
Hill’s scaling is only approximate. Experimental simulations revealed that, for fixed
integration times, the main effect of changing g was to influence the final average values of
the semimajor axes of captured moons with respect to the planet; in contrast, the final
inclination distributions were quite robust to the precise value of this parameter. Thus we
chose g heuristically so that the captured moons ended up roughly in the observed
semimajor axis ranges; we set g ¼ 7 £ 1025 in units scaled for Jupiter, and g ¼ 2 £ 1024

in units scaled for Saturn.
Integrations were performed for both Jupiter and Saturn for a maximum of 10,000 years

for each test particle. Integrations were stopped, as explained in the text, if test particles
crossed the orbit of Callisto (at Jupiter) or Titan (at Saturn), or if they left the Hill sphere.
The simulations reported in Fig. 4 were stopped when 50 moons had been captured, but
computations in which several thousand moons were captured produce similar results. We
have also performed parallel simulations in the elliptic restricted three-body problem for
Jupiter and Saturn, and also used different forms of dissipation—for example, nebular gas-
drag, Fdrag ¼2gjvjv (ref. 11). All of these variations produced comparable results.

Kapitza averaging
The relative stability of prograde and retrograde orbits in 2D can be understood
qualitatively by Taylor expansion of the solar part of the CRTBP hamiltonian, followed by
Kapitza averaging in plane polar coordinates over the angle J conjugate to h z. This is
similar to the analogous problem of ionization (escape) of an electron from a hydrogen
atom in a rotating field29,30. As in the atomic problem, this strategy produces an effective
potential whose saddle point is higher for one sense of angular momentum: in this case,
the retrograde orbits, which are therefore more stable than the prograde orbits. Further,
using methods similar to those in ref. 23, it is possible to show that h z is the lowest-order
term in an approximate ‘third-integral’ valid inside the Hill sphere.
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Insights into the dynamics of a complex system are often gained
by focusing on large fluctuations. For the financial system, huge
databases now exist that facilitate the analysis of large fluctua-
tions and the characterization of their statistical behaviour1,2.
Power laws appear to describe histograms of relevant financial
fluctuations, such as fluctuations in stock price, trading volume
and the number of trades3–10. Surprisingly, the exponents that
characterize these power laws are similar for different types and
sizes of markets, for different market trends and even for
different countries—suggesting that a generic theoretical basis
may underlie these phenomena. Here we propose a model, based
on a plausible set of assumptions, which provides an explanation
for these empirical power laws. Our model is based on the
hypothesis that large movements in stock market activity arise
from the trades of large participants. Starting from an empirical
characterization of the size distribution of those large market
participants (mutual funds), we show that the power laws
observed in financial data arise when the trading behaviour is
performed in an optimal way. Our model additionally explains
certain striking empirical regularities that describe the relation-
ship between large fluctuations in prices, trading volume and the
number of trades.

Define pt as the price of a given stock and the stock price ‘return’
r t as the change of the logarithm of stock price in a given time
interval Dt; rt ; ln pt 2 ln pt2Dt :The probability that a return has an
absolute value larger than x is found empirically to be (see Fig. 1)4,8:

Pðjrt j. xÞ, x2zr ð1Þ

with z r < 3. Empirical studies also show that the distribution of
trading volume V t obeys a similar power law9:

PðVt . xÞ, x2zV ð2Þ

with zV < 1:5; while the number of trades Nt obeys10:

PðNt . xÞ, x2zN ð3Þ

with zN < 3.4.
The ‘inverse cubic law’ of equation (1) is rather ‘universal’,

holding over as many as 80 standard deviations for some stock
markets, with Dt ranging from one minute to one month, across
different sizes of stocks, different time periods, and also for different
stock market indices4,8. Moreover, the most extreme events—includ-
ing the 1929 and 1987 market crashes—conform to equation (1),
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demonstrating that crashes do not appear to be outliers of the
distribution. We test the universality of equations (2) and (3) by
analysing the 35 million transactions of the 30 largest stocks on the
Paris Bourse over the 5-yr period 1994–1999. Our analysis shows
that the power laws (2) and (3) obtained for US stocks also hold for
a distinctly different market, consistent with the possibility that
equations (2) and (3) are as universal as equation (1).

Here, we develop a model that demonstrates how trading by large
market participants explains the above power laws. We begin by
noting that large market participants have large price impacts11–14.
To see why this is the case, observe that a typical stock has a turnover
(fraction of shares exchanged) of approximately 50% a year, which
implies a daily turnover of approximately 50%/250 ¼ 0.2%—that is,
on average 0.2% of outstanding shares change hands each day. The
30th-largest mutual fund owns about 0.1% of such a stock (Center
for Research in Security Prices; http//gsbwww.uchicago.edu/
research/crsp/). If the manager of such a fund sells its holdings of
this stock, the sale will represent half of the daily turnover, and so
will affect both the price and the total volume15–17. Such a theory
where large individual participants move the market is consistent
with the evidence that stock market movements are difficult to
explain with changes in fundamental values18.

Accordingly, we first perform an empirical analysis of the distri-
bution of the largest market participants—mutual funds. We find,
for each year of the period 1961–1999, that for the top 10% of
distribution of the mutual funds, the market value of the managed
assets S obeys the power law

PðS . xÞ, x2zS ð4Þ

with zS ¼ 1:05^ 0:08: Exponents of approximately one have also
been found for the cumulative distributions city size19 and firm
sizes20,21, and the origins of this ‘Zipf ’ distribution are becoming
better understood22. On the basis of the assumption that managers
of large funds trade on their beliefs about the future direction of the
market, and that they adjust their speed of trading to avoid moving
the market too much, we will see that their trading activity leads to
z r ¼ 3 and zV ¼ 1.5.

In order to proceed, we first present empirical evidence for the
shape of the price impact, then propose an explanation for this
shape, and finally show how the resulting trading behaviour gen-
erates power laws (1)–(3).

First, the price impact Dp of a trade of size V has been established
to have an increasing and concave functional form that is similar for

a large number of stocks23,24. We hypothesize that for large volumes
V its functional form is:

r¼ Dp . kV1=2 ð5Þ

for some constant k. So we investigate empirically the relation
(Fig. 2):

E½r2 j V�, V ð6Þ

which is supported by standard statistical tests. Because relation (5)
implies Pðr . xÞ, PðkV1=2 . xÞ ¼ PðV . x2=k2Þ, x22zV ; it fol-
lows that:

zr ¼ 2zV ð7Þ

Thus, the power law of returns, equation (1), follows from the
power law of volumes, equation (2), and the square-root form-price
impact, equation (5). We next develop a framework for explaining
equations (2) and (5).

We consider the behaviour of one stock whose original price is,
say, one. The mutual fund manager who wishes to buy V shares
offers a price increment Dp, so that the new price will become
1 þ Dp. Each seller i of size s i who is offered a price increase Dp
supplies the fund manager with q i shares. Elementary consider-
ations lead us to hypothesize qi < siDp (see Supplementary Infor-
mation). The number of sellers available after the fund manager has
waited a time T is proportional to T. Thus after a time T, the fund
manager can, on average, buy a quantity of shares equal to kTkslDp
for some proportionality constant k. The search process stops (and
the trades are executed simultaneously) when the desired quantity V
is reached—that is, when kTkslDp¼ V ; so the time needed to find
the shares is:

T ¼
V

kslkDp
,

V

Dp
ð8Þ

Hence there is a trade-off between cost Dp and the time to execution
T; if the fund manager desires to realize the trade in a short amount
of time T, the manager must pay a large price impact Dp , V=T:

Let us consider the fund manager’s decision problem. Managers
trade on the assumption that a given stock is mispriced by an
amount M, defined as the difference between the fair value of the
stock and the traded price14,25,26. The manager wants to exploit this
mispricing quickly, as he expects that the mispricing will be
progressively corrected, that is, expects that the price will increase

Figure 1 Cumulative distributions of the normalized 15-min absolute returns of the 1,000

largest companies in the ‘Trades and Quotes’ database for the 2-yr period 1994–1995.

We define the normalized return as r it ¼ ð~rit 2 ~ri Þ=ji ; where r̃i and ji are the mean

and the standard deviation of the unnormalized return r̃it of stock i. We obtain P ðjr t j.

x Þ, x2z r with z r ¼ 3:1^ 0:1:

Figure 2 Conditional expectation of the squared return r 2 given the volume V. Here, the

return is normalized as in Fig.1, and the volume is normalized as V it ¼ ~Vit= ~Vi ; where Ṽi

is the average of the unnormalized volumes Ṽit of stock i. The bands represent 95%

confidence intervals. The theory predicts a relation E ½r 2 jV � ¼ aV þ b; the ‘square root’

price impact of volume. Statistical tests reported in the Supplementary Information

confirm this relation.
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at a rate m. Hence, after a delay of T, the remaining mispricing is only
M 2 mT. The total profit per share B/V is the realized excess return
M 2 mT minus the price concession Dp, which gives:

B¼ VðM 2 mT 2 DpÞ ð9Þ

The fund manager’s goal is thus to maximize B, the perceived
dollar benefit from trading. The optimal price impact Dp maximizes
B subject to equation (8), T ¼ aV=Dp; that is, Dp maximizes
VðM 2 maV=Dp 2 DpÞ; which gives equation (5).

The time to execution is T , V=Dp , V1=2; and the number of
‘chunks’ in which the block is divided is N , T , V1=2: These
effects have been qualitatively documented in refs 11, 12, 23. The last
relation gives:

zN ¼ 2zV ð10Þ

which in turn predicts zN ¼ 3, a value that is approximately
consistent with the empirical value of 3.4 (ref. 10).

Thus far, we have a theoretical framework for understanding the
square-root price impact of trades, equation (5), which with
equation (2) explains the cubic law of returns, equation (1). We
now focus on understanding equation (2).

We show that returns and volumes are power-law distributed
with tail exponents:

zr ¼ 3 and zV ¼ 3=2 ð11Þ

provided the following four conditions hold: (1) the power law
exponent of mutual fund sizes is zS ¼ 1 (Zipf ’s law); (2) the price
impact follows the square root law, equation (5); (3) funds trade in
typical volumes V < Sd with d . 0; and (4) funds adjust trading
frequency and/or volume so as to pay transactions costs in such a
way that if we define c(S) as:

cðSÞ;
Annual amount lost by the fund in price impact

Value S of the assets under management
ð12Þ

then c(S) is independent of S for large S.
The empirical validity of conditions (1) and (2) was shown above,

while condition (3) is a weak, largely technical, assumption dis-
cussed in the Supplementary Information. Condition (4) means
that funds in the upper tail of the distribution pay roughly similar
annual price-impact costs; that is, c(S) reaches an asymptote for
large sizes. We interpret this as an evolutionary ‘survival constraint’.
Funds that would have a very large c(S) would have small returns
and would be eliminated from the market. The average return r(S)
of funds of size S is independent of S (ref. 27). Because both small
and large funds have similarly low ability to outperform the market,
c(S) is also independent of S.

For each block trade V (S) a fund of size S incurs a price impact
proportional to VDp which, from condition (2), is V 3/2. If F (S) is
the fund’s annual frequency of trading, then the annual loss in
transactions costs is F(S)·V 3/2, so:

cðSÞ ¼ FðSÞ·½VðSÞ�3=2=S ð13Þ

Condition (4) implies that either V(S) or F(S) will adjust in order to
satisfy:

FðSÞ, S·½VðSÞ�23=2 ð14Þ

Condition (1) implies that the probability density function for
mutual funds of size S is rðSÞ, S22: Because condition (3) states
that V , Sd . x; and because they trade with frequency given by F
(S) in equation (14):

PðV . xÞ,
ð

Sd.x

FðSÞrðSÞdS

,
ð

S.x1=d

S123d=2S22 dS , x23=2

ð15Þ

which leads to a power-law distribution of volumes with exponent

Figure 3 Conditional expectations for E (r j V
0
), E (V

0
j r ), E (N j V

0
), E (N jN

0
), and

E (N
0
/N j V

0
). We form, for each interval Dt ¼ 15 min, the quantities (1) r, the return; (2)

V B (or V S), the number of shares exchanged in a buyer- (or seller-) initiated trade28; (3) N B

(or N S), the number of buyer- (or seller-) initiated trades, V
0 ; V B 2 V S; and N

0 ;
NB 2 NS: The left panels show the empirical values for the 116 most frequently

traded stocks in the ‘Trades and Quotes’ database for the 2-yr period 1994–1995.

Variables are normalized to unit variance after setting the mean to zero; for variables such

as volume for which the variance does not exist, we have normalized by the first moment

instead. The right panels show the model’s predictions, which agree well with the

empirical data.
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zV ¼ 3/2. Moreover, from equation (7), it follows that z r ¼ 3. In
addition, the above result does not depend on details of the trading
strategy, such as the specific value of d. (The Supplementary
Information indicates a number of ways in which one can weaken
the assumptions of independent and identical distributions made in
this Letter.)

Although our model is mainly motivated by the regularities of
returns, volume and number of trades taken separately, we also
make predictions for the joint behaviour of those quantities. In a
given time interval Dt, there will be J ‘rounds’ where a fund manager
creates one or more trades. Each round j creates a volume V j, a
return ^V1=2

j and a number of trades V1=2
j : Then the total

volume, number of trades, and returns, will be V ;
PJ

j¼1Vj; N ;PJ
j¼1V

1=2
j and r ;

PJ
j¼11jV

1=2
j ; with 1j ¼^1: As a measure of

trade imbalance, we use N 0 , the number of buyer-initiated trades
minus the number of seller-initiated trades28, and V 0, the number of
shares exchanged in a buyer-initiated trade minus the number of
shares exchanged in seller-initiated trades.

We next focus on equal-time relationships between V, N, and V 0

(ref. 24), using data from the ‘Trades and Quotes’ data base (New
York Stock Exchange; http://www.nyse.com). These equal-time
relationships are found to be universal across the large set of
stocks analysed in ref. 24. Figure 3a shows that the prices impact
function Eðr jV

0
Þ produced by the model matches data. We observe

that J .. 1 (aggregation over several trades) flattens the shape of the
price impact versus V. We study a variant of Fig. 3a in Fig. 3b, which
plots EðV 0

jrÞ: Surprisingly, the shape is now roughly linear, a
feature predicted by the model. The cause of the linearity is,
again, the aggregation over several trades. Figure 3c, E(NjV 0 ),
tests the model prediction that periods with large volume imbalance
V 0 are periods where a large number N of trades are made. One sees
that the data display a relationship that is similar to that predicted by
the model. Figures 3a–c support the view that large returns and large
numbers of trades go together with large volume imbalances V

0
.

It is an important feature of the model that large trades beget
more trades. Indeed, in our model:

jN
0
j, N ð16Þ

for large N and is dominated by one large fund manager who desires
to trade a volume V j , and creates a number of orders V1=2

j ; so that
Nj , N, jN 0

jj and jN 0
j have the same order of magnitude, V1=2

j :
Relation (16) means that most trades have the same sign, that is,
move the price in the same direction—with the sign of the trade of
the large fund manager. Equation (16) is indeed consistent with the
empirical data shown in Fig. 3d. This contrasts with a simple
alternative model where each desire to trade would create only
one trade, as in a competitive market. In this alternative model we
would have N 0

¼
PN

i¼11i;where e i ¼ ^1, leading to jN 0
j, N1=2 in

the tail events or E½N jN
0
�, N

02 in contrast to the data in Fig. 3d.
Figure 3e supports the view that in periods of high volume
imbalance V

0
, most trades change the price in the same direction.

Indeed, the data and the model exhibit a similar sharp transition of
N
0
/N as V

0
changes sign. A
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Defects and their associated long-range strain fields are of
considerable importance in many areas of materials science1,2.
For example, a major challenge facing the semiconductor indus-
try is to understand the influence of defects on device operation, a
task made difficult by the fact that their interactions with charge
carriers can occur far from defect cores, where the influence of
the defect is subtle and difficult to quantify3,4. The accurate
measurement of strain around defects would therefore allow
more detailed understanding of how strain fields affect small
structures—in particular their electronic, mechanical and chemi-
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