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Recent observations indicate that the shape of a fluid interface undergoes repeated instabilities
arbitrarily close to breakoff. \Ve interpret this behavior as the result of successive instabilities of the
similarily Solulion of Eggers [phys. Rev. Len. 71. 3458 (1993)J. We show lhal the similarilY solulion
is unstable to finite amplitude perturbations. with critical amplitude going 10 zero at the singularity.
Thermal fluctuations in the fluid can trigger the instabilities.
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( I )

The scienrific srudy of droplet breakup has a dis­
tinguished history, beginning with the work of Lord
Rayleigh in the lale nineteenrh century [II. Recently
there has been a rebirth of inlerest, largely motivated by
questions aboul the singularity mechanism [2J. It was
proposed that Ihe interfacial shape near breakoff is self­
similar [3-8] and is essentially independent of experi­
mental details. The physical reason for this is that near
breakoff Ihe droplel radius becomes much smaller than
any other length scale (given by initial conditions or ex­
lernal forcing), so Ihal Ihe shape of Ihe interface becomes
independent of these scales. Self-similarity has been ob­
served in models for droplet breakup in a Hele-Shaw cell
[4-6J and the rupture of soap films [7].

For Ihree-dimensional ~uid breakup, Eggers and
Dupont [8,9] found a similarity Solulion describing both
Ihe Ihickness h(z - :0) and the velocity v(: - 20) of an
axisymmetric ~uid interface near a breakoff al vertical
coordinme zoo The solution has the form

hE(:.I) = VH(~,~,,~~),

( _ ) _ (11 '-1/2 (.:: - '::0) (2)
VE .. I - -;:;' U e,r"!' .

Here. e, ('" .,,'/yp) is the viscous length scale, I,

('" ."J/y'p) is the viscous lime scale. and "',p. and y
are. respectively, the ~uid viscosily, density. and surface
tension. (' == (" - 1/1 11 is the dimensionless time to
breakoff. Hand U contain no free parameters. The
minimum thickness of the interface "min follows the
universal law "min = O.03fl'j/'.

However. in a set of experiments and computer simu­
lalions [IOJ, we showed Ihat the singularily of viscous
droplets falling from a faucet differs from Ihe above scal­
ing. Examples of interfacial shapes observed experimen­
tally are shown in Fig. I. Figure 1(a) shows a drop of
an 85% glycerol in water mixture. Figure I(b) shows a
close-up near the breaking point. in which long necks
are attached to Ihinner necks: at slighlly higher viscos-

ity [Fig. I(c)] regions of varicosity (called "blobs") ap­
pear. Numerical simulations of hydrodynamic equations
with a weak noise source reproduce these features of the
experiments and also show Ihat necks and blobs fonn re­
peatedly (on smaller and smaller scales) as the interface
breaks [10]. These instability cascades are only observed
for ~uids with viscosity greater than about I P [11).

The purpose of this Letter is to present the instability
mechanism and to compute the amounl of noise necessary
to produce necks and blobs. Our argument stems from the
numerical observation (Fig. 2) Ihat, immediately before
a new neck fom1s, the thinnest section of the interface
is well approximated by the similarity solution. The
nonsteady singularity results from repeated instabilities of
the similarity solution.

A static cylindrical inlerface [I) is unstable to modu­
lations with wavelength larger than its circumference.
Although near breakup the interface is neither cylin­
drical or static (e.g., the ~uid velocity diverges), remnants
of this Rayleigh instability still exist: On scales much
smaller than the characteristic scale of the similarity solu­
tion e,I"/', the interface is approximarely a cylinder with
circumference of order f l1 l'. Perturbations with wave­
length A satisfying e,r' « A « e,,"/2 obey Rayleigh's
stability criterion and will grow. Remarkably, the time
scale for a Rayleigh instability on a cylinder of thickness
hm;, [12] is 6h m;",/e, = " - '/6, so that appreciable
growth can occur in the short lime before breakoff.

These modes are COli veered and slre/ciled as they grow;
a generic perturbation moves away from the singular­
ity, diminishing its effect. However, if a perturbation
originates at a stagnation point. it remains near the sin­
gularity and can change the breakoff [13). Below, we
show that perturbations of the inrerface with amplitude
larger than Ac = IO-.u t,1.5"min. a time distance (, from the
singularily, produce observable changes in the breakoff.
This critical amplirude goes to zero aI the singularity, so
Ihat even thennal ~ucruations provoke instabililies. We
find a viscosity dependence which is consistenl with the
experiments.
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FIG. I. (a) A drop of an 85% glycerol water mixture (11 = I P) falling from a 2 em diameter nozzle (10]. (b) A close-up ncar
breakoff where long necks arc attached (0 thinner necks. (e) Blobs develop ncar the breaking painl for a slightly higher viscosity
fluid (87% mixture T} ~ 1.4 Pl.

where. "" - In (I').
The local growth rate is computed by taking both g

and II' to be proportional to eS , where S(x.?, •. f) ""
f3(?, f). + ik(.)x with x "" O£ and f «1. Plugging
this ansatl into Eqs. (5) and (6) and solving for S system­
atically in powers of f gives to leading order [15]

Im(f3) = -[ (V + ~)k J~. (7)
,V, I , ' (H,)-Re(f3) =1 + - + -[1 - I (k/f)-H] - 3 - .

2 6H H
(8)

II' ( ') V,gi- + U + .::... H' ... + II'U· - 31\'{" - 6---2 2 ~ ~ -~ Ii

Hi"', H,V, g, H,
-6--- +6--g - - +2-g

H H' H' H3

-I'g,,, = I'H,,,. (6)

Our analysis uses the slender body equations [9,14] for
lhe interfacial thickness h(z, I) and the fluid velocity v(z, I).
nondimensionalized using e. and I.:

a,h' ~ -(h'v)" (3)

3, . (I )a,v + vv, = h,(h-v,), - 0, h - h". (4)

These equations were derived from the Navier-Stokes
equations for long-wavelength. axisymmetric distur­
bances.

We first find the local growth rate for perturbations
on the similarity solution whose wavelength A satisfies
e.I' « A «e.I"I'. Stability analysis is carried Oul in
the rescaled frame of the similarity solution by taking h =

h£ + e.I'g«,t') and v ~ v£ + f'1,u l/'II'(?,I'), where,
? "" z - zo/e.I"I' and where g and II' are small pertur­
bations of the similarily solulion. To linear order.

( ?) HII', V,
aTg-g + V + "2 g, + 2 + H,1V + 2'g = O.

(5)

aT'" +

k,k = -V,
2

(9)
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FIG. 2. Comparison between the shape of the third neck in
the simulation of [10] and the similarity solution (8).

(10)A(?) _ . (r' d? )
A(?o) - exp J" l}, Re(f3) .

Equalion (9) for k(.) eliminates secular lerms and has
the simple physical interpretation lhat the wave number
of a perturbation is slrelched by lhe interfacial velocil)'
Vi = -o,lm(f3) = V + 02 as it moves.

The local growth rate implies that if A(?o) is lhe ampli­
lude of a perturbalion at to, then approximating :T In(A) =
Ui-h In(A) = Re(f3) [16] gives2o-2-.
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set in depends on the fluid, because the interface must be
approximated by the similarity solution, requiring I' « I.
Thus when studying the interfacial shape at a fixed radius,
instabilities occur when e. is much larger than the radius.
This agrees with the experimental viscosity dependence
[IOJ. The characteristic size of the structures forming at
a given time before breakoff is given by the characteristic
length scale of the similarity solution, also in agreement
with our observations.

Without an external noise source, simulations do not
show repeated instabilities. However, given that Eqs. (3)
and (4) only approximale the full Navier-Stokes equations,
external noise may be unnecessary. For experiments, this
is irrelevant, because there are many unavoidable types of
external noise. The most ubiquitous are thermal fluctua­
tions. which produce, for example, capillary waves on the
interface. These fluctuations have a significant effect when
their amplitude exceeds the threshold amplitude given
by Eq. (II). The result shows [17] that thermal capil­
lary waves produce instabilities whenever the droplet ra­
dius goes below the threshold

( )

2/5

h,,,,,, - ep' ~:' (12)

where er = "jkBT /oy. Using the parameters appropriate
for the experiments shown in Fig. I gives hthres -- I JLrn
[181. This seems too small to explain Fig. I; other sources
of noise must affect the experiments.

Finally, the effects of noise are not relegated to the
vicinity of the singularity but can affect the gross shape as

FIG. 3. (a) The solid line is the first time, where a bump of
size 10-1) is placed at the stagnation point of the similarity
solution. The dotted, dashed. and dot-dashed lines represent
three subsequent times. (b) A bump of size 10-10 is placed on
the similarity solution farther from the stagnation point.

(I I)Ac = 0.03a 1"'.

where the constants p = 1.49 and a 10-4
.7 are deter­

mined using the numerical values orthe similarity solution
[8J. Note that (II) is written in rescaled IIl1i/s.

We have compared numerical solutions of the linearized
Eqs. (5) and (6) to Eq. (10), with excellent agreement
[17J. Moreover, simulations of Eqs. (3) and (4) verify
our basic predictions. Figure 3(a) shows a simulation
(initially I' ~ 10-') in which a perturbation with size
10- 13 (= 10-8hmin ) and wavelength of order hmin was
placed on the interface very close to C'. The perturbation
grows very rapidly and changes both the spatial and
temporal locations of the singularity. forming a "neck."
The solution near the new breaking point approaches
a similarity solution. Figure 3(b) shows a simulation
(initially I' ~ 0.3) in which a much larger bump (size
10- 10 = 1O-5hmin ) with wavelength of order hmm begins
farther from C. Here, the growth is not sufficiel1l to
change the location of the rupture. but does form a blob.
By repeating such simulations for perturbations of different
amplitudes, we estimate numerically the critical amplitUde
A,.. For I' ~ 0.3, 0.03, and 10-4 . the numerical upper
bounds for the critical amplitudes are lO- s.5 . 10-69 and
10- 10• respectively. in agreement with (II).

Since the analysis is nondimensional. instabilities occur
independently of fluid parameters (as long as sufficient
noise is present). However. the scale at which insti1bilities

where ((7) solves fr- = V" Maximal growth occurs
for perturbations originating near the point C. where
U; = U(C) + C /2 ~ O. Perturbations starting near C
move slowly and thus have more time to grow. Remark·
ably. H(C) differs by only a fraction of a percent from
the absolute minimum of H. so the local growth Tille near
C is nearly the maximal growth rate.

A perturbation originating near C undergoes rapid
growth and stretching, continuing until it reaches
(- = -10 (if it starts on the left of 77") or (~ = -0.5 (if
it starts on the right). Beyond these points there is not
appreciable growth in the laboratory frame. Analysis of
the local growth rate shows that perturbations originating
for ( > C' are damped [171. Depending on their initial
amplitude. perturbations starting with C< C become
either (I) a blob, which distorts the shape of the interface,
or (2) a lIeck. which also changes the spatial and temporal
location of the singularity. In either case, numerical
simulations indicate that the shape of the interface relaxes
10 a similarity solution. Instabilities in the similarity
solution can be generarcd indefinitely. leading to the rough
singularity of [I OJ.

The largest growth occurs when a perturbation with
wavelength of order Izmin (1'1/2 in rescaled units) originates
at C. Using (10) we find that A(C-)/A(Co) - /'-p where
p depends on local derivatives of the similarity solution
evaluated at (". In order for A((_) - 0.03 (the minimum
neck thickness). A((o) must be larger than the critical
amplitude
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well. In Fig. 4 we show pictures of Ihe shape of a higher
viscosity drop, demonstrating Ihat both the number and
location of the blobs vary when the experiment is repeated.
A theoretical understanding of the noise sensitivity at such
an early stage is currently lacking.

In conclusion, we have presented the mechanism for
the instability cascades observed in experiments and simu­
lations [10]. Even though velocity gradients diverge at
breakoff, there is still sufficient time for instabilities to
develop and change the location of the breaking point.
Thennal fluctuations, whose relative size goes to zero al

breakoff, can trigger instabilities. Since the theory only de­
pends on Eggers' [8] universal similarity solution and thc
presence of thermal noise, instabilities will form during the
breakup of any three-dimensional viscous fluid in vacuum.
in any experimental situation. Many issues are left open:
for example, what are the implicalions of the repeatcd
instabilities for the satellite drop distribution after breakup?
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FIG. 4. A drop of 92% glycerol waler mixture ('7 ~ 2.8 P)
falling from a 2 mm diameter nozzle. Both the positions and
the number of blobs vary between the two photographs.




