
Physica A 388 (2009) 2561–2570

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

English and Chinese languages as weighted complex networks
Long Sheng, Chunguang Li ∗
Centre for Nonlinear and Complex Systems, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054,
People’s Republic of China

a r t i c l e i n f o

Article history:
Received 12 December 2008
Received in revised form 23 February 2009
Available online 12 March 2009

PACS:
89.75.Hc
89.75.Fb

Keywords:
Weighted complex networks
Written human language
Zipf’s law
Power–law distribution

a b s t r a c t

In this paper, we analyze statistical properties of English and Chinese written human
language within the framework of weighted complex networks. The two language
networks are based on an English novel and a Chinese biography, respectively, and both of
the networks are constructed in the same way. By comparing the intensity and density of
connections between the two networks, we find that high weight connections in Chinese
language networks prevail more than those in English language networks. Furthermore,
some of the topological and weighted quantities are compared. The results display some
differences in the structural organizations between the two language networks. These
observations indicate that the two languages may have different linguistic mechanisms
and different combinatorial natures.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the past decade, complex network science has received a lot of interest [1–5] since the seminal works of Watts and
Strogatz [6] aswell as Barabási andAlbert [7]. A lot of realworld systems have been examined from the viewpoint of complex
networks— for example, the Internet andWWW, brain networks, protein-protein interaction networks, disease transmitted
networks, and social interactions. These empirical studies establish that the complex network is a powerful tool in the
analysis of complex systems by providing useful representations for system elements and their interactions.
The written human language is one of the most important examples of complex systems in nature. Words are the simple

elements that combine to form complex structures of this system. If we consider eachword as a vertex and their interactions
as links between them, then thewritten human language can bemodeled by complex networks.We are able to gathermuch
information about the construction of such a language network: we can know the sequence in whichwords are linked into a
text and we can explore the linguistic rule under which a literature is composed. Moreover, we can analyze similarities and
differences about syntax between different languages. Recently, many important properties about language networks have
been reported [8–15], such as Zipf’s law properties, power law properties, small world properties and scale free properties.
But they were all restricted to unweighted networks and did not expand to weighted networks.
Networks are specified not only by their topology but also by the dynamics of information or traffic flow taking place on

their structures. In particular, the heterogeneity in the intensity of connections may be very important in the understanding
of many network systems. Recently, the intensity of connections has been taken into account inmany real network systems.
It is found that most of them display the heterogeneous phenomenon of their connections. Examples are the existence of
strong andweak ties between individuals in social networks [16–19], the diversity of the predator–prey interactions in food
webs [20–22], different capabilities of transmitting electric signals in neural networks [18,23,24], unequal traffic on the
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Table 1
Some parameters of the networks. 〈k〉, 〈w〉 and 〈s〉mean the average degree over all vertices, average weight over all edges, and average strength over all
vertices respectively.

ELN CLN

Text length 122142 569708
Num. of vertices 8811 3294
Num. of edges 51338 104023
〈k〉 5.8 31.6
〈w〉 2.38 5.48
〈s〉 13.86 172.95

Internet [25], and the passengers in airline networks [26,27]. These systems can be better described in terms of weighted
networks, in which each connection carries a numerical value measuring the strength of the connection. The link strength
in a syntactic network may also contain important information about the network structures, so there is a need for research
into language networks that goes beyond the purely topological notion.
Motivated by these observations, we perform in this paper the statistical analysis of two weighted networks, which are

based on an English novel and a Chinese biography, respectively. Working with the comparison results of the two syntactic
networks’ properties,we try to find some similarities or differences of organizationmechanismbetween English andChinese
written language.
The rest of this paper is organized as follows. In Section 2 we introduce the construction of the two language networks

which are based on two pieces of literature written in English and Chinese, respectively. The structure analysis and results
are presented in Section 3. Section 4 is our conclusions and discussions.

2. Construction of language networks

English is the most widely spoken language in the world, while the Chinese language has the largest number of speakers
in the world. We construct written language networks based on a novel of English and a biography of Chinese respectively.
We consider George Orwell’s 1984 [28] as our English language network (ELN). Masucci and Rodgers [10] have studied the
topology of this novel by constructing an unweighted network, and found that the second order vertex correlations are
an essential component of the network architecture. In order to get more information about the structural organization of
the language network, we extend their work to a weighted language network. We use the biography of Mao Zedong (Mao
Tse-Tung) [29] as our Chinese language network (CLN). We select this book partially because Mao Zedong is well-known by
many people in the world. In our research, both the pieces of literature are treated as directed and weighted graphs.
Words are the basic elements of sentences, the most correlated words in a sentence are usually the closest, and written

human language is one of the natural networks closest to the absolute reciprocity [10]. Thus we define the networks as
follows: Every different Englishword/Chinese character in the text is defined as different vertex, an edge exists if two vertices
are neighbors, the direction of the edge is pointed from the antecedent to the consequent, and theweight of an edge denotes
the frequency of the connection between the two English words/Chinese characters appearing in the text. We consider
punctuations as functional words in both the texts, because they have parasitological functions despite their meaningless.
Following this construction method, we get two weighted networks, which are denoted by ELN and CLN as above. Given
the way in which the networks have been constructed, the degree of a vertex equates the number of different consequent
neighbors that a Englishword/Chinese character has, theweight of an edge denotes the frequency of a connection appearing
in the text, and the strength of a vertex (the sum of weight values of all links pointed out from it) equates the frequency of a
English word/Chinese character appearing in the text. Without loss of generality, in our study, we consider the out-degree
as the degree of a vertex and the out-strength as the strength of a vertex. The in-degree and in-strength condition exhibit
the same result.
The length of the English text is 122142 with 8811 different words, while the length of the Chinese text is 569708 with

only 3294 different characters. The average weight of edges in CLN is almost twice of the one in ELN (see Table 1). Naturally,
we would have questions as to why could Chinese language construct a longer text by fewer characters than English? Are
the connections of Chinese characters playing a more important role in the Chinese text than that of English words in the
English text? By the structure analysis of the weighted language networks of ELN and CLN, we try to find some clues.

3. Network structure analysis

Although ELN andCLN are generated in the sameway, there are somedifferent statistical properties of their organizations
(see Table 1 and Fig. 1). These differences may imply different structural organizations of the two languages, and we will
gather more information under the weighted network analysis.

3.1. English words/Chinese characters distribution

Zipf’s law is one of the most important statistical regularities of language networks, which states that the frequency of
words decay as a power function of its rank [30]. Researchers show that many languages, such as English, French, Spanish,
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Fig. 1. Measures of Zipf’s law. Figure (a) and (b) correspond to the English novel 1984with a slope of−1.2 and the Chinese biography of Mao Zedong (Mao
Tse-Tung) respectively.

have been found to fit Zipf’s law [8,30–32]. In our research, the English novel fits Zipf’s law with a slope of −1.2, but the
Chinese biography doesn’t fit the Zipf’s law well (see Fig. 1). This result is consistent with other scholars’ [12]. In Ref. [12],
the authors have found that the words distribution of Shakespeare’s corpus conforms to Zipf’s law, while the character
distribution of the Collection of Chairman Mao departs from Zipf’s law. It should be noted that although both Refs. [12,29]
are about Mao, the contexts of are quite different.
It is known that Zipf’s law is a consequence of thematch between structure and dynamics [33]. It does not depend on the

syntactic structure of language [32], while it might be due to the growth and preferential selection mechanism of words or
characters in a given language [12]. In fact, the difference in Fig. 1 maybe includes the different evolution history of English
words and Chinese Characters. After Emperor Qin Shihuang unified the characters, the Chinese language became mature
and the number of Chinese characters has grown very slowly. On the other hand, in English, new words are introduced
constantly and the number of words grows very fast compared with Chinese characters [12].
Fig. 2 shows typical plots of degree distributions and strength distributions for ELN and CLN — they all follow a power-

law distribution. Power-law distribution of vertex degree in Fig. 2(a) and (b) means that the majority of vertices in both the
networks have only a few connections to other vertices, whereas some vertices are connected to many other vertices. This
behavior of network is called scale-free. ELN and CLN are both scale free networks.
In fact, such scale-free behavior is related to frequency of occurrence of a word [10]. Following the construction of ELN

and CLN, strength s corresponds to the frequency of occurrence of a English word/Chinese character. Fig. 2(c) and (d) plot
the vertex strength distribution for ELN and CLN respectively, and they also fit the power-law distribution. It is the case that
the majority of vertices in the two networks have low strengths, whereas some vertices have high strengths.
The degree and strength distributions of Chinese characters are both flatter than that of English words (see Fig. 2), while

the two written language human networks both have scale-free property in text organization. The power-law distribution
phenomenon of Fig. 2 can be interpreted as the evidence that the most English words/Chinese characters in the text have a
low frequency of occurrence and a small number of different consequent English words/Chinese characters.
Further, in Fig. 3, we report the relationship between the vertices strength and the vertices degree. It is found that the

strength of a vertex is almost proportional to its degree in both the two networks, which is also observed in other real-life
systems [34]. This correlation demonstrates the phenomenon of ‘‘the rich get richer’’. Corresponding to the two texts, the
higher frequency of occurrence an English word/Chinese character has, themore consequent neighbors it has. These English
words/Chinese characters with high degrees are usually called hubs. These hubs correspond to some functional words, such
as conjunctionwords, or adverbialwords relatedwith time and location. They are important for both the English and Chinese
languages, because people can communicate conveniently by connecting hubs with some meaningful words according to
syntax rules. In both the texts, these hubs usually have high degree and high strength simultaneously.

3.2. Words interactions

Words interactions play an important role in information expression. Under the way of the construction of ELN and CLN,
the weight of edges represents the intension of these interactions. Fig. 4 shows distributions of the weight of edges for
ELN and CLN, and they both fit power-law distribution. This means that the majority of edges in both the networks have a
small weight, whereas some edges are high weighted. The edges with high weight correspond to some special connections
between English words/Chinese characters. Some of these connections are meaningless, and some of these connections can
form two-word phrases or parts of multi-word phrases. We define these connections which can form phrases are fixed
connections.
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Fig. 2. Power-law distributions of vertices, where k is degree of each vertex, s is strength of each vertex. (a) Degree distribution P(k) of ELN with a slope
of−1.9. (b) Degree distribution P(k) of CLN with a slope of−1.2. (c) Strength distribution P(s) of ELN with a slope of−1.8. (d) Strength distribution P(s)
of CLN with a slope of−1.1.

Fig. 3. Vertices strength s as a function of their degree k. (a) For ELN with a slop of 1.2. (b) For CLN with a slope of 1.3.
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Fig. 4. Edge weight distributions. (a) For ELN with a slop of−2.3. (b) For CLN with a slop of−1.9.

Fig. 5. s/k vs. vertex strength. (a) There are only 4 vertices have a value of s/k above 15 in ELN. (b) There are 8 vertices have a value of s/k above 55 in CLN.

In a text, if words form phrases, there should be fixed connections between them. In other words, words arranging fixed
in pairs or queues in a textmay form phrases. Under theway of the construction of ELN and CLN, theword strengths increase
with the increasing of the word appearance frequency, and their degree increase with the increasing of the number of their
different consequent neighbors. If the antecedent word has a high appearance frequency and a small number of different
consequent neighbors in the text, therewould be a fixed connection between the twowords. It is that if the antecedentword
have a high strength and a low degree, that the word and its consequents are most likely to form phrases. So if a vertex has
a high value of s/k, the vertex and its consequent vertex trend to form a two-word phrase or a part of multi-word phrase
(see Figs. 5 and 6). This is unrelated with the text length.
In Fig. 5, we plot the value of s/k of vertices vs. vertex strength. The figures show that the vertices with highest strength

don’t have the highest value of s/k in both the networks, because these verticesmay also have high degrees. This is consistent
with the phrase forming conditions. Specially, in both the texts, the name of the protagonists is one of the most appearance
phrases (see Fig. 6).
Comparing Fig. 5(a) with (b), the number of vertices in CLN, which have high values of s/k, is more than that in ELN. The

proportion of vertices, whose s/k values are above 10, is 0.2% in ELN and is 4.71% in CLN. So in the Chinese text, there should
bemore phrases than in the English text. There aremany characters in Chinese havemultiple-meaning, and forming phrases
may help to express the correct meaning of the word and make it easy to comprehend.

3.3. Architecture analysis

Complex networks display an architecture imposed by the structural organization of many real systems, that is not
fully characterized by the distribution P(k) and P(s). Indeed, the structural organization of many complex networks is



2566 L. Sheng, C. Li / Physica A 388 (2009) 2561–2570

Fig. 6. English words/Chinese characters whose s/k value is above 15 (55) in ELN/CLN.

mathematically encoded in the various correlations existing among the properties of different vertices. For this reason, a
set of topological and weighted quantities of ELN and CLN will be studied in order to uncover the networks’ architecture.
A first and widely used quantity of complex network is given by the clustering of vertices. The clustering of a vertex i is

defined as

ci =
1

ki(ki − 1)

∑
j,h∈N

aijaihajh, (1)

where ki is the degree of vertex i, aij is 1 if there is a connection between vertex i and vertex j, otherwise aij is 0, N is the
total number of vertices in a network. ci measures the local cohesiveness of the network in the neighborhood of the vertex i.
More information can be gathered through the inspection of the average clustering coefficient C(k) restricted to classes of
vertices with degree k

C(k) =
1

NP(k)

∑
i/ki=k

ci. (2)

In many networks, the degree-dependent clustering coefficient C(k) is a decreasing function of k, which shows that low-
degree vertices generically belong to well interconnected groups, while high-degree sites are linked to many vertices that
may belong to different groups which are not directly connected [35,36].
The clustering coefficient as defined in Eq. (1) does not take into account the fact that, in a weighted network, some

neighbors are more important than the others. In Ref. [26], Barrat et al. have defined the weighted clustering coefficient of
a given vertex i as

cwi =
1

si(ki − 1)

∑
j,h∈N

(wij + wih)

2
aijaihajh, (3)

where si is the strength of vertex i,wij is theweight of the edge between vertex i and vertex j. The definition in Eq. (3) reduces
to the topological vertex clustering coefficient of Eq. (1) when all the weights are equal. In the general cases, the weighted
clustering coefficient considers both the number of closed triangles in the neighborhood of vertex i and their total relative
weight with respect to the vertex strength.
The average over vertices of a given degree k defines the quantity Cw(k). The comparison between C(k) and Cw(k)

provides global information on the correlation between weights and topology. In the case of a large randomized network
(lack of correlations) it is to see that Cw(k) = C(k). In real weighted networks, however, we can face two opposite cases.
If Cw(k) > C(k), it indicates that edges with large weights have a tendency to form triples, while the opposite case
Cw(k) < C(k) indicates a lower relevance of the triangles [37].
Our measures of C(k), Cw(k) and their comparisons for ELN and CLN are shown in Fig. 7. There are two differences

between ELN and CLN. In Fig. 7(a), C(k) and Cw(k) of ELN both decrease with the increasing of degrees. In Fig. 7(b), C(k) and
Cw(k) of CLN have a fluctuation around 0.1 for low values of degree k under 200 approximately. Which means the majority
of low degree vertices display a stronger hierarchical behavior in ELN than that in CLN. The other difference between ELN
and CLN in Fig. 7 is the comparison results of C(k) and Cw(k). Cw(k) > C(k) persists in almost the whole spectrum of the
vertex degree in ELN, but in CLN, Cw(k) < C(k) appears under the value of the vertex degree of 30 approximately. This
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Fig. 7. The comparisons between average clustering coefficients C(k) and weighted average clustering coefficients Cw(k). (a) The comparison result of
ELN. (b) The comparison result of CLN.

means that the clustering of low degree vertices has a minor effect in the organization of the CLN than that in ELN, because
the largest part of the interactions is occurring on edges not belonging to interconnected triplets in CLN.
Comparisons between C(k) and Cw(k) show a structural difference of ELN and CLN, and this might be an explanation

of why there are more phrases in the Chinese text than in the English text. In CLN, the highest weight edges between the
vertices with low degree does not belong to interconnected triplets, which means these vertices may have large values of
s/k. So there are more phrases formed by characters with few consequents in the Chinese text, than in the English text.
Another important source of information lies in the correlations of the degree of neighboring vertices [38,39]. Since the

whole conditional distribution P(k′|k), a given site with degree k connecting to another site of degree k′, is often difficult to
interpret, the average nearest-neighbor degree has been proposed to measure these correlations [38]

knn,i =
1
k

N∑
i,j=1

aijkj. (4)

Once averaged over classes of vertices with degree k, the average nearest-neighbor degree can be expressed as

knn(k) =
∑
k′
k′P(k′|k). (5)

The average nearest-neighbor degree provides a probe on the degree correlation function. If degrees of neighboring vertices
are uncorrelated, knn(k) is independent of k, and P(k′|k) is only a function of k′.When knn(k) increaseswith the increasing of k,
indicates that large degree vertices are preferentially connected with other large degree vertices. In this case the network is
defined as assortative. In contrast, the network is said to be disassortative if knn(k) decreases with the increasing of k [40].
Analogously, the weighted average nearest-neighbor degree can be defined as [26]

kwnn(k) =
1
si

N∑
i,j=1

wijkj. (6)

Such a quantity allows to characterize theweighted assortative/disassortative properties considering the actual interactions
among the system’s elements, because the behavior of kwnn(k) measures the effective affinity to connect with high or low
degree neighbors according to the magnitude of the actual interactions. Indeed, kwnn(k) > knn(k) when the edges with the
larger weights are pointing to the neighbors with larger degree, and kwnn(k) < knn(k) in the opposite case [37].
In Fig. 8, both ELN and CLN exhibit disassortative according to the decreasing curves of knn(k), which implies the existence

of a nontrivial correlation property for both ELN and CLN.
In order to confirm this disassortative phenomenon, we also compute the amount of assortative mixing r according to

Ref. [40] as

r =
M−1

∑
i
jiki − [M−1

∑
i

1
2 (ji + ki)]

2

M−1
∑
i

1
2 (j
2
i + k

2
i )− [M−1

∑
i

1
2 (ji + ki)]

2
, (7)

where M denotes the number of edges in the network, ji, ki are degrees of the vertices at the ends of the edge i, with
i = 1, 2, . . . ,M . The coefficient is in the range [−1, 1]. If the network is uncorrelated, the correlation coefficient equals
0. Disassortative networks have r < 0, while assortative graphs have a value of r > 0.
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Fig. 8. The comparison between average nearest-neighbor degree knn(k) and weighted average nearest-neighbor degree kwnn(k). (a) The comparison result
of ELN. (b) The comparison result of CLN.

Fig. 9. The comparison of weighted average clustering coefficient Cw between ELN and CLN restricted to classes of vertices strength s.

The calculations of r are−0.23786 and−0.21409 for ELN andCLN respectively. So it again indicates that both ELN andCLN
are disassortative mixing in terms of degree. This disassortative phenomenon in both networks can be intuitively explained
in that high degree vertices,which are keywords of a theme orwhich have a function of syntax, are not often related together
in both the English and Chinese texts.
The comparisons of knn(k) and kwnn(k) in Fig. 8 also uncover a difference between ELN and CLN. In Fig. 8(a), k

w
nn(k) > knn(k)

persist in the whole spectrum of k. In Fig. 8(b), kwnn(k) < knn(k) appears under the degree value of 10 approximately. This
implies that edges with large weights appear between both low degree and high degree vertices in CLN, and these edges
only appear between large degree vertices in ELN. Large weight edges between vertices means strong interactions between
the English words/Chinese characters, so this may be another reason for the large number of phrases in the Chinese text.
We also take a comparison of theweighted average clustering coefficient Cw(s) and the average nearest-neighbor degree

kwnn(s) between ELN and CLN in Figs. 9 and 10 respectively. In both the figures, the parameters of CLN are flatter than that of
ELN. This fact reveals that the structure of ELNvariesmorewith the changes of vertex strength than that of CLN. The effect can
be interpreted as the evidence that the English text displays a larger heterogeneity in the intensity of the words interactions
than the Chinese text. In Fig. 11, we plot weights of edges between first 200 English words/Chinese characters ranked by
their strength. Comparing the figures in Fig. 11 will show the difference more clearly. In Fig. 11, the pixels represent the
edges between vertices — the darker the pixel is, the higher weight the edge of the corresponding pair of vertices has. In
Fig. 11(a), high weight edges are mostly connected between hubs or connected between hubs and low strength vertices,
and they are seldom connected between low strength vertices. In Fig. 11(b), weights are more dispersive on the network
structure. The hubs may play a more important role in the structural organization in the English text, while connections
between Chinese characters have larger intensity and density.
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Fig. 10. The comparison of weighted average nearest-neighbor degree kwnn between ELN and CLN restricted to classes of vertices strength s.

Fig. 11. Weights of edges between first 200 English words/Chinese characters ranked by their strength. The darker the pixel is, the higher weight the edge
of the corresponding pair of vertices has. (a) The edge weights of ELN. (b) The edge weights of CLN.

4. Conclusions and discussions

In this work, we analyzed in detail the structure of two written human languages through weighted network
representations of Orwell’s 1984 and the Biography of Mao Zedong (Mao Tse-Tung). We found some similarities and
differences between the two important languages.
Under theway of the construction of the two language networks, they displays tremendous differences. The length of the

Chinese text is almost fivefold that of the length of the English one, while the number of different characters in the Chinese
text is less than half of the number of different words in the English one.
Then, through the statistical analysis of the English words and the Chinese Characters’ distributions P(k) and P(s), we

found they both have scale-free properties in the text organization. While distributions P(k) and P(s) of the two networks
have different exponents.
Next, the interconnection analysis between English words and between Chinese characters implies that there are more

phrases in the Chinese text than in the English text. The large number of phrases may help to distinguish different meanings
of Chinese characters, because many Chinese characters have more than one meaning.
At last, we performed architecture analysis of the two networks, finding that different structure behaviors are exhibited.

The analysis of topological and weighted quantities implies that the English text displays a larger heterogeneity in the
intensity of the words’ interactions than the Chinese text. This structure difference might be a factor of the more phrases in
the Chinese text than in the English text.
The above results together indicate that the hub-like words in the English text play a more important role of structural

organization than in the Chinese text, while the connections between Chinese characters have larger intensity and density
than between English words, whichmeans phrases prevail more in Chinese language than in English. This might be a reason
why Chinese language could construct a longer text by fewer characters than English.
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