matter. The stationary distribution depends
only on the number of edges in the initial graph; other structural
parameters (such as network centrality, clustering, or diameter)
do not influence the final distribution of edge lengths. However,
the dynamic behavior of the social process (i.e., the path taken
toward segregation) varies depending on the initial scenario.
Fig. 1 B–D presents three illustrative cases for p ¼ 0.05. As noted
above, Fig. 1B depicts an initial network that is a random graph
[i.e., eið0Þ’s are uniformly distributed]. Fig. 1C depicts an initial
network with high attribute closeness (where all edges are short),
whereas Fig. 1D depicts an initial network with low attribute
closeness (where all edges are long). Note that the path taken
toward convergence differs; however, each respective curve
always converges to the same position on the vertical axis at
the end of the process.

Let us return to the general case (that is, for any K ∈ N). The
system of DEs we consider can be rewritten as

dEðxÞ
dx

¼ −p
K2

ðAEðxÞ − BÞ; [4]

where A ¼ ðaijÞ is a matrix defined as follows: aij ¼ K − j
if i ≠ j and aii ¼ ðK − iÞ þ iK ; otherwise, EðxÞ ¼
ðe1ðxÞ;e2ðxÞ;…;eK−1ðxÞÞT and B ¼ ðK;K;…;KÞT are vectors.

This is a linear, ordinary, first-order system of differential
equations with constant coefficients. These have been well-
studied in the literature. It follows from the previous section that
one particular solution is given by

eiðxÞ ¼
1

i
∑

K
j¼1

1
j

; for i ∈ f1;2;…;K − 1g:

One can solve the characteristic equation to find the eigenvalues
λ1;λ2;…;λK−1 of the matrix A. Then, the general solution is of the
form

eiðxÞ ¼
1

i
∑

K
j¼1

1
j

þ
∑

K−1

j¼1

Ci;j exp
!
−p
K2

λjx
"
; for i ∈ f1;2;…;K − 1g;

where constants Ci;j depend on the initial values to the system
of DEs (that is, the initial graph G). Because the social process
ensures that eiðxÞ ≤ 1, we get that real parts of all eigenvalues
are positive.¶¶ Therefore,

eiðxÞ ¼
1

i
∑

K
j¼1

1
j

þO
!
exp

!
−p
K2

λminx
""

;

for i ∈ f1;2;…;K − 1g;
where λmin ¼ minjjλjj is the smallest absolute value of an
eigenvalue.∥∥

Finally, the DEs method (introduced and developed by
Wormald et al. (22)) can be used to show that our random vari-
ables are well-concentrated around their expectations. Using the
general purpose theorem (Theorem 5.1 in ref. 22), we get the
following result:

Theorem 1. Let p ∈ ð0;1%, K ∈ N, and C > 0. Let G ¼ ðV;EÞ be
any graph on n ¼ jV j vertices distributed uniformly at random on
½−1;1% (r ¼ 1), m ¼ jEj tends to infinity with n. Let eiðxÞ,
i ∈ f1;2;…;K − 1g, be the particular solution to the system of differ-
ential equations 4 with the initial conditions based on the initial

Fig. 1. Four convergence scenarios with k ¼ 4. In the initial network agents
are connected by (A) a random graph (p ¼ 1), (B) a random graph (p ¼ 0.05),
(C) short edges only (p ¼ 0.05), and (D) long edges only (p ¼ 0.05). The
horizontal axis represents time step in the Markov process; the vertical axis
represents the proportion of edges of a given length. Labels on curves
denote the length of the respective edges.

¶¶Alternatively, one should be able to derive this using linear algebra.
∥∥Although it is difficult to find any general lower bound for λmin, exact values may be
obtained computationally. Lower bounds for select values of K are given in SI Text
(section 7).

8608 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1014486108 Henry et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014486108/-/DCSupplemental/pnas.1014486108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014486108/-/DCSupplemental/pnas.1014486108_SI.pdf?targetid=STXT


graph G, and eKðxÞ ¼ 1 −∑K−1
j¼1 ejðxÞ. Let λmin be the smallest

absolute value of an eigenvalue of A.

Then, aas during the social process

EiðtÞ ¼
$$$$

%
vu ∈ EðGtÞ: dK ðωðvÞ;ωðuÞÞ ¼

i
K

&$$$$

¼ mei

!
t
m

"
ð1þ oð1ÞÞ

¼ m
i
∑

K
j¼1

1
j

!
1þO

!
exp

!
−p
K2

λmin
t
m

"""
;

for i ∈ f1;2;…;Kg and 0 ≤ t ≤ Cm.
In particular, for the social graph G' ¼ Pðm;1;ω;dÞ, aas we have

that

Ei ¼
$$$$

%
vu ∈ EðG'Þ: dKðωðvÞ;ωðuÞÞ ¼

i
K

&$$$$

¼ m
i
∑

K
j¼1

1
j

ð1þ oð1ÞÞ;

for i ∈ f1;2;…;Kg.

Although a typical application of Markov chains would reveal
information only about the stationary distribution of edge
lengths, this theorem and the DEs method allows us to predict
what the evolving network will look like at any point during
the process. As noted above, the stationary distribution of edge
lengths is reached after Oðm logmÞ steps. On the other hand, it is
sufficient to study the behavior of the process up to timeCm forC
large enough. The reason is that, at time Cm, aas there are still a
few edges that are not rewired, but this does not significantly af-
fect the total number of edges of a given length because the error
term Oðexpð−pK2 λmin

t
mÞÞ is arbitrarily small for large values of C.

Model Implications
In the model presented here, actors make choices about network-
ing strictly on the basis of attribute similarity with others they
share a direct linkage with; relationships are terminated with
probability proportional to attribute distance, and new partners
are selected uniformly at random when a link is terminated.
Although this is a relatively simple view on network evolution,
it lends itself to a rigorous analytic proof showing that segregation
will always emerge in the absence of additional endogenous or
exogenous drivers of network structure. Of course, the trade-off
for mathematical tractability is a relatively limited view on how
networking decisions are made by real actors in real social net-
works. Thus, it is useful to consider how this model may inform
the empirical study of network segregation, both by illustrating
the model’s behavior when attributes are polarized in the popu-
lation, and through a discussion of how segregation is still likely to
emerge when additional network effects are taken into account.

The Distribution of Attributes and Clustering in Segregated
Networks
A large literature has grown around the identification of commu-
nity structure and clustering within networks, which provides
at least one natural way to think about segregation patterns—in
a clustered network, there exist natural groups of agents with a
high density of interaction within groups, and relatively sparse
interactions across groups. However, attribute closeness does
not necessarily imply clustering within a network. Indeed, if at-
tributes are distributed uniformly (as in the specific case investi-
gated here), then the emergent social networks are lattice-like
structures where any given network actor tends to be surrounded
by very similar partners, but there is no global partitioning of ac-
tors into clear communities. This is because the uniform distribu-
tion has no natural centroids around which network clusters may

form. Of course, assuming a uniform distribution of attributes is
also unrealistic for many empirical applications, especially in the
residential segregation literature where choices are driven by ca-
tegorical variables such as race, or highly nonuniform variables
such as social status (11).

Applications of this model may build upon the specific case
presented here to incorporate multimodal distributions of
attributes where populations may be partitioned into two or more
natural groups based on their traits. This is a relatively minor
change and would not alter the model’s behavior in terms of
the stationary distribution of edge lengths.

Fig. 2 illustrates the model’s behavior if one assumes that
network actors have unidimensional attributes that follow a
bimodal distribution in the population, as will be the case in at
least some potential empirical applications.*** In this illustration,
100 actors are connected in a network with 300 edges (n ¼ 100
and m ¼ 300, thus network density is approximately 0.03). Attri-
butes are represented by the shape and size of network vertices;
actors with attributes less than the population mean are repre-
sented as triangles, whereas actors with attributes greater than
the population mean are represented as circles. Vertex size repre-
sents the distance of the actor’s attribute from the mean attribute.
In the initial condition, actors are connected with one another in
a random graph. As the network evolves, eventually the long
edges connecting actors with very dissimilar attributes become
short as the distribution of edge lengths reaches the stationary
distribution. In the final condition (depicted in Fig. 2, Far Right),
most edges are short, connecting actors with small attribute
distances.

Integrating Other Network Effects
Although this model assumes dyadic independence in actors’
networking choices, it is well known in the social networks litera-
ture that dyadic decisions (i.e., terminate or form a relationship
with a particular partner) are often correlated across dyads. Of
particular interest are “closure” effects where actors have a bias
toward forming relationships with others they are already linked
to through one or more indirect relationships. In the statistical
modeling of networks we are now able to account for such com-
plex dependencies using tools such as exponential random graph
models (23) or the stochastic actor-oriented models proposed by
Snijders et al. (24). Integrating more realistic views of networking
behavior into mathematical models such as the one presented
here is an important area for future research. On the other hand,
our model also presents a conservative view on the emergence
of segregation, which is likely to be accelerated if one integrates
effects such as transitive or cyclic closure.

Transitive closure refers to actors’ tendency to choose relation-
ships in a way that emulates the networking behavior of others
they share a direct linkage with. Thus, new friends may be chosen
because they are already “friends of friends,” and this effect may
be even stronger when two disconnected actors share multiple
friends. These tendencies are reflected in the existence of tran-
sitive triads (triangles), or higher-order transitive configurations
such as k triangles that link a pair of actors through k indirect
two-step paths. Cyclic closure refers to actors’ tendency to form
relationships in a way that creates cycles (paths originating and
ending at the same vertex), which is thought to reflect a bias
against hierarchical structures or the spread of positive reputa-
tions throughout the network.

Transitive closure and cyclic closure would both accelerate
the emergence of segregation in the model outlined here. This
is because both closure effects would result in the formation

***In this illustration, half of the vertices have attributes distributed uniformly at random
in the interval ½0;1∕4%, and the other half have attributes distributed uniformly at
random in the interval ½3∕4;1%. Note also that the torus metric is not used to calculate
edge lengths. Thus, 0 and 1 represent “extreme” attribute values.
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of new edges with lengths that are correlated with existing edges
—for example, if actors A and B share short edges with five com-
mon friends (i.e., both A and B are similar to their common
friends), then the transitive edge between A and B will also be
short because these two actors are similar to each other. Indeed,
because the distribution of edge lengths in our model tends to
include more short edges over time, then new edges formed
through transitivity or cyclic closure will also tend to be short
edges as well. The result would be a stationary distribution with
even fewer long edges that connect very dissimilar actors, and
even more pronounced patterns of network segregation.

Conclusion
This model provides a network analogue to the Schelling segre-
gation model: Actors embedded within a social network may not
strictly prefer forming homogeneous networks, but such struc-
tures can emerge if actors are subject to a small bias against
interaction with partners who are dissimilar from themselves.
Furthermore, the model allows us to predict the process by which
these segregated social networks emerge (see Theorem 1). We
provide a mathematical operationalization of this model and
prove the results asymptotically.

Like all models, this model does not capture the full complex-
ity of social interaction and network dynamics. However, this
model has useful theoretical and methodological implications

for research on social networks. In terms of theoretical contribu-
tions, this research widens our understanding of the candidate
processes that may give rise to segregated networks. Our applica-
tion of the Schelling model underscores that homophily processes
(or a deliberate bias for forming attribute-close relationships) are
not a necessary condition for the emergence of network segrega-
tion. Given sufficient iterations, a very slight bias toward cutting
ties with dissimilar partners will eventually lead to polarized
networks given any initial network structure. Because in many
real-world networks we may expect to see realignments occurring
frequently (e.g., as a result of daily conversations), segregation
may emerge quite quickly even for very slight aversion tendencies.

On the methodological side, our model contributes to the en-
terprise of moving from descriptions of observed social networks
to models of the evolution of these complex, evolving structures
(25). Of particular interest are network models that account for
the interdependencies between relationship choices and actor
attributes (conceptualized as positions within, for example, a geo-
graphic or cultural space) (26). We also demonstrate the utility
of the DEs method (22) in proving the convergence processes,
which yields a more detailed and nuanced view of network
evolution (27, 28).

Network segregation has been observed empirically across
many types of social and policy networks and has important
implications for actors’ collective ability to address shared pro-
blems. This research illustrates the importance of mild individual
preferences in driving network segregation, which in turn suggests
that institutional designs to overcome network segregation must
take seriously the important role that individual preferences play
in shaping networks. Thus, future work will need to focus on
empirical tests of models such as the one presented here, with a
particular emphasis on the measurement of core theoretical vari-
ables such as actors’ varying levels of aversion bias, as well as
the dimensionality and distribution of attributes that are thought
to drive individual networking behavior.
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Fig. 2. The emergence of network segregation. (Left) The initial network,
which is a random graph. (Center) The network after 3m time steps, when
approximately 95% of edges have been rewired at least once. (Right) The
network when the stationary distribution of the Markov chain has been
reached.
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