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[1] This paper reviews theoretical and observational material on form and function of
natural networks appeared in somewhat disparate contexts from physics to biology,
whose study is related to hydrologic research. Moving from the exact result that drainage
network configurations minimizing total energy dissipation are stationary solutions of the
general equation describing landscape evolution, we discuss the properties and the
dynamic origin of the scale-invariant structure of river patterns and its relation to optimal
selection. We argue that at least in the fluvial landscape, nature works through imperfect
searches for dynamically accessible optimal configurations and that purely random or
deterministic constructs are clearly unsuitable to properly describe natural network forms.
We also show that optimal networks are spanning loopless configurations only under
precise physical requirements that arise under the constraints imposed by continuity. In the
case of rivers, every spanning tree proves a local minimum of total energy dissipation.
This is stated in a theorem form applicable to generic networks, suggesting that other
branching structures occurring in nature (e.g., scale-free and looping) may possibly
arise through optimality to different selective pressures. We thus conclude that one
recurrent self-organized mechanism for the dynamic origin of fractal forms is the robust
strive for imperfect optimality that we see embedded in many natural patterns, chief and
foremost hydrologic ones.
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1. Introduction

[2] We address the problem of the dynamic origin of
network structures that we observe in nature, whose recur-
rent patterns of organization are the subject of much recent
research [e.g., Watts and Strogatz, 1998; Watts, 1999;
Barabási and Albert, 1999; Albert and Barabási, 2002;
Barabási et al., 2000, 2002; Dorogovtsev and Mendes,
2002; Newman, 2003; Dodds et al., 2003; Song et al.,
2005]. It seems appropriate, in this context, to review results
relevant to hydrology. We note, in fact, that the line of
reasoning proposing the key role of the selection of locally
optimal (and thus dynamically accessible) structures origi-
nated from the study of rivers [Rodriguez-Iturbe et al.,
1992b, 1999c; Rinaldo et al., 1992; Rodriguez-Iturbe and
Rinaldo, 1997], and that several related developments have
appeared in physical and biological contexts, thus possibly
perceived as unrelated to hydrology. An annotated review,
providing a coherent framework for seemingly disparate
results and addressing open questions also for hydrologic
research, is thus possibly useful.

[3] Our basic claim, supported by a number of facts
rooted in theory and observation that we briefly recall in
this paper, is that the hydrologic case for the selection of
tree-like networks (as opposed to looping) is rather com-
pelling [Rodriguez-Iturbe and Rinaldo, 1997]. Moreover,
the beauty, diversity and deep symmetries of fractal river
networks are fascinating, and well-understood, signatures of
how nature works [Mandelbrot, 1977, 1983; Bak, 1996],
and thus the search for analog mechanisms at work in other
physical and biological contexts seems valuable. Natural
and artificial network patterns, however, show a great
variety of forms and functions and many do not show the
tree characters (i.e., a unique path from any site to the
outlet) that rivers exhibit. One thus wonders what is
the basic dynamic reason for radically different forms and
functions.
[4] Figures 1, 2, 3, and 4 illustrate a sample of the above

variety. A reference framework for different types of
hydrologic networks is meant to show that departures from
trees and tree-like networks spanning a given area (that is,
LD sites with D = 2) commonly arise. A choice of real and
abstract structures relevant to hydrology is proposed. A real
fluvial network (Figure 1a) of the Dry Tug Fork river (CA)
is suitably extracted from a digital terrain map [Rodriguez-
Iturbe and Rinaldo, 1997]. Notice its clear tree-like struc-
ture, usual in the runoff production zone of the river basin.
Its morphological features (like aggregation and elongation)
are typical of fluvial patterns and recurrent modules
appear regardless of the scale of total contributing area,
such that the parts and the whole are quite similar not-
withstanding local signatures of geologic controls, here
marked by a fault line clearly visible across the landscape.
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Scheidegger’s [1967, 1970] directed network (Figure 1c) is
constructed by a stochastic rule; with even probability, a
walker chooses between right or left forward sites only. The
model was devised with reference to drainage patterns of an
intramontane trench and maps exactly into a model of
random aggregation with injection or voter models [e.g.,
Takayasu et al., 1988, 1991a, 1991b] and also describes the
time activity of a self-organized critical [Bak et al., 1987]
(Abelian) avalanche [Dhar, 1999]. Peano’s [1890] network
(Figure 1e), is a deterministic fractal [Mandelbrot, 1983],
whose main topological and scaling features, some involv-
ing exact multifractals [Marani et al., 1991], have been
solved analytically [Marani et al., 1991; Colaiori et al.,
1997]. The basic prefractal is a cross seeded in a corner of
the square domain that covers the cross and its ensuing
iterations. All subsequent subdivisions cut in half each
branch to reproduce the prefractal on four, equal subbasins.
Here the process is shown at the 11th stage of iteration.
Optimal channel networks (OCNs)(Figure 1b) are described
in section 3. They hold fractal characteristics that are
obtained through a specific selection process from which
one obtains a rich structure of scaling optimal forms that are
known (as discussed in section 3) to closely conform to the
scaling of real networks even in the case of unrealistic

geometric boundaries [Rodriguez-Iturbe et al., 1992b,
1992c]. To design a very inefficient tree, we have con-
structed a nondirected structure constrained to be tree-like
(Figure 1d) by using a Metropolis algorithm (see section 3).

Figure 1. Samples of trees where a unique pattern links
any inner site to the outlet of the network: (a) A real river
network, the Dry Tug Fork (California), suitably extracted
from digital terrain maps [Rodriguez-Iturbe and Rinaldo,
1997]; (b) a single-outlet optimal channel network (OCN)
selected starting from an arbitrary initial condition by an
algorithm accepting random changes only of lowering the
total energy dissipation of the system as a whole, thus
incapable of reaching the ground state and settling in a local
minimum dynamically accessible [Rodriguez-Iturbe et al.,
1992b]; (c) Scheidegger’s construct [Scheidegger, 1967];
(d) a ‘‘hot’’ OCN where any arbitrary change randomly
assigned to an evolving network is accepted provided it
maintains a tree-like form [Rodriguez-Iturbe and Rinaldo,
1997]; (e) Peano’s construct [Peano, 1890; Mandelbrot,
1983; Marani et al., 1991].

Figure 2. Drainage patterns that form in the tidal
landscape are much diverse according to local conditions
and develop over a different range of scales. In addition,
they may or may not develop loops. Here we show three
tidal networks developed within saltmarshes of the lagoon
of Venice suitably extracted from remote sensing [Feola et
al., 2005]. The tidal networks are observed a few km away
in space and roughly within the same microtidal range, have
similar scales, and have very different aggregation.
Sinuosities of the tidal meanders vary greatly from site to
site, possibly reflecting the age of the saltmarsh [Marani et
al., 2002], and the drainage density describing the average
distance one has to walk before encountering a creek within
a saltmarsh is widely different from site to site [Marani et
al., 2003]. The presence of loops much depends on local
conditions, and is not necessarily affected by flood or ebb
dominance.
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This basically corresponds to an algorithm that accepts
any change attributed sequentially at random sites of an
evolving spanning network; an existing link is disconnected
at a random site and rewired randomly to another nearest
neighbor provided the change maintains a tree-like struc-
ture [Rodriguez-Iturbe and Rinaldo, 1997]. Hot OCNs
(Figure 1d),so-called because they correspond to high tem-
peratures of a Metropolis scheme where every spanning tree
seeded in the outlet is equally likely, are thus abstract forms
meant to reproduce a rather undirected tree.
[5] Loops are also observed in the fluvial landscape.

Powerful or weak tidal forcings (Figures 2 and 3) introduce
preferential scales related to crossovers of processes oper-
ating with comparable ranges into an otherwise aggregated
pattern. However (Figure 4), deltaic networks arising from
the interplay of distributive drainage patterns and of marine
and littoral processes can substantially alter the similarity of
the parts and the whole. One notes, in fact, that the structure
of deltaic networks shows major loops, differently from
rivers in runoff-producing areas. Note also that differences
in the sinuosity of the branches prevent any detailed
statistical similarity of the parts and the whole across scales
[Marani et al., 2003; Feola et al., 2005].
[6] Legitimate questions naturally arise by looking at

the structures in Figures 1–4: why should loopless trees
develop? Are the observed landforms random structures? Are
different network configurations equally probable? If not, to
what selective pressure do they respond? Are there universal

features shown by fluvial landforms, and what is their proper
characterization? The fluvial network context alone thus
proposes the need for some settlement with respect to the
general dynamic origin of network scale invariance, possibly
toward an understanding of a general framework for the
processes of network growth and selection.
[7] This paper is organized as follows. An introductory

section (section 2) recalls the basic theoretical background
for landscape evolution models from which fluvial networks
are extracted, jointly with a brief review of the foremost
observational results that act as benchmarks for comparative
studies of natural and generated networks. Section 3 dis-
cusses how optimal channel networks are seen as the
byproduct of stationary solutions of the general landscape
evolution equations. In particular, we shall discuss impor-
tant differences in the statistical structures of global and
local (i.e., dynamically accessible) minima of the exact
functional derived from the landscape evolution equation
at stationarity. Section 4 addresses the origin of loops in a
connected structure and shows that every tree is a minimum
of total energy dissipation where the local physics com-
mands a concave mathematical form of the functional to be
minimized. Section 5 explored the impact of the hydrologic
results on a class of networks that are supposedly relevant to
biological studies. Section 6 then explores the impact of
hydrologic findings related to the shape of the functional to
be minimized in the general field of network selection, with
interesting inferences on the origin of general network

Figure 3. A small-scale drainage pattern developed within
a macrotidal environment, here the Eden estuary in
Scotland. Channeled pathways are extracted by suitable
digital image processing techniques (courtesy of E.
Belluco). Here we see an organized sequence of regular
ditches reminiscent of the organization of trenches draining
into a complex, looping network structure. Even at eyesight,
one catches the lack of a fundamental similarity of the parts
and the whole that characterizes river networks.

Figure 4. A large-scale, spaceborn image of the Brahma-
putra-Ganges deltaic network. The original NASA image is
taken from http://www.visibleearth.nasa.gov/, and the
channelized pattern is extracted via suitable image proces-
sing techniques that recognize the spectral signatures of
water (courtesy of E. Belluco). The complex interplay of the
distributional characters typical of deltaic patterns and of the
drainage patterns affected by strong tidal forcings (empha-
sized by the pronounced gradients of channel widths)
produces loops appearing on all scales.
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shapes. A set of conclusions closes then the paper with a
look at future work in this area.

2. Theoretical and Observational Background

[8] Branching river networks are striking examples of
natural fractal patterns which self-organize, despite great
diversities in forcing geologic, lithologic, vegetational, cli-
matic and hydrologic factors, into forms showing deep
similarities of the parts and the whole across up to six orders
of magnitude, and recurrent patterns everywhere [Rodriguez-
Iturbe and Rinaldo, 1997]. Form and function coevolve.
Interestingly, the drainage network in a river basin shows
tree-like structures that provide efficient means of transpor-
tation for runoff and sediment and show clear evidence of
fractal behavior. Numerous efforts to model the production
zone of a river (where the system is open, i.e., water is more
or less uniformly injected in space and later collected through
the structure of the network implying that landscape-forming
processes are well defined) have focused on reproducing the
statistical characteristics of the drainage network. Much
attention has also been paid to the temporal behavior and to
the evolution of the topography of the basins, the so-called
landscape evolution problem [see, e.g., Willgoose et al.,
1991; Dietrich et al., 1992; Howard, 1994; Banavar et al.,
1997] and references therein).
[9] Our observational capabilities are also noteworthy.

Accurate data describing the fluvial landscape across scales
(covering up to 5 orders of magnitude) are extracted from
digital terrain maps remotely collected and objectively
manipulated. Raw data consist of discretized elevation
fields {zi} on a lattice. The drainage network is determined
assigning to each site i a drainage direction through steepest
descent at i, i.e., along ~rzi. Multiple flow directions in
topographically convex sites, and their derived hydrologic
quantities, are also easily tackled (D. G. Tarboton, TAR-
DEM programs for the analysis of DTMs, available at http://
www.engineering.usu.edu/dtarb). Many geomorphological
features are then derived and analyzed. To each pixel i
(the unit area on the lattice) one can associate a variable that
gives the number of pixels draining through i i.e., following
the flow directions. This quantity represents the total
drainage area (total contributing, or accumulated, area) ai
at the point i, expressed, e.g., in pixel units, via ai =

P

j
wj,iaj + 1 where wj,i is the element of an adjacency matrix,
i.e., wj,i = 1 if j! i and 0 otherwise and 1 represents the unit
area of the ‘‘pixel’’ unit that discretizes the surface. In the
case of uniform rainfall injection, ai provides a measure of
the flow at point i. In fact, the steady state flow Ji, can be
defined as the sum of the injections over all the points
upstream of site i, site i included, and thus obeying to the
equation Ji =

P

jwj,iJj + ri, where ri is the distributed
injection. In the case of constant injection (ri ! constant =
1), the steady flow at i is proportional to the area ai drained in
that point allowing to use these two quantities inter-
changeably. Assuming Ji " ai is an accepted hydrologic
assumption for landscape-forming discharges [Leopold et
al., 1964].
[10] Drainage directions determine uniquely network

lengths. Downstream lengths Li (i.e., from a site i to the
outlet following the largest topographic gradient, i.e., steep-
est descent) can be computed easily to derive their distri-
butions which clearly show the characters of finite-size

scaling [Maritan et al., 1996a]. The upstream length li at
point i is defined as the distance, measured along the stream,
from the farthest source draining into i. Overall, channelized
patterns are now reliably extracted from {zi} fields through
the exceedence of geomorphological thresholds, and have
thus much improved our ability to describe objectively
natural forms over several orders of magnitude [Montgom-
ery and Dietrich, 1988, 1992]. For a review, see Rodriguez-
Iturbe and Rinaldo [1997].
[11] Large-scale observations have allowed thorough

comparisons across scales defining fractal river basins
[Mandelbrot, 1977, 1983]. One outstanding example of
fractal relation is Hack’s law [Hack, 1957; Mandelbrot,
1983; Rigon et al., 1996] relating the upstream length li at a
given position i to the total cumulative area ai at that
position, seen quite early as a signature of fractal geometry.
Contributing area ai at any point is related to the gradient of
the height (the topographic slope) of the landscape at that
point: j~rzij / ai

g#1 with a numerical value of g around 0.5
[e.g., Tarboton et al., 1989; Montgomery and Dietrich,
1992]. This slope-discharge relation proves a powerful
synthesis of the local physics. The distributions of cumu-
lative areas ai and upstream lengths li are characterized
by power law distributions (with the expected finite size
corrections) with exponents in the narrow (and related
[Rinaldo et al., 1999a]) ranges 1.40–1.46 [Rodriguez-
Iturbe et al., 1992a] and 1.67–1.85 [Maritan et al.,
1996a], respectively. It is particularly revealing, in this
context, that the finite-size scaling ansatz provides a most
stringent observational proof of self-similarity and a
strong form of Hack’s law [Rigon et al., 1996]. Scaling
in the river basin has been documented in many other
geomorphological indicators (including exact limit scalings
[Banavar et al., 1999]), making the case for the fractal
geometry of nature particularly compelling [Rodriguez-
Iturbe and Rinaldo, 1997]. Further proofs have been found by
the striking invariance of probability distributions of length
and area under coarse graining of the elevation field. The case
of rivers is thus a solid starting point for other queries about
the possible consilience of natural mechanisms.
[12] A major challenge lies in the explanation of the

dynamic origin of fractal forms [e.g., Bak et al., 1987].
Considerable efforts have been devoted to define static or
dynamic models able to reproduce the statistical character-
istics of fluvial patterns, and general concepts like self-
organized criticality have been explored in this context
[Rinaldo et al., 1993]. It should be observed that real
drainage basins are not static but usually evolve on ex-
tremely long timescales. Nevertheless, statistical properties
seem to be preserved during most of the evolutionary
process of a basin; most features characterizing the river
basin morphology are irrespective of age. Some geomor-
phological signatures like valley densities (the relative
extent of unchanneled concave areas), however, reflect
climate changes without appreciable changes in the basic
scaling features of aggregated area and length [Rinaldo et
al., 1995].
[13] It is worthwhile reviewing the theoretical back-

ground of landscape evolution models, because river net-
works may be defined by nodes on a regular lattice
representing the elevation field, and links determined by
steepest descent on the topography whose evolution deter-
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mines the structure. Our aim is to find the simplest model
that simulates the dynamical evolution of morphologically
realistic landscapes and that preserves certain features
during evolution. The equation that has been proposed to
describe the evolution of the landscape, among a realm of
somewhat less refined but essentially equivalent forms [e.g.,
Howard, 1994], is the following:

_z t; xð Þ ¼ #aJ t; xð Þ j~rz t; xð Þj2 þ Dr2z t; xð Þ þ U ; ð1Þ

where z again denotes the elevation at the point x = (x, y) of
the substrate plane and J is the modulus of the water flux
(the landscape-forming discharge at a site) at that point and
at time t. The first term is, of course, an erosional term
proportional to the flux, the second is a diffusive term,
known [e.g., Dietrich et al., 1992] to portray hillslope
evolution; the third term is a constant term modeling uplift.
The existence of an uplift originating in tectonic forces is a
well known fact in geomorphology [e.g., Scheidegger,
1991]: a landscape represents the instantaneous equilibrium
of two concurrently active processes, uplift (endogenic) and
degradation (exogenic). A stationary state results from the
exact balance of these two agents. A simple argument
leading to equation (1) follows from the general form _z =
F(~rz, r2z, . . ., J), where an explicit dependence on z is
excluded because it would break translational invariance.
Note also that landscape-forming fluxes ~J (a two dimen-
sional vector) become scalars i.e., J = j~J j because ~J is
assumed parallel to ~rz [Banavar et al., 1997, 2001].
[14] The diffusive term acts on the surface even at points

with zero contributing areas unlike the first term which
vanishes when the flux becomes zero. In the absence of the
diffusive term the presence of maxima on the surface will
cause the formation of singularities during the evolution,
because e.g., points at the top of a hill will never be eroded
by the first term (both J and ~r z vanish). The presence of at
least an infinitesimal diffusive term is then essential in
eliminating these singularities. In the discretized version
of the model each site (pixel) collects at least an unit area
and thus no singularities due to a vanishing contributing
area appear even in the absence of the diffusive term.
Moreover, the discretization implicitly introduces a diffu-
sive effect because it smoothes z on distances of the order of
the lattice length and also prevents the occurrence of
singularities due to a vanishing ~rz when D = 0. Versions
of equation (1) in which the activation of erosive actions
depends on a value of rz

ffiffiffi

J
p

exceeding a given threshold
have also been studied [Rinaldo et al., 1993; Rigon et al.,
1994]. Finally, a common version of the basic equation is
the following:

@z t; xð Þ
@t

¼ #aJ t; xð Þ j~rz t; xð Þj2 þ U þ h t; xð Þ: ð2Þ

where U is a specifically defined as the geologic forcing,
i.e., tectonic uplift, and h(t, x) is a noise term with zero
mean portraying the interplay of endogenic and exogenic
factors [e.g., Scheidegger, 1991; Dietrich et al., 1992;
Howard, 1994; Rodriguez-Iturbe and Rinaldo, 1997].
Equation (2) has been solved numerically to study the
coupled network growth and hillslope evolution [e.g.,
Willgoose et al., 1991] (see also Rodriguez-Iturbe and

Rinaldo [1997, chap. 1, and references therein] for a review
of the subject).
[15] Suffice here to focus on the simplified version of

equation (1) in the discretized lattice form obtained by
putting D = 0 and removing noise terms. In fact, due to
the coarse grained scale of the elevation field, the effect of
the diffusive term would be negligible because it is not
relevant to the large-scale behavior. This is consistent with
established geomorphological tenets: fluvial processes
(whose transport rates are defined by aJ(t, x) j~rz(t, x)j2)
are responsible for the imprinting of the network through
randomly arriving (and practically instantaneous) land-
scape-forming events, whereas hillslope processes, whose
net transport is defined by the divergence of a diffusive flux
yielding the term Dr2z(t, x) in equation (1), act on different
timescales by smoothing out landscapes without the capa-
bility of altering their basic structure [Rinaldo et al., 1995].
Thus we will consider as basic equation shaping the surface
whose gradients produce collection networks, the following
amended version on a lattice:

_z t; xð Þ ¼ #aJ t; xð Þ j ~rz t; xð Þ j2 þ U : ð3Þ

which contains all ingredients needed for our current
purposes. Moreover, when not explicitly stated otherwise,
the flux (J(t, x) " J(x)) will be taken to be proportional to
the drained area as postulated above, and the terminologies
‘‘flux’’ and ‘‘drained area’’ will be used interchangeably. As
noted above, this would in principle restrict the range of our
conclusions because it corresponds to the assumption of an
uniform rainfall acting on the surface during landscape-
forming events. It has been noted, however, that relaxing
this assumption, on assuming, say, heterogeneous patterns
of rainfall in space and time, does not alter the generated
structures unless for particular cases where the macroscale
of the forcing heterogeneity is much smaller than the basin
scale [Rodriguez-Iturbe and Rinaldo, 1997]. Note also that
the case of heterogeneous rainfall corresponds to an uneven
injection term in the definition of total cumulative fluxes J
(and hence areas), an interesting case of multiplicative noise
in equation (1) and its analogs. Thus we can safely conclude
that in cases of practical interests our assumptions stand and
the ensuing results worth generalizing.
[16] It should be noted that often geomorphologists [e.g.,

Dietrich et al., 1992; Howard, 1994] employ a different
version of equation (3). In fact, by noting that general
empirical evidence suggests slope-area relationships of the
type jrzj / a#m/n, with m/n " 0.5, in many fluvial regimes,
it was empirically concluded that the proper landscape
evolution equation should be in the form _z = #aamjrzjn,
possibly complemented by a diffusive term portraying the
inferences of hillslope transport. We see no contradiction
with our main tenet, which assumes, in the small gradient
approximation, that when fluxes substitute total contributing
areas, the proper exponents should be m = 1, n = 2. More
generally, however, landscape-forming discharges yield J /
am

0
with m0 < 1.0, a well known empirical fact in hydrology

often associated with the return period of bankfull dis-
charges (1–2 years) [Leopold et al., 1964]. Less frequent
discharges have usually a similar scaling behavior yet with a
lower exponent m0. It is also interesting to note that
empirical slope-area relationships significantly different
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from the 1/2 slope (at least in gently sloping landscapes)
would indicate, within the validity of our scheme, a geo-
morphologic signature of climate which has been partly
exploited [Rinaldo et al., 1995] and perhaps worth future
research.
[17] In spite of its simplicity, the model in equation (3)

shows many interesting features. Note that the stationary
solutions of equation (3) (i.e., _z = 0) are such that

j ~rz j / J#1=2: ð4Þ

which implies j~rzj / a#1/2 if J / a. This is, indeed, the
previously mentioned slope-discharge relation which is a
well-known empirical fact. Notice also that a significant
field of geomorphological research, both empirical and
theoretical, deals with slope-area relations, their implica-
tions on hillslope/channel transition processes, seen espe-
cially in the light of deviations from (4) [e.g., Tarboton et
al., 1989; Dietrich et al., 1992].
[18] Numerical simulations of equation (3) have shown

that landscape evolution is characterized by two distinct
timescales (as was noted by Rinaldo et al. [1993, 1995]).
The soil elevations are lowered in a nonuniform way by
erosion, causing variations in the drainage directions during
the evolution. In a lattice model, at any given time, one may
represent the drainage directions at all sites by means of a
two dimensional map. After a first characteristic time, some
sort of ‘‘freezing’’ time, the spanning graph determining the
drainage directions in the basin does no longer change.
Erosion keeps acting on the landscape and changes the soil
height, but preserves the drainage structure. The second
characteristic time, which is much longer, is the relaxation
time at which the profile reaches its stable shape. Because
many of the measured quantities, such as the distributions of
drained areas and mainstream lengths, depend only on the
two dimensional map, the existence of a freezing time much
smaller than the relaxation time may provide an explanation
for the fact that several statistical properties are found to be
almost the same for many rivers, irrespective of their age.

3. Optimal Channel Networks

[19] In this section we review the basis for the claim that
tree-like fluvial structures are a natural by-product of some
optimization of form and function peculiar to the physics of
rivers.
[20] To exploit some properties of stationary states of

equation (1), we start from the review of the static model of
river networks known as the optimal channel network
(OCN) [Rodriguez-Iturbe et al., 1992b, 1992c] and its
implications [Rinaldo et al., 1992, 1996, 1999a; Rigon et
al., 1996]. The OCN model was originally based on the
ansatz that configurations occurring in nature are those that
minimize a functional describing the dissipated energy and
on the derivation of an explicit form for such a functional. A
major step was the later proof [Banavar et al., 1997, 2001]
that optimal networks are exactly related to the stationary
solutions of the basic landscape evolution equation, i.e., (3).
In particular, any configuration that minimizes total energy
dissipation, within the framework of general dynamical
rules, corresponds, through the slope discharge relation, to
an elevation field that is a stationary solution of the basic

landscape evolution equation. Thus spanning, loopless (see
also section 4) network configurations characterized by
minimum energy dissipation are obtained by selecting the
configuration, say s, that minimizes

E sð Þ ¼
X

i

agi ð5Þ

where i spans the lattice and ai and g are as defined above.
Given that ai =

P

j wj,i aj + 1 where wj,i is the element of the
adjacency matrix spanning the connectivity of every node j
to i, the configuration s determines uniquely, on a spanning
tree, the values of ai. It is crucial, as we shall see later, that
one has g < 1 directly from the physics of the problem.
[21] The global minimum (i.e., the ground state) of the

functional in equation (5)) is exactly characterized by
known mean field exponents [Maritan et al., 1996b], and
one might expect to approach this mean field behavior on
trying to reach stable local minima on annealing of the
system. This is in fact the case. The proof of the above is not
trivial: any stationary solution of equation (3) must locally
satisfy the relationship j~rzj / J#

1
2 between flux and

gradient at any point. In a discrete version, the landscape
is described by a field of elevations {zi} and gradients of Dzi
obtained by the biggest drop in elevation about site i. We
thus maintain that the drainage basin can be reconstructed
using the rule of steepest descent; that is, the flux in a point
has the direction of the maximum gradient of the elevation
field (the direction toward the lowest among all its nearest
neighbors). Moreover, the channelized part of the landscape
is necessarily (but not sufficiently) identified by concave
areas where the above assumption holds strictly. One can
thus uniquely associate any landscape with an oriented
spanning graph on the lattice, i.e., an oriented loopless
graph passing through each point. Identifying the flux in a
point with the total area drained in that point, one can
reconstruct the field of fluxes {Ji} corresponding to a given
oriented spanning graph. From the fluxes, a new field of
elevation can be defined using equation (4).
[22] To elucidate further the physical nature of the func-

tional in equation (5), we note that to each landscape {zi}
defined on a lattice we associate a dissipation energy via

E ¼
X

i

kiJiDzi ð6Þ

where i spans all sites, Dzi is the height drop along the
drainage direction, Ji is the flow through the site i, and ki is a
quantity related to the soil properties measuring the
heterogeneity of erosion-controlling features such as
vegetation cover, exposed lithology, degree of saturation
etc. For relatively homogeneous basins, one can assume ki = 1
without losing sight of the main problem, i.e., the self-
organized formation of aggregated patterns [Rinaldo et al.,
1992]. Moreover, observational evidence shows that the
flow velocity tends to be constant throughout the network
and thus the energy dissipated to maintain the water flow
is proportional to the potential energy associated with the
landscape [Rinaldo et al., 1993]. The power in a link is
JiDzi and (6) represents the power expenditure in the
system as a whole. Equation (5) is recovered through
Dz(i) " Ji

g#1, with g ’ 0.5, a corollary of equation (4) and
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its parent equation (3), which, as seen above, are established
empirical facts. Note that g = 0.5 derives from the
equation in the low-gradient approximation (where in
steady state the leading term is J(x)j~rz(x)j2 " constant)
under the further assumption of exchanging Ji with ai.
Thus documented alterations in the slope-area relation (4)
toward values of g 6¼ 0.5 ought to be related, at least in
gently sloping topographies, to uneven distributions of
rainfall in landscape-forming events. This is precisely why
we must limit our attention to patterns embedded in
runoff-producing areas within the above framework to
confine the problem within tractable limits.
[23] Equation (6), for a configuration s leading to aggre-

gation yielding fluxes Ji / ai, can thus be rewritten as

E sð Þ ¼
X

i

Ji sð Þg "
X

i

agi ; ð7Þ

where Ji(s) is the set of fluxes defined by the connectivity of
a spanning, loopless configuration s, and g ’ 0.5. Note that
we wish to emphasize the dependence on the configuration
s, an oriented spanning graph associated with the landscape
topography z through its gradients rz. An interesting
question is how networks resulting from the erosional
dynamics are related to the optimal networks arising from
the minimization of the dissipated energy. Specifically, we
require that any landscape reconstructed from an optimal
configuration using the slope-discharge relation is a
stationary solution of the evolution equation. Superficially,
this may seem to be a trivial fact because the relation
between gradients and flows is verified by construction, but
one should notice that the slope discharge relation alone
does not implies stationarity, because the flow may not be
(and in general is not) in the direction of the steepest descent
in the reconstructed landscape. Thus optimal channel
networks consist of the configurations s which are local
minima of (7) in the sense specified below: two configura-
tions s and s0 are close if one can move from one to the other
just by changing the direction of a single link (i.e., the set of
links s [ s0 represent a graph with a single loop). A
configuration s is said a local minimum of the functional (7)
if each of the close configurations s0 corresponds to greater
energy expended. Note that not all changes are allowed in
the sense that the new graph again needs to be loopless.
Thus a local minimum is a stable configuration under a
single link flip dynamics, i.e., a dynamics in which only one
link can be flipped at a given time, and is flipped only when
the move does not creates loops and decreases the
functional (7). Any elevation field thus obtained by
enforcing the slope-area relation to a configuration mini-
mizing at least locally the functional (7) is a stationary
solution of equation (3), i.e., the landscape reconstructed
from an optimal drainage network with the slope-discharge
rule is consistent with the fact that the flow must follow
steepest descent.
[24] The proof is derived considering a configuration

realizing a local minimum of the dissipated energy, and a
site i. The link issuing from i will join one of the nearest
neighbors of i, say k. Let j be one of the remaining nearest
neighbors such that changing the link from i ! k to i ! j
one still gets an allowed configuration. Paths emerging from
k and j will intersect downstream in a given point w, or will

never intersect until they reach their outlets. Let Skj denote
the set of all points in the path from k to w in the first case
and from k to its outlet in the second. Likewise, one may
define Sjk. Changing the link from i ! k to i ! j will cause
only the areas of sites belonging to the sets Skj and Sjk to
change. In particular all areas in the set Sjk will be increased
of an amount equal to the area ai contributing to the flow
through i, and all areas in the set Skj will be decreased by
that amount. Thus such a change will cause a change
(DE)k!j in the dissipated energy equal to

DEð Þk!j ¼
X

x2Sjk

ax þ aið Þg # agx
" #

þ
X

x2Skj

ax # aið Þg # agx
" #

: ð8Þ

where g = 1/2 and ax are the flows before the flip. The
condition for a configuration to be a local minimum of E
translates into the set of conditions

DEð Þk!j > 0 ð9Þ

for each i and j such that j is a nearest neighbor of i and
gives rise to a loopless configuration. Conditions (9) imply
that the elevation field determined by the local minimum
configuration using the slope-area relation represents a
stationary solution of equation (3). In order to be a stationary
solution, the elevation field determined by a graph using
slope-area relations must be such that the drainage
directions derived with the steepest descent rule yield
again the graph from which the elevation field originated.
This would imply that if i ! k is the drainage direction
in the point i, the biggest drop in elevation from i to its
nearest neighbors is in the direction of k. This condition
reads

z jð Þ > z kð Þ ð10Þ

for any j that is a nearest neighbor of i and different from k.
The proof that equation (9) implies (10) is elsewhere
[Banavar et al., 2001], also in the general case 0 < g < 1.
The converse is not true, however, i.e., a stationary solution of
equation (3) is not necessarily a local minimum of the
dissipated energy under the single link flip dynamics.
[25] The OCN model has been thoroughly analyzed

[Maritan et al., 1996b; Banavar et al., 2001]. In particular,
the scaling behavior of the global minimum has been
worked out analytically and it has been found to yield mean
field exponents. Interestingly, local minima also exhibit
critical behavior but are characterized by different nontrivial
scaling exponents of key probability distributions describ-
ing, e.g., drained area, channeled length, elongation
[Takayasu et al., 1988, 1991a, 1991b; Maritan et al.,
1996b; Rodriguez-Iturbe and Rinaldo, 1997; Rinaldo et
al., 1999b].
[26] Figures 5a–5c show examples of local and global

minima of OCNs (here chosen in a multiple-outlet config-
uration). Figure 2a shows the result obtained by ‘‘Eden’’
growth generated by a self-avoiding random walk, which is
known to lead to suboptimal structures [Rodriguez-Iturbe
and Rinaldo, 1997]. It is interesting to use Eden structures
as benchmarks because their chance-dominated selection
principle (no necessity is implied by the random walk
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dynamics, and tree-like structures are selected because of
the self-avoiding nature imposed on the process) because
such structures were initially thought of as capturing the
essentials of natural selection [Leopold et al., 1964]. That
turned out to be an artifact of nondistinctive tests of the
network structure [Rinaldo et al., 1999a], nicely termed the
‘‘statistical inevitability’’ of Horton’s laws [Kirchner, 1993].
Indeed, if topological measures alone (e.g., Horton numb-
ers, Tokunaga matrices) are used to sort out the fine
properties of networks, one can be hugely misled into
finding spurious similarities with natural forms, as one
would sometimes safely conclude even at eyesight: Com-
pare, for example, Figure 5a with Figure 5b. Topological
features like, for example, those based on Strahler’s order-
ing like Horton ratios or Tokunaga’s matrices are indistin-
guishable in the two cases shown [Rinaldo et al., 1999a].
Yet these are very different networks, as (linked) scaling
exponents of areas, lengths and elongation clearly reveal. If
eyesight and common sense would not suffice, exact proofs
are available, like in the case of Peano’s basin (Figure 1e)
where topological measures match perfectly those of real
basins and of OCNs, but fail to satisfy the strict require-
ments of aggregation and elongation. More subtle but
equally clear is the failure of random walk type models
[Leopold et al., 1964] or topologically random networks
[Shreve, 1966, 1967, 1969, 1974;Mesa and Gupta, 1987] to
comply with exhaustive comparisons [Rinaldo et al.,

1999a]. Notice that the latter models were extremely influ-
ential in suggesting that chance alone was behind the
recurrence of natural patterns, because of the equal likeli-
hood of any network configurations implied by the topo-
logically random model. Instead their purported similarity
with natural patterns is now seen as an artifact of lenient
comparative tools, and the statistical properties and ‘‘laws’’
derived in that context are almost inevitable for spanning
trees.
[27] Necessity is instead at work in the selection of

natural networks. Figure 5b [after Rigon et al., 1996] shows
a local minimum of E in equation (5), whose fine features
match perfectly those found in nature [Rinaldo et al.,
1999a]. These results (Figure 5b) are obtained moving from
an initial configuration s. A site is then chosen at random,
and the configuration is perturbed by disconnecting a link,
which is reoriented to produce a new configuration s0. If the
new configuration lowers total energy dissipation i.e.,
E(s0) ( E(s), the change is accepted and the procedure is
restarted. Figure 5c is obtained through the same procedure
used to obtain Figure 5b, where an annealing procedure has
been implemented, i.e., unfavorable changes may also be
accepted with probability / exp(#(E(s) # E(s0))/T ) where
T assumes the role of temperature in a gas or a spin glass. It
is rather instructive to compare Figure 5b with Figure 5c,
where a ground state is reached by very careful annealing
using a schedule of slowly decreasing temperatures. This

Figure 5. Multiple-outlet networks obtained in the same rectangular domain by (a) Eden growth
patterns of self-avoiding random walks filling the domain, (b) an imperfect (i.e., T = 0) optimal channel
network (OCN) leading to a local minimum of total energy dissipation, and (c) ground state OCNs
obtained through simulated annealing using a very slow schedule of decreasing temperatures T . In
Figure 5b note that OCNs bear long-lived signatures of the initial condition owing to the myopic search
procedure but actually reproduce perfectly the aggregation and elongation structure seen in real river
landscapes. The reaching of the ground state is confirmed by the matching of the exact mean field
exponents with those calculated for Figure 5c [after Rigon et al., 1998].
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state is characterized by mean field scaling exponents (here
matched perfectly), and overall all too regular and straight
to reproduce, even at eyesight, the irregular and yet repet-
itive vagaries of nature.
[28] Several random constructs have been thoroughly

analyzed [Rinaldo et al., 1999a], in a few cases through
exact results [e.g., Colaiori et al., 1997], comparing them
with optimal ones obtained through minimization of
total energy dissipation. Random network forms range from
self-avoiding random walks like Eden growth patterns,
topologically random or Leopold-Langbein constructions,
to the so-called Scheidegger network which is a directed
random aggregation pattern with injection. Deterministic
fractals like Peano’s networks have been also exactly
analyzed (for a perspective of dynamic bridges of deter-
minism and stochasticity in the geophysical context, see,
e.g., Sivakumar [2004]).
[29] Thus many misleading similarities are inferred from

the matching of topological measures like Horton’s ratios.
These turn out to be too lenient measures, as they occur
almost inevitably for spanning loopless networks and
thereby do not distinguish the structure of the aggrega-
tions patterns. On this basis alone it was shown that
topological similarities are to be interpreted as necessary,
rather than sufficient, conditions for comparison of net-
work structures. A distinctive comparison of network
structures stems from the matching of several scaling
exponents which characterize the finite-size scaling forms
of the distributions of length, aggregated area and elon-
gation. At times, perfect matching of aggregation (under-
lined by Horton’s ratios of bifurcation, length and area
indistinguishable from those observed in natural struc-
tures) proves inconsistent with the structure of channeled
lengths, like in the case of self-avoiding random walks.
[30] Moreover, suboptimal networks, that is, those

derived by imperfect search of the type perceived as
dynamically feasible, match all the features of the networks
observed in the fluvial landscape, and thus pass the most
thorough screening differently from all chance-dominated
constructs. We thus conclude that the hydrologic context
strongly suggest a case for optimal selection of network
structures in nature.

4. Minimum Energy and Loopless Structures

[31] We shall now define precisely the selective advan-
tages of trees in the fluvial physics [Banavar et al., 2000].
Consider a square lattice. Fix an orientation for all lattice
bonds. On each bond b a flux Jb is defined (notice that in the
general context of networks it is illegal to identify the flux
from node, say, i with Ji because it is generally not unique,
differently from the case of trees). We shall assume that Jb >
0 if it is flowing along an assigned orientation. Uniform
(unit) injection is equivalent to the set of constraints (@J)x =
1 where @ is a discrete version of the divergence, and is a
measure of the net outflow from a site:

@Jð Þx ¼
X

b2x
Jbq b; xð Þ ¼ 1 ð11Þ

where the unit value is the model injection, constant for
every node in the simplest case; b spans all bonds (links)
concurring on node x, and q(b, x) = 1(#1) if b is oriented

outward (inward) node x. Any local minimum of the
function

E ¼
X

b

j Jb jg ð12Þ

when 0 < g < 1, corresponds to Jb 6¼ 0 only on the bonds of
a spanning tree. The main point [Banavar et al., 2000] is in
the proof that the networks that correspond to local minima
of the dissipated energy are loopless and tree-like. The tree
must be spanning due to the constraints (11): one cannot
have Jb = 0 for all b’s connected to a site so that there must
be at least one outlet from each site x. Some site (or sites)
must also be declared to be the global outlet. We shall show
that loopless structures emerge as optimal solutions of
equation (12) with the constraint (11), which is precisely the
case for river networks.
[32] Figure 6 illustrates an extremely simple example

with just four sites: Figure 6a shows the setup for the
elementary four-bond network. The dot is the outlet. Here
the current a is taken as the parameter regulating the entire
distribution of fluxes owing to continuity. Figure 6b illus-
trates the only loopless configurations of the system gen-
erated by integer values of a. Figure 6c shows the plot of
the function E versus a from the following equation (13)
with g = 0.5:

E ¼ j a jg þ j aþ 1 jg þ j 1# a jg þ j 2# a jg : ð13Þ

which is derived from equation (12) after implementation of
(11). In particular, Figure 6b shows the plot E(a) where one
notices that there are local minima in correspondence with
one of the four currents being zero (a = 2, 1, 0, #1),
corresponding to the four trees shown in Figure 3c. The
explanation is simple. Suppose that a " 0 (the other cases
are equivalent). All the terms in (13) but jajg can be
expanded in Taylor series around a = 0. Thus, locally, one
has

E ¼ 2þ 2gþ j a jg þ O að Þ ð14Þ

which has a cusp-like behavior because 0 < g < 1. Notice
that @E/@aja=0± = ±1 and thus one cannot find the minima
simply by imposing the condition @E/@a = 0. If a 6¼ 0, ±1,
2, @2E/@a2 < 0 and there are no other minima of E (only
maxima) [Banavar et al., 2000]. The proof for the general
case is elsewhere [Banavar et al., 2001].
[33] Figure 6c shows the function E versus a plotted for

various values of g (specifically, for g = 0.25, 0.5, 1 and 2).
Note that for g = 1 all directed (with the currents going in
the positive directions) configurations, loopless or not, have
the same energy. The case g = 2 corresponds to the resistor
network case for which there is just one minimum at a = 1/2
[Doyle and Snell, 1989]. Note that since there is one
unknown current for each bond and one continuity equation
for each site the number of independent variables is given
by the number of bonds minus the number of sites (exclud-
ing the outlet), which for the simple topologies considered
is equal to the number of elementary loops (this is a
particular case of the Euler theorem).
[34] Since we have seen that local minima occur in

singular configurations where some currents are zero, we
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cannot introduce the standard technique of Lagrange
multipliers to find the minima of E with the constraint
(11). In order to be able to do that E must be regularized as
E =

P

b(Jb
2 + e2)g/2 in the limit e ! 0. The general proof

is beyond the scope of this paper and given elsewhere
[Banavar et al., 2000] for an arbitrary graph, where the
number l of independent loops is given by the number of
bonds minus the number of sites plus the number of
connected components. Note that for the particular case
where the graph must be a spanning structure the number of
connected components is unit (for example, in the case of an
n ) m rectangular lattice one has l = nm # n # m + 1).
[35] Obviously, for the set of dynamical rules postulated

above, the energy landscape is riddled with a large number
of local minima characterized by a range of similar values of
E. In single realizations, boundary and initial conditions
affect the feasible (i.e., dynamically accessible) optimal
state to different degrees depending on their constraining
power. This fact matches the observation [Maritan et al.,
1996a] that scaling exponents are coherently linked in a
range of values, narrow enough but significantly different
from the ground state [Maritan et al., 1996b]. The truly
important implications are twofold: on one side, in fact, all
local optima are trees; on the other, imperfect optimal search
procedures are capable of obtaining suboptimal networks
which nevertheless prove statistically indistinguishable
from the forms observed in nature and quite different from
the absolute minima [Rodriguez-Iturbe and Rinaldo, 1997].
Indeed, we believe that the worse energetic performance
and yet the better representation of the patterns of nature are
thought of as mimicking the myopic tinkering of evolution-
ary processes; indeed, you may not have a blueprint, but
you jump on a selective advantage once you feel it however
myopic the ‘‘watchmaker’’ may be (as opposed to the blind
watchmaker, whose aimless tinkering inspired a beautiful
metaphor [Dawkins, 1988]).

5. On a Few (Biological) Implications

[36] Here we show that some of the properties of span-
ning networks that we have studied may, indeed, have

biological implications. In particular, we address typical
allometric scaling relationships, that is, power laws (with
noninteger scaling exponent) relating measures of metabolic
rates of living organisms with their body mass. This is done
by analyzing the general features of spanning networks
serving an assigned volume [West et al., 1997, 1999a,
1999b; Banavar et al., 1999, 2002, 2003; Brown et al.,
2000; Maritan et al., 2002].
[37] We consider a single network source that services LD

sinks uniformly distributed in a D-dimensional space of
volume V and massM. Each site is connected to one or more
of its neighbors resulting in a transportation network that
spans the system. Such a network may be a well-connected
one with loops (Figure 7a) or merely a spanning tree
(Figure 7b), extreme examples of which are star-like (or
explosion) or spiral structures (Figure 8) [Banavar et al.,
1999]. We begin with the situation in which each sink, x, is
supplied by the source at a steady rate, rx, no less than a
positive value rmin and no larger than a value rmax (rmax *
rmin) both of which do not depend on L. A simple special
case would correspond to a uniform constant rate for all
sinks. Such a system could represent a biological organism
which needs a steady supply of nutrients to all its parts
[McMahon and Bonner, 1983; Peters, 1983; Calder, 1984;
Damuth, 1998]; the sinks represent, e.g., the cells served by
capillaries. The metabolic rate of such a biological organism
is given by B =

P

i2V ri and simply scales as the volume V
or mass M, i.e., / LD. Note that another example is the
inverse problem of the drainage network river where the
sinks represent source areas, ri is the net injection rate and
the network provides routes for transport. Any transporta-
tion network must provide a route from the source to all the
LD sinks and consists of interconnected links in each of
which, in steady state, the flow rate does not change with
time. Each link starts or terminates at the source or a sink.
Let, as usual, the scalar quantity jJbj represent the magni-
tude of the flow on the bth link. The source has an outward
flow, whose rate exactly equals the sum of all the flow rates
into the sinks. At a junction of the links, a conservation law
(exactly of the type employed in equation (11)) for the net
flow holds; the inflow must exactly balance the outflow plus

a

b c d

Figure 6. Four-bond lattice. (a) Four-node arrangement, with indications on the currents that respect
continuity (note that a unit flux is injected at each node); (b) the only four possible trees, corresponding to
cases a = 0, #1, 1, 2. (c) Energy function E(a) versus a in equation (13). (d) Energy functions E(a) versus
a for the cases g = 0.5,0.75, 1, 2 [after Banavar et al., 2002].
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the amount supplied to the sink. This conservation law does
not uniquely determine the flow on each link for an arbitrary
network, as seen above. The degrees of freedom in the
choice of the flow pattern are controlled by the number of
independent loops, equal to (the number of links) # (the
number of sites) +1. The total quantity of nutrients in the
network at any instant of time, C, is simply given by (i.e., is
proportional to)

P

b jJbj.
[38] We begin our discussion by considering a maximal

network (Figure 7a) in which every site (sources plus sinks)
is connected to each of its neighbors. The distance, Lx,
between the source (denoted by O) and any given sink x is
defined to be the minimum number of sinks encountered
among all the routes along the maximal network from O to x
(the standard Euclidean distance from O to x, say jxj, scales
as Lx). As a consequence, two neighboring sites x and y
satisfy the constraint that jLx # Lyj = 0 or 1. We now define
a convention for the orientation of each of the links. The
link between sites x and y is defined to have an orientation
that is directed away from the source. For cases in which
Lx = Ly, the orientation is chosen to be one of the two
possibilities. We define a flow Jb as having a magnitude
equal to jJbj and a sign that is positive if the flow direction
coincides with the link orientation and negative otherwise.
We note that

X

b

Jb Ly # Lx
$ %

¼
X

x

Lxrx ð15Þ

where b is a link oriented from x to y, the summation on the
left-hand side is over all links of the maximal network, rx is
the flow into x minus the flow out of x (and is a positive

quantity) and the sum on the right-hand side is over all
sinks. The left hand side is also equal to

X

b

Jb Ly # Lx
$ %

¼
X

directed

b

Jb; ð16Þ

Figure 7. Network types for the study of biological analogies: (a) well connected with loops and (b) a
subset of Figure 7a which is tree-like and spanning all LD = L2 sites. The cross-hatched area about node 4
indicates some domain A4 serviced by node 4 (an area in D = 2 or a volume for D = 3) which has a
biological meaning described elsewhere. In hydrologic settings it is simply the elementary pixel area that
covers the topographic surface and, in general, works as a supply or as a drainage domain. The term r4 =
r4(A4) represents the injection/delivery proper of node 4. The number circled at every node represents the
topological distance (in link units) to the seed (the sink if the network collects; the source if the network
distributes). L18 refers to the topological distance of node 18 from the source/sink. Here Jb indicates the
flux along the link [after Banavar et al., 1999].

Figure 8. Spanning tree types, connecting N nodes on a
triangular (unit) lattice. (a) Spiral pattern. Its total length LT is
defined as the total (along-link) ‘‘road’’ length (computed
keeping as unit the distance between nodes regardless of
orientation), which turns out to be quite small whereas the
average length L from any node to the seed is very large (L =
(1 + 2 + + + + + N)/(N # 1)); it greatly penalizes the individual
while considerably helping the whole if one thinks, say, of
traveltimes to a target in the sink when particles are seeded in
any node at t = 0 and are moved along the network with
constant velocity. In this case the average length is the mean
traveltime;.(b) Star-like (i.e., explosion) pattern producing a
very large LT because of the large extent of unshared road and
a very small average distance to the sink, L. Explosion
patterns by design favor the individual benefit against the
collective one as mean traveltime to the target is at a
minimum. (c) Typical aggregation tree, spanning and loop-
less, short as a whole (small LT) as well as direct for the
individual (small L) [after Stevens, 1974].

W06D07 RINALDO ET AL.: TREES, NETWORKS, AND HYDROLOGY

11 of 19

W06D07



where the restricted sum on the right hand side is only over
links for which Lx is not equal to Ly. These links comprise
what we define to be a maximal directed network. All viable
directed networks are made up of links which are a subset of
the links in the maximal directed network and yet span the
entire system (or provide routes to each of the sinks from
the source). The following inequalities follow [Banavar et
al., 1999]:

C ¼
X

b

jJbj *
X

directed

b

jJbj *j
X

directed

b

Jbj ¼
X

x

Lxrx; ð17Þ

where in the last step, we use (15) and (16) and the fact that
the RHS of equation (15) is positive. The last term in (17) is a
quantity that is independent of the choice of the flow
configurations. Notice that in equation (17) the equality holds
for the case Jb * 0 on the links belonging to the maximal
directed network, and Jb = 0 otherwise. Furthermore,

X

x

Lxrx * rmin

X

x

Lx ¼ rminL
DhLxi; ð18Þ

where hLxi =
P

xLx/
P

x 1. Because the maximal network is
space-filling and hLxi / hjxji scales as L, the key result is
obtained.
[39] Among spanning trees, B scales at most as CD/(D+1)

and at least as C1/2. In fact, the upper limit, CD/(D+1) is
realized for directed spanning trees as shown above. In
order to obtain the lower bound, let CN be the amount of
nutrients for an arbitrary spanning tree serving N sinks.
Eliminating a sink at the maximum distance from the source
would change each Jb by, at most, an amount rmax. Thus

CN ( CN#1 þ N # 1ð Þrmax ( + + + ( N N # 1ð Þ
2

rmax: ð19Þ

Because N / LD " B, B scales at least as C1/2. This case is
described by a spiral pattern (Figure 8b).
[40] For an efficient network (see, e.g., Figure 7b), for

which C is as small as possible for a given service volume V,
both B and V scale as CD/(D+1). Thus, for D = 3 one obtains
‘‘quarter power’’ scaling via

B / M
D

Dþ1 ð20Þ

This efficient network has all links directed away from the
source (or toward a collection point or the outlet for the river
basin). Indeed,M scales as LD+1 for all directed networks (the
flow in all but the links of the directed maximal network are
necessarily zero in these cases) independent of whether they
have loops or a tree-like structure, as long as Jb is nonnegative
on each link. Such solutions do, indeed, exist and include all
directed trees. These solutions belong to the class of the most
efficient networks in that they lead to the smallest value
of C " M. The application of this result to the problem
of allometric scaling in living organisms, which span
masses that range over 21 orders of magnitude [McMahon
and Bonner, 1983; Peters, 1983; Calder, 1984], is straight-
forward [Banavar et al., 1999].
[41] Interestingly, an application of the limit scaling prop-

erties as a test of optimality has been been proposed for food

webs [Garlaschelli et al., 2003] whose network patterns have
interesting properties [e.g., Montoya and Solé, 2002].
[42] In spite of an impressive array of scales and the

accompanying diverse requirements in the resources needed
for sustaining the organism, a robust feature is that a variety
of biological quantities (generically denoted in the equation
below as B, be it the heartbeat frequency, the lifespan or any
measure of metabolic rates) that are related to blood
circulation, scale algebraically with the mass of the organ-
ism, M, as B / M1/a where a is a scaling exponent and the
constant of proportionality depends on the given organism
[McMahon and Bonner, 1983; Peters, 1983; Calder, 1984;
Schmidt-Nielsen, 1984; Damuth, 1998; Brown, 1995; West
et al., 1997, 1999a, 1999b]. The exponent a is usually and
consistently found to be obtained from the fraction 1/4, i.e.,
quarter powers.
[43] In the above analysis, the mass of an organism, M,

ought to scale at least as the flow volume, C, so that in the
simplest and most efficient scenario, B " M3/4, which is the
central result of allometric scaling. The analysis shows,
however, that the basic result does not require any assump-
tions regarding the hierarchical nature of the network nor
demands a tree-like structure (like in Figure 7b) even
though the presence of a tree would greatly shorten the
total length of the network, thereby increasing its viability
and efficiency. Note that all directed networks, of which
fractal trees are a subset, obey the general rule termed
quarter power law for bodies in space (D = 3) spanned by
a distribution network. This generalizes and reinforces the
result of West et al. [1997] who find that the allometric
property responds to particular optimal selections. Thus on
assuming that network flows yield a proxy of mass and of
total metabolic rates [West et al., 1997, 1999a, 1999b;
Enquist et al., 1998], we predict that quarter power allome-
tric scaling in living organisms does not need specific
assumptions on the fractal-like nature of the network
because the key size-form relations are applicable to most
transportation networks; they only need to be directed.
[44] We shall later investigate the degree of inefficiency

in the network structure that quarter power laws can
tolerate. It is worthwhile to mention here, however, ongoing
discussions about the so-called big picture [West et al.,
1999a] on the origins and the departures from allometric
scaling in living organisms. The above exact results do not
pretend to explain the complexity of living organisms. They
simply suggest that complex hierarchical models of tree-like
structures are not needed to produce allometric scaling once
one assumes that flow volumes supplying metabolites to a
given number of ‘‘sites’’ provide a proxy for mass and
metabolic rates. Thus hierarchical constructs at best explain
the 3/4 law for very particular cases. Incidentally, the
commonly observed fluctuations in the range 2/3–3/4 in
allometric scaling exponents for different macroecological
data sets (that prompted doubts on the very existence of
universal allometric scaling [see, e.g., Dodds et al., 2001])
have been suggested to stem from the relative balance (or
lack of it thereof) of supply and demand of metabolites
delivered as [Banavar et al., 2002]

B / supply

demand
M

& ' D
Dþ1

ð21Þ
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which obviously decays into equation (20) if supply and
demand are balanced. Directed transportation of metabo-
lites, however, is seen as the key and common reason for the
occurrence of quarter power scaling.

6. Hydrologic Allometry

[45] We now turn to a test of the theoretical tools within
the hydrologic context of river networks. How strong
should the departure from directedness be to be able to
alter the central allometric tendency of the network? In
rivers, the role of the metabolic rate is taken by total
contributing area, ax, at any site x within the basin. As seen
in the introduction, at the xth location, area is defined by the
recursion relation ax "

P

j2nn xð Þ aj + 1, where nn(x) are the
nearest neighbors of x that drain into x through appropriate
steepest descent drainage directions (note that this is an
alternative way of defining total contributing area, avoiding
the introduction of adjacency matrices). Note also that the
added unit is the area of the elementary pixel, i.e., in the
simplest picture area simply surrogates the total number of
nodes connected to x. Thus area ax at any site x (or the total
number of connected sites) plays the role of the basin
metabolic rate, B, whereas the analog of mass, M, is defined
by the quantity

M /
X

y xð Þ
ay ð22Þ

where y(x) indexes the collection of all sites y connected to x
[Maritan et al., 2002]. Note that

P

y xð Þ ay does not add to ax,
nor does it include it. Allometric plots relate M and B via a
power law, M / Bg, and their hydrologic counterpart yields

X

y xð Þ
ay / agx ð23Þ

We recall that for directed networks in two dimensions (D = 2),
the key prediction [Banavar et al., 1999] is that the lowest
attainable value is g = (D + 1)/D = 3/2. Our result technically
predicts that, for efficient drainage basins, a log-log plot of
M /

P

y xð Þ ay versus B / ax ought to have a slope of about
3/2 because D = 2.
[46] Note that the fractal nature of river networks would

stem from the fact that embedded within any basin are other
subbasins with similar features reflected in linked scaling
exponents [Rinaldo et al., 1999a]. The mass M in equation
(22) associated with any site x relates to its area ax via
[Maritan et al., 2002]

X

y xð Þ
ay / ax hLxi ð24Þ

where hLxi is the mean distance of the sites within the
subbasin to their outlet x measured along the network; thus
it is only from this point that we restrict our attention to the
case of spanning trees. In this case, if y is upstream of x
there is only one path joining y to x along the network. Such
being the case, we argue that

hLxi / ahx ð25Þ

where h is the so-called Hack’s exponent relating the
upstream length to the total contributing area. Hack’s law,
whose validity and meaning have been much debated in the
scientific literature [e.g., Mandelbrot, 1983], is commonly
defined by relating mainstream length, say L, to drainage
area A at the closure rather than everywhere within the
basin. The validity of equation (25) also within nested
subbasins has been suggested to constitute a strong version
of Hack’s law and a proof of the embedded self-similarity of
the network structure resulting in a fractal structure of river
basins [Rigon et al., 1996]. Thus the mainstream, sometimes
rather arbitrarily defined but most commonly taken as the
longest flow path length (and thereby a single flow path), is
proportional to the mean length upstream of x, i.e., L / hLxi.
From equations (24) and (25) one obtains [Maritan et al.,
2002]

g ¼ 1þ h ð26Þ

which exceeds the limit scaling g = 3/2 whenever h > 1/2.
Notice that Hack’s exponent h would be equal to 1/2 only if
geometric similarity is to be preserved as a basin increases
in area while preserving its shape, and this corresponds to
the limit scaling for most efficient networks. Typical
observational values range about h " 0.57 [Hack, 1957]
and this was seen as a clear indication of the fractal nature
of rivers [Mandelbrot, 1983]. Note that OCNs have, indeed,
h = 0.57 ± 0.02 and thus feasible optimality has been
suggested to imply Hack’s law [Rigon et al., 1998].
[47] Figure 9 shows typical allometric plots for four river

basins of various sizes, geology, vegetational state and digital
terrain map properties. From top to bottom: Guyandotte
(WV), area 2088 km2, mainstream length L = 145.1 km,
g = 1.56 ± 0.02; Tirso (Italy), 2090 km2, L = 103.0 km, g =
1.53 ± 0.02; Johns Creek (KY), 484 km2, L = 68.8 km, g =
1.59 ± 0.02; Moshannon Creek (PA), 393 km2, L = 49.7 km,
g = 1.52 ± 0.01 [after Maritan et al., 2002]. The observed
values of g range from 1.50 to 1.59, and the scatter of the
individual curves (which we term intranetwork scaling to
suggest that the noise within same ‘‘species’’ is studied),
relative to the nested subbasins of the same basin, is remark-
ably small, and yet the differences on the scaling exponents
are noticeable. From an extended survey of field data,
it clearly emerges that individual networks conform to
scaling laws that can significantly differ from the lower
bound g = 3/2 [Maritan et al., 2002].
[48] To investigate the extent of the deviations of g from

its lower limit we have tested a broad class of statistical and
deterministic network models, some amenable to exact
solution. These include, for comparison, a real network,
the Dry Tug Fork river (CA) (Figure 1a) whose allometric
exponent is g = 1.57 (hence h = 0.57), matching standard
observations [Hack, 1957]. We have studied stochastic
constructs such as the Scheidegger network (Figure 1c),
whose scaling exponents are known exactly [Takayasu et
al., 1988; Huber, 1991] to be g = 5/3 whereas the computed
value is g = 1.67 ± 0.01. Peano’s [1890] network (Figure 1e)
is a deterministic fractal whose main topological and scaling
features have been solved analytically [Marani et al., 1991;
Colaiori et al., 1997]. The exact value is g = 3/2, nicely
reproduced by computations at iterative stages of construc-
tion larger than 10. Optimal channel networks (Figure 1b;
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see also Figure 5b), described in section 3, have fractal
characteristics that are obtained through a specific network
selection process (see, e.g., equation (5). Indeed, one
obtains a rich structure of scaling optimal forms that are
known (section 3) to closely conform to the scaling of real
networks, even in the case of unrealistic geometric bound-
aries (here g = 1.57 ± 0.01 [Rodriguez-Iturbe et al., 1992b;
Maritan et al., 1996a, 1996b; Rodriguez-Iturbe and Rinaldo,
1997]). Hot OCNs (Figure 1e) are rather undirected trees.
They yield g = 1.68 ± 0.1 [Rodriguez-Iturbe and Rinaldo,
1997]. Other examples have been studied and are dealt with
elsewhere [Maritan et al., 2002].
[49] In all cases, excellent agreement is found between the

directly determined value of the allometric scaling exponent
and its relationship to Hack’s exponent. Moreover, in all
cases g * 3/2 as predicted [Banavar et al., 1999]. We thus
confidently conclude that the allometric property is, indeed,
distinctive of the network structure, differently from topo-
logical measures (note, for instance, that Peano’s Horton
ratios and Tokunaga matrices are computed exactly and are
indistinguishable from those of OCNs or real rivers) whose
matching ought to be interpreted as a necessary, rather than
sufficient, condition when comparing network structures.
[50] An analog of interspecies allometric scaling corre-

sponds, in this context, to an ensemble average of data from
different populations of networks. In river basins, we have
seen that g varies in the range 1.50–1.60 with relatively
small but detectable scatter in the individual curves (i.e., for
a single fluvial network). The ensemble average built by
mixing different subbasins nested in the same basin with
other basins (specifically, those shown in Figures 1a–1e)
and their subbasins, is shown in Figure 10. Though the
scatter is higher, mimicking that of most macroecological
data sets, the mean value of g is statistically indistinguish-

able from 3/2. Thus quarter power scalings (of which the
scaling exponent 3/2 is the analog in two dimensions)
simply emerge as the central tendency. This surprising result
[Maritan et al., 2002] matches an important, probably
overlooked result. In fact, it has been shown that the
equivalent of an ensemble average of Hack’s exponents
(deduced from the mainstream length-total area plots of a
very large number of different basins and their nested
subbasins regardless of whether channeled or hillslope
lengths were accounted for, and covering over 11 orders
of magnitude) yields values indistinguishably close to h = 1/
2 [Montgomery and Dietrich, 1992], a fact that puzzled
investigators for some time [Rodriguez-Iturbe and Rinaldo,
1997]. This effectively corresponds to an ensemble average
of different network shapes, yielding an ‘‘interspecies’’
allometric scaling exponent g = 1 + h " 3/2. Notice that
infinite topologically random networks also have asymptot-
ically h = 1/2 and hence g = 3/2 [Mesa and Gupta, 1987].
Effects of ensemble averaging of networks both in the bulk
or at the boundaries of multiple-outlet optimal networks
where competition for drainage occurs because of the
constraint of the fixed total area being drained have also
been studied [Maritan et al., 2002] and the above results are
unambiguously confirmed.
[51] Thus individual network forms exhibit allometric

exponents that are sensitive probes of the network structure,
which are directly related to the underlying fractal structure
of the network (i.e., intraspecies scaling). Ensemble aver-
ages, the analog of interspecies scalings, smooth out details,
enhance the scatter and lead to an g exponent that
approaches the limiting value obtained for directed net-
works. Our results demonstrate the robustness of the central
tendency of allometric scaling in network structures. How-
ever, the sensitivity in probing the geometrical variability of
network shapes is much refined when studying homoge-
neous geometries reflected in consistent deviations of the
allometric scaling exponent from the limit values g = 3/2
(D = 2) for planar networks or g = 4/3 (D = 3) in plants
and living organisms. We thus suggest that unavoidable
fluctuations in the geometrical arrangements of the parts
and the whole of a living network do not alter the basic
tendency provided by biological needs. Thus the ubiquity

Figure 9. Network allometry: Log-log plots of
P

y xð Þ ay
versus ax for four different basins. These are analog to
allometric plots relating M and B via a power law, M / Bg.
Here g = 1 + h where h is Hack’s exponent [after Maritan et
al., 2002]. Plots have been arbitrarily shifted vertically to
distinguish the different basins.

Figure 10. Ensemble average of all networks in Figures
1a–1e. Note the limited scatter around the slope g = 1 + h =
3/2, which shows that the ensemble average of h, is indeed,
h = 0.5 [after Maritan et al., 2002].
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of the so-called quarter power law may be a consequence
of the robustness of network properties with respect to
geometrical variations in systems where supply rates are
independent of body mass. Thus the purported recurrence
of the so-called 3/4 law may consist of chance, owing to
the robustness to noisy geometry and topology, and necessity
dictated by supply-demand balance [Banavar et al., 2002].

7. Network Structures From Other Selection
Principles

[52] The rules investigated in the previous sections sug-
gest that the convexity of the function defining the selective
advantage of different hydrologic network structures mat-
ters. In the case of fluvial basins, the basic concavity of the
energy E is provided directly by the physics of the land-
scape evolution problem. We wonder whether similar prin-
ciples may apply to the selection of different network
structures by natural processes of different nature. Indeed,
many complex systems, from the Internet to metabolic or
ecological ones, can be mathematically described by net-
works of interacting elements, and loops are ubiquitous
[e.g., Bollobas, 2001; Barabási and Albert, 1999; Albert
and Barabási, 2002; Barabási et al., 2000, 2002; Montoya
and Solé, 2002; Dorogovtsev and Mendes, 2000, 2002;
Newman, 2003; Song et al., 2005]. We thus wonder whether
meaningful topologies of complex networks may emerge as
the result of selection principles.
[53] Here we suggest, following Colizza et al. [2004], that

a class of optimal models evolved by local rules and chosen
according to global properties of the aggregate yields unex-
pected behavior in the transition from different types of
optimal topologies. Random or scale-free arrangements and
small-world phenomena [Watts and Strogatz, 1998; Watts,
1999] are then seen as particular cases emerging from
selective pressures toward connectivity and/or directedness.
[54] To select arbitrary structures, the evolving network

maintains a fixed number of nodes n, as well as the number of
links l within a context where the degree of outgoing links
from every node is arbitrary. The ‘‘energy’’ function E of our
selective algorithm introduces a new definition of distance on
a graph that accounts not only for the length of the shortest
path between two nodes, but also for the degrees kp of the
nodes p encountered along such path, i.e., the number of
nodes to which p is connected [Colizza et al., 2004]:

E ¼
X

i<j

dij; ð27Þ

where i and j are nodes of the system, and

dij ¼ min
P

X

p2P:i!j

kap : ð28Þ

P is a path from site i to site j of the system, and p is any
node belonging to such path; the distance dij is the
minimum of the sum of connectivities kp

a, evaluated along
the path P from i to j, over all the possible paths connecting
i to j. Note that in the particular case of loopless tree-like
structures, such path is unique and dij =

P

p2P:i!j kp
a. The

above, new definition of weighted graph distance is meant
to reproduce the conflict between two opposite and

competitive trends: on the one extreme (a ! 0), the
highest connectivity among the elements of the system
minimizes distances regardless of ‘‘traffic’’ to simply reduce
the distance between vertices; on the other, the necessity to
avoid (or, on the contrary to favor, e.g., for a < 0) problems
arising from highly connected nodes (some sort of bottle-
necks) along the path from i to j. The weighted distance
grants the functional, depending on a the concave or
convex character that proved so important for the tree/
network character of hydrologic networks (section 4).
[55] A continuous transition is warranted by the param-

eter a whose value controls the convexity of the functional.
As above, chance is assumed to act through local, random
changes of connectivity and necessity acts through a selec-
tion based on the global E value. All relevant features are
computed via the proper adjacency and the related Lap-
lacian matrices [Newman, 2003], including spectral proper-
ties of their eigenvalues, degree distributions, clustering
coefficients and so on. Suffice here to mention that scale-
free networks are defined by the proportion P(k) of nodes
having k links decaying like P(k) " k#g F(k/K) where K is a
suitable cutoff related to the largest hub [Barabási and
Albert, 1999], whereas small-world constructs exhibit very
small path lengths coupled with large clustering [Watts and
Strogatz, 1998]. Many recent contributions have addressed
the related features of observed network structures both
natural and artificial, like, e.g., the Internet [Barabási et al.,
2000; Yook et al., 2001], cellular and metabolic networks
[e.g., Barabási, 2002], food webs [Montoya and Solé, 2002;
Garlaschelli et al., 2003] and the Web of scientific collab-
orations [Barabási et al., 2002; Newman, 2003] among
others.
[56] Notice that scale-free networks from optimal

design have already been studied [Valverde et al., 2002;
Venkatasubramanian et al., 2004] regardless of whether
optimal design would pertain to stationary states of some
general dynamics. Loops complicate the general picture, but
the suggestion that an optimal balance of directedness (i.e.,
network diameter) and connectivity may, indeed, yield
to optimal scale-free constructions is rather revealing
[Valverde et al., 2002]. Consider, for example, a model of
transportation network. One would like to achieve the
highest possible connectivity between the nodes, connecting
each one to each other, in order to reduce the distance
between them and, consequently, the costs of transportation.
At the same time, it is wasteful to wire everything with
everything else, because of the emergent problems of traffic
passing through the highly connected nodes (or hubs), with
the result of slowing down the transportation and so
reducing its efficiency. Indeed, there could be cases in
which it is more convenient to cover longer paths along
the graph, instead of the shortest one (the graph distance,
i.e., the minimum number of links necessary to move from
one site to another), in order to avoid hubs along the path.
The energy function E in equation (27) takes into account
all these aspects, considering distance based on the sum of
the nodes’ degrees to the power a encountered along a path
connecting two sites. The usual graph distance is recovered
in the case a = 0.
[57] The optimization method used in the numerical

simulations is a regular Metropolis scheme at zero temper-
ature of the type employed to generate the OCNs in Figure 4.
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It implies the following steps: (1) generation of a random
initial configuration (say s) with fixed n and l, (2) random
rewiring (s ! s0), (3) connectedness control, and (4)
energetic control. For step 2, specifically, a link connecting
the sites i and j is randomly chosen and substituted with a
link from i to a site k, not already connected to i, extracted
with uniform probability among the sites of the system,
yielding a new configuration s0. In this way, the number of
links l, as well as the size of the system, remains constant
during the minimization. At step 3, if the graph is not
connected after rewiring, step 2 is repeated. During step 4,
the new value of E(s0) is calculated. The new configuration is
accepted only if it is energetically favorable, i.e., only if
E(s0) < E(s); otherwise the change is rejected, and we go back
to step 2. Notice that the zero temperature setting (no
unfavorable changes may be accepted) insures feasible
optimality of the emerging network structure. The minimi-
zation algorithm stops after F consecutive failed changes
on the network; here F = n(n # 1), so that, on average,
every pair of vertices is allowed to change its state
(connected or not) twice. Every simulation is repeated
200 times, starting with different random initial configu-
rations and varying the size n of the system and, for each
size, different values of the ratio l/n.
[58] Let now consider networks with loops, so that l >

n # 1. The optimal topologies display distinct structures
as the network parameter l/n varies. Two different
regimes are observed. The first occurs for values of r =
l/n close to 1: the system displays a critical behavior and
the type of network obtained is a truncated scale-free
network with a sharp cutoff at some characteristic scale
dependent on the size n of the system. The second
regime occurs at larger values of l/n, and the optimal

degree distribution tends to peak around the average
value of k, hki. Samples of network topologies obtained
through such an optimization are shown in Figure 11 for
different values of a and l/n [Colizza et al., 2004].
[59] Thus, depending on l/n, one may select scale-free

networks that display the presence of some highly
connected nodes together with many peripheral and rela-
tively unconnected sites (Figures 11a and 11c), or a network
in which almost every node has the same degree k = hki
(Figures 11d and 11f). The nature of this transition can be
investigated by looking at the clustering coefficient C =
hCii, defined as the average over the whole network of the
clustering coefficient Ci of every node, Ci = li/(ki(ki # 1)/2)
where li is the number of existing links between the
neighbors of node i, and ki(ki # 1)/2 is the total number
of pairs between the neighbors. For a > 1, the system
undergoes a clear phase transition as the value of the ratio l/
n increases from a regime characterized by zero clustering,
to one in which clustering exist (Figure 12). This feature
parallels exact results found by Erdos and Renyi for random
networks [Bollobas, 2001].
[60] Although the ratio l/n can assume very small values,

the network does not display the critical behavior observed
for a < 1, where topologies are characterized by the
presence of trafficked and interconnected hubs because of
the large value of a. In this regime, the competition between
the minimization of the graph distance regardless of the
increase in node connectivity, on the one hand, and the
minimization of node connectivity on the other, is dominated
by the latter. The system therefore tries to minimize the
degree of each node and the result is a peaked distribution
around the mean value hki, with nontrivial topology charac-
terized by zero clustering. The network, in fact, self-

a b c

d e f

Figure 11. Sample of optimal networks: (a) a = 0.4, l/n = 1.05, n = 100; (b) a = 0.7, l/n = 1.05, n = 140;
(c)a = 0.5, l/n = 2.0, n = 50; (d)a = 4.0, n = 68, l = n# 1; (e)a = 0.9, n = 156, l = n# 1; (f)a = 2.0, l/n = 1.05,
n = 100 [after Colizza et al., 2004].
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organizes in such a way as to avoid clustering, since this
would result in an increase of E. When the ratio l/n reaches a
critical value (dependent on a), the system has no more
advantage in creating loops of length greater than 3, and is
forced to select triangles resulting in a clustering coefficient
small but different from zero. Overall, optimal networks
characterized by a clustering coefficient different from zero
are selected as opposed to ones with no clustering at all.
[61] Note that in all regimes obtained, the optimal

topology observed differs from a random network [e.g.,
Bollobas, 2001]. In fact, the characteristic path length L of
optimal networks probes thoroughly structural properties. L
is defined as the average, over all the possible pairs in the
system, of the graph distance between pairs of nodes. In
the whole interval of a investigated by Colizza et al. [2004],
the characteristic path length of the optimal configuration,
say Lopt, is comparable to, or smaller than, the random
analog Lrand. Comparing the results obtained for the clus-
tering coefficient C and for the characteristic path length L,
it was also suggested that there are intervals of a and l/n in
which Lopt is very small with respect to Lrand while Copt ,
Crand, so that the network displays the so-called small-world
effect [Watts and Strogatz, 1998].
[62] Note, finally, that the idea behind some kind of

selection of natural network forms is reinforced by the
recent finding that they often consist of self-repeating
patterns on all length scales [Song et al., 2005]. This result
is achieved by the application of a renormalization proce-
dure that coarse grains the network. Interestingly, models of
preferential attachment [Barabási and Albert, 1999; Yook et
al., 2001] do not reproduce the invariance properties ob-
served in nature [Song et al., 2005], whereas the optimized
structures described in this section do [Colizza, 2004] very
much like in the river case [Rodriguez-Iturbe and Rinaldo,
1997, section 5.10]. For a comment relevant to the possible
role of selection, see also Strogatz [2005].

8. Conclusions

[63] The models analyzed in this paper, in spite of their
simplicity, seem to capture several features of networks in

nature. Though by no means exhaustive, our results show
consistently that selective criteria (either derived from the
physics of the phenomena or purely speculative) blend
chance and necessity as dynamic origins of recurrent
network patterns. The main conclusions are as follows.
[64] 1. Networks resulting from erosional dynamics in

fluvial landscapes are exactly related to system configura-
tions arising from the minimization of total energy dissipa-
tion. A remarkable feature of optimal channel networks is
that they originate from an elevation field such that a local
slope-area relation holds at any point, and the set of
drainage directions corresponds to a given loopless net-
work. Each loopless spanning tree, in fact, proves a local
minimum of the total energy dissipation;
[65] 2. The role of selective pressures as a possible cause

of emergence of the features observed in complex networks
has been reviewed both in the cases of loopless and looping
networks. In the latter case we show that several distinct
networks structures may emerge, among which scale-free
arrangements appear. Degree distributions, clustering coef-
ficients and average path lengths of the selected aggregates
show collectively the emergence of nontrivial phase tran-
sitions with increasing links-to-nodes ratios. Different fea-
tures like scale-free or small-world networks are obtained
for particular cases.
[66] Our main conclusion is thus that the emergence of

the structural properties observed in natural network pat-
terns may not be necessarily due to embedded rules for
growth, but may rather reflect the interplay of dynamic
mechanisms with an evolutionary selective process. This
has implications even for hydrologic research, because
many landforms originated by the collection or the distri-
bution of hydrologic runoff (from riverine to tidal or deltaic
patterns) might, indeed, be classified according to the
compliance to the above mechanisms.
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Figure 12. Phase transition in the clustering coefficient of the optimal configuration Copt, normalized to
the random one Crand. Results are for network size n = 70 and values of (left) a = 0.4 and (right) a = 2.0
[after Colizza et al., 2004].
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