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The search for species associations is one of the classical problems of community
ecology. This article proposes to use Kendall’s coefficient of concordance (W ) to identify
groups of significantly associated species in field survey data. An overall test of indepen-
dence of all species is first carried out. If the null hypothesis is rejected, one looks for groups
of correlated species and, within each group, tests the contribution of each species to the
overall statistic, using a permutation test. A field survey of oribatid mites in the peat blanket
surrounding a bog lake is presented as an example. In the permutation framework, an a
posteriori test of the contribution of each “judge” (species) to the overall W concordance
statistic is possible; this is not the case in the classical testing framework. A simulation
study showed that when the number of judges is small, which is the case in most real-life
applications of Kendall’s test of concordance, the classical χ2 test is overly conservative,
whereas the permutation test has correct Type I error; power of the permutation test is
thus also higher. The interpretation and usefulness of the a posteriori tests are discussed
in the framework of environmental studies. They can help identify groups of concordant
species that can be used as indices of the quality of the environment, in particular in cases
of pollution or contamination of the environment.

Key Words: A posteriori tests; Environmental studies; Kendall W ; Oribatid mites; Per-
mutation test; Power; Simulation study; Species associations; Type I error.

1. INTRODUCTION

The search for species associations is one of the classical problems of community ecol-
ogy. Summarized in a seminal review article by Whittaker (1962), an unfinished debate raged
during the 20th century between the tenants of the association-unit theory who believed that
ecological communities are natural units that exist independently of human perception and
statistical analysis (Pavillard 1912; Whittaker 1956), and those of the individualistic hypoth-
esis who saw species associations as resulting from the coincident relationship of species
to environmental forcing variables (Gleason 1926).
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Ecologists are interested in species associations as a conceptual framework to synthe-
size environmental characteristics. When associations have been found, one can concentrate
on finding the ecological requirements common to most or all members of an association
instead of having to describe the biology and habitat of each species individually. In an in-
verse approach, species associations may be used to predict environmental characteristics.
Associations may be better predictors of environmental conditions than individual species
because they are less subject to sampling error.

Operational concepts of association refer to groups of species that are “significantly”
found together, without this implying necessarily any positive biological interaction among
them. In other words, an association is simply a group of species (or taxa pertaining to some
other systematic category) recognized as a cluster following the application of a clearly
stated set of rules. The search for associated groups of species can be based upon presence-
absence (e.g., Fager and McGowan 1963; Jackson, Somers, and Harvey 1992) or abundance
data. A review of statistical methods for the study of species associations was presented by
Legendre and Legendre (1998, sec. 7.5 and 8.9).

Legendre and Legendre (1998, p. 292) described the difficulties involved in comput-
ing correlation coefficients based upon community composition (i.e., species abundance)
data. The difficulties are due to the highly positively skewed frequency distributions of the
species abundances across sites, a phenomenon exacerbated by the high frequency of zeros
in many community composition data matrices. Legendre and Gallagher (2001) showed
how to transform community composition data in such a way as to make them suitable for
statistical analysis through principal component or canonical redundancy analysis which,
for untransformed data, preserve Euclidean distances among the objects. The transforma-
tions also produce acceptable projections of the correlations among species in principal
component space. They will be used as part of the methodology described in this article to
search for species associations using quantitative community composition data.

This article proposes to use Kendall’s coefficient of concordance (W ) to identify sig-
nificantly associated groups of species in field survey data. Starting with an appropriately
transformed species abundance data table, the strategy is the following: (1) conduct an over-
all test of independence of all species in the study. (2) If the null hypothesis is rejected, look
for groups of correlated species. (3) Within each group, test the contribution of each species
to the overall statistic, using a permutation test. Results of numerical simulations will also
be presented to estimate the Type I error and power of the classical and permutation tests
of W , as well as for the new a posteriori tests of concordance of individual species.

2. ECOLOGICAL EXAMPLE: ORIBATID MITES

Oribatid mites (or beetle mites; order Acarina, suborder Oribatida) are one of the most
abundant groups of arthropods in the world. They are very numerous in humus and moss
and play a key role in the recycling of organic matter, which would be much slower without
them. Their action has important consequences on the fertility of soils and the productivity
of terrestrial areas of the planet. Oribatid mites are very small: .1 to 1.5 mm in length.
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In June 1989, my colleague Daniel Borcard obtained 70 soil cores from a small, 10 ×
2.6-meter area in the peat blanket surrounding a bog lake, going from the edge of the forest
to the open water of the lake (see Figure 5, p. 242). Lac Geai is located on the territory of
the Station de Biologie des Laurentides (46◦N, 74◦W). The mites were extracted, identified
to species, and counted. Borcard identified 49 species and estimated their density to about
72,000 individuals per square meter. The spatial and environmental determinants of the
mite community structure variation were analyzed in detail by Borcard, Legendre, and
Drapeau (1992), Borcard and Legendre (1994), and Borcard, Legendre, Avois-Jacquet, and
Tuomisto (2004). The species and environmental data are freely available to researchers on
the author’s lab Web site at http://www.bio.umontreal.ca/legendre/.

The spatial variation of the 35 species represented by more than a few individuals
is re-examined here. The ecological questions are the following: Are the 35 species dis-
tributed independently of one another across the study area, or are they significantly and
positively associated into recognizable groups of species? Can these species be combined to
form indicators of the environmental conditions in the 70 soil cores? The above-mentioned
articles had evidenced a major, nonlinear gradient in species composition along the 10-
meter dimension of the sampling area (vertical direction in Fig. 5). The environmental
conditions (abundance of shrubs, substratum microtopography, substratum density, and hu-
midity) changed in that direction; they are controlled by the amount of water in the peat
blanket, which increased from the edge of the forest to the open lake water.

Prior to concordance analysis, the mite abundance data were transformed using the four
transformations proposed by Legendre and Gallagher (2001): the chord, chi-square, species
profile, and Hellinger transformations were used. Because all results were very similar and
led to the exact same species associations, the Hellinger transformation will be used for
the results described in this article. The Hellinger transformation consists of two steps:
(1) express each abundance value as a proportion with respect to the total sum of animals
collected at a site, and (2) take the square root of that proportion. This transformation is
such that the Euclidean distance computed among sites for the transformed data is equal
to the Hellinger distance (Rao 1995) for the untransformed data. The Hellinger distance is
an asymmetric measure of association; it is appropriate for community composition data
containing many zeros (Rao 1995; Legendre and Legendre 1998; Legendre and Gallagher
2001). The purpose of the square root, which is the second step of the Hellinger transfor-
mation, is to reduce the importance of the very high species abundances. It does not affect
the results of the Spearman correlations or the Kendall coefficient of concordance that will
be computed in the following, but it does affect the results of principal component analy-
sis. The Hellinger-transformed species abundance data file will be used in all calculations
reported in Sections 9 and 10.

3. THE KENDALL COEFFICIENT OF CONCORDANCE (W)

Kendall’s coefficient of concordance (W ) is a measure of the agreement among several
(p) judges who are assessing a given set of n objects. Depending on the application field,
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the “judges” can be variables, characters, and so on. They are species in the present article.
Simulations were carried out (Sections 6 and 7) to empirically compare the classical χ2

test of the coefficient of concordance to a permutation procedure. When programming the
permutation test for W , it was realized that different permutation strategies could be used.
One of these strategies allows users to carry out a posteriori tests of the contributions of the
individual judges to the overall concordance statistic. A posteriori tests are possible only in
the permutation framework.

There is a close relationship between Friedman’s two-way analysis of variance without
replication by ranks and Kendall’s coefficient of concordance. They address hypotheses
concerning the same data table and they use the same χ2 statistic for testing. They differ
only in the formulation of their respective null hypothesis. Consider Table 1, which contains
the data of the illustrative example of Section 9. In Friedman’s test, the null hypothesis is
that there is no real difference among the n objects (sites), which are the rows of the
data table. Under H0, they should have received random ranks from the various judges,
so that their sums of ranks should be approximately equal. Kendall’s test focuses on the p

judges (species). If the null hypothesis of Friedman’s test is true, this means that the judges
have produced rankings that are independent of one another. This is the null hypothesis of
Kendall’s test.

• Friedman’s H0: The n objects (sites) are drawn from the same statistical population.
• Kendall’s H0: The p judges (species) produced independent rankings of the objects.

There are two ways found in textbooks for computing Kendall’s W statistic (upper and
lower forms of Equations (3.1) and (3.2)); they lead to the same result. S or S′ is computed
first from the row-marginal sums of ranks Ri received by the objects (Siegel 1956: p. 234;
Siegel and Castellan 1988, p. 266):

S =
n

∑

i=1

(

Ri − R
)2

or

S′ =
n

∑

i=1

R2
i = SSR. (3.1)

S is a sum-of-squares statistic over the row sums of ranks Ri. R is the mean of the Ri

values. Following that, Kendall’s W statistic can be obtained from either of the following
formulas:

W =
12S

p2(n3 − n) − pT
or

W =
12S

′ − 3p2n(n + 1)2

p2(n3 − n) − pT
, (3.2)

where n is the number of objects, p the number of judges. T is a correction factor for tied



230 P. LEGENDRE

Table 1. Illustrative example. Upper panel: Hellinger-transformed abundances of four mite species at
10 sites selected along the long axis of Figure 5. The Hellinger transformation was computed
for the full dataset (70 sites). Lower panel: the same data transformed into ranks (with ties);
last column: sum of the ranks for each site.

Hellinger-transformed abundances

Species 13 Species 14 Species 15 Species 23

Site 4 .25087 .40538 .24380 .08362
Site 9 .40324 .25503 .39303 .00000
Site 14 .26577 .47620 .27267 .06097
Site 22 .32350 .63337 .47003 .00000
Site 31 .26312 .29089 .39223 .08771
Site 34 .33675 .44836 .53727 .10153
Site 45 .07956 .19487 .19487 .11251
Site 53 .00000 .18570 .26261 .11744
Site 61 .00000 .15430 .15430 .00000
Site 69 .12769 .62987 .27584 .34578

Ranks (species-wise)
Sum of ranks

Species 13 Species 14 Species 15 Species 23 Ri

Site 4 5 6 3 5 19.0
Site 9 10 4 8 2 24.0
Site 14 7 8 5 4 24.0
Site 22 8 10 9 2 29.0
Site 31 6 5 7 6 24.0
Site 34 9 7 10 7 33.0
Site 45 3 3 2 8 16.0
Site 53 1.5 2 4 9 16.5
Site 61 1.5 1 1 2 5.5
Site 69 4 9 6 10 29.0

ranks (Siegel 1956, p. 234; Siegel and Castellan 1988, p. 266; Zar 1999, p. 446):

T =
m

∑

k=1

(

t3
k − tk

)

(3.3)

in which tk is the number of tied ranks in each (k) of m groups of ties. The sum is computed
over all groups of ties found in all p columns (judges) of the data table.

Kendall’s W statistic is an estimate of the variance of the row sums of ranks Ri divided
by the maximum possible value the variance can take; this occurs when all judges are in
total agreement; hence 0 ≤ W ≤ 1. To derive the formulas for W given above, one has to
know that the sum of all ranks in the data table is pn(n + 1)/2 and that the sum of squares
of all ranks is p2n(n + 1)(2n + 1)/6. Friedman’s χ2 statistic is obtained from W using the
formula:

χ2 = p(n − 1)W. (3.4)

This quantity is asymptotically distributed like chi-square with (n−1) degrees of freedom.
This allows us to test W for statistical significance. When n ≤ 7 and p ≤ 20, Siegel and
Castellan (1988, p. 270, 365) recommended using their table of critical values for W, which
was obtained by the method of complete permutations.
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There is a close relationship between Spearman’s correlation coefficient rS and
Kendall’s W statistic, which will prove useful in Section 5: W can be calculated directly
from the mean (r) of the pairwise Spearman correlations rS using the following relationship
(Siegel and Castellan 1988, p. 262; Zar 1999, p. 448):

W =
(p − 1)r + 1

p
, (3.5)

where p is the number of variables (or judges) among which Spearman’s correlation coeffi-
cients are computed. For two variables (or judges) only, W is simply a linear transformation
of rS : W = (rS +1)/2. In that case, a permutation test of W for two variables is the exact
equivalent of a permutation test of rS for the same variables.

The relationship described by Equation (3.5) clearly limits the domain of application of
the coefficient of concordance to data that are all meant to estimate the same general property
of the objects: judges are only considered concordant if their Spearman correlations are
positive. Two judges that give perfectly opposite ranks to a set of objects have a Spearman
correlation of –1, hence W = 0 for these two judges; this is the lower bound of the
coefficient of concordance. For two judges only, rS = 0 gives W = .5. So the coefficient
W applies well to rankings given by a panel of judges called in to assess overall performance
in sports, or quality of wines or restaurants, or to rankings obtained from criteria used in
quality tests of appliances or services by consumer organizations, and so on. It does not
apply, however, to ordinary variables used in multivariate analysis. Zar (1999), for example,
uses wing length, tail length and bill length of birds to illustrate the use of the coefficient
of concordance. These data are appropriate for W because they are all indirect measures
of a common property, the size of the birds. One should not conclude from that example
that W should be used in morphometric or numerical taxonomic studies: in those fields, a
negative and a positive correlation have equal importance and should play the same role in
the analysis; this is not the case with W .

In ecological applications, one can use the abundances of various species as indicators
of the good or bad environmental quality of the sampling sites. One should be careful that
the study only includes sites that belong to the same type of environment, since different
species often characterize different types of environment. If a group of species are used
to produce a global index of the overall quality (good or bad) of the environment at a
series of sites, only the species that are significantly associated and positively correlated
to one another should be included in the index, since different groups of species may be
associated to different environmental conditions. The example in Section 10 will show that
the a posteriori tests of concordance, described in Section 5, can help identify the groups
of species that are positively associated to one another along a dominant environmental
gradient. Only the positively associated species can be used to construct indicator functions
of the quality of the environment.

4. PERMUTATION TEST OF W

Does the classical chi-square test of significance ofW have correct Type I error and good
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power? Numerical simulations were used to answer the question empirically (Sections 6
and 7), comparing the classical chi-square test to a permutation test. The overall permutation
test of W will allow us, in turn, to test the contribution of individual judges to the W statistic
(Section 5); this type of a posteriori test is not available in the classical testing framework.

When testing hypotheses using Kendall’s W statistics, the objects are the permutable
units under H0 (H0 is stated in Section 3; the objects are sites in Table 1). For the global test
of significance, the rank values in all judges are permuted at random, independently from
judge to judge. The null hypothesis of this test is the independence of the rankings produced
by all judges. The alternative hypothesis is that at least one of the judges is concordant with
one, or with some of the other judges. The test is one-tailed because it only recognizes
positive associations between vectors of ranks. This can be shown by considering two
vectors with exactly opposite rankings: they produce a Spearman statistic of –1, hence a
value or zero for W (Equation (3.5)). The testing procedure is the following:

1. Transform quantitative or semiquantitative data into ranks if necessary. Assign mean
values to tied ranks.

2. Compute Kendall’s W coefficient of concordance among the ranked vectors (Equa-
tion (3.2)). Transform W into Friedman’s χ2 statistic, which is a pivotal statistic
appropriate for testing. This provides the reference statistic (χ2

ref ) for the test. Ac-
tually, within a given permutation test, the three statistics W , χ2, and SSR, are
monotonic to one another since n, p, as well as T , are constant within a given
permutation test; thus they are equivalent statistics for testing, producing the same
permutational probability.

3. Permute all vectors of ranked data at random, independently of one another. Compute
a χ2∗ (or W ∗, or SSR∗) value of the statistic under permutation.

4. Repeat Step 3 a large number of times to obtain an estimate of the distribution of
the χ2 (or W , or SSR) statistic under permutation. Add the reference value χ2

ref (or
Wref , or SSRref ) to the distribution (Hope 1968).

5. Calculate the one-tailed probability (P value) of the data under the null hypothesis
as the proportion of values of χ2∗ (or W ∗, or SSR∗) in the distribution that are
larger than or equal to χ2

ref (or Wref , or SSRref ). The test indicates that the set
contains concordant judges if the P value is equal to or smaller than the preselected
significance level (say, α = .05).

If the null hypothesis (independence of all judges) is true, the reference value of the
chi-square statistic, χ2

ref , should not be distinguishable from the distribution of values χ2∗

obtained under permutation. If the null hypothesis is false, one expects the reference value
to be larger than most values obtained under permutation.

5. A POSTERIORI TESTS

If the overall null hypothesis is rejected, a posteriori tests can be computed, in the
permutation framework, to determine which of the individual judges are concordant with
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Table 2. Results of (a) the overall and (b) the a posteriori tests of concordance among the mite species.
P = permutational probability, based upon 9,999 random permutations. (c) Complementary
Spearman correlation coefficients (r ) with results of one-tailed tests of significance, and partial
concordance statistics rj and Wj for each species j described in Section 5. * Reject H0 at α =
.05.

(a) Overall test of the W statistic. H0: The four
species are not concordant with one another

Kendall’s W = .44160
Friedman’s chi-square = 15.89771 P = .0448* Reject H0

(b) A posteriori tests H0: This species is not concordant with the other three

Species 13 P = .0766 Do not reject H0
Species 14 P = .0240* Reject H0
Species 15 P = .0051* Reject H0
Species 23 P = .7070 Do not reject H0

(c) Spearman correlation table H0: r = 0; H1: r > 0 (one-tailed test)
Species 13 Species 14 Species 15 Species 23 rj Wj

Species 13 r 1.0000 .5593 .8389 −.4185 .32657 .49493
P — .0464 .0012 .8856

Species 14 r .5593 1.0000 .6242 .0061 .39655 .54741
P .0464 — .0269 .4933

Species 15 r .8389 .6242 1.0000 –.0920 .45704 .59278
P .0012 .0269 — .5998

Species 23 r –.4185 .0061 –.0920 1.0000 –.16813 .12391
P .8856 .4933 .5998 —

one or several of the other judges. There is interest in several fields for identifying discordant
variables or judges. This includes all fields that use panels of judges to assess the overall
quality of the objects under study (sports, law, consumer protection, etc.). In other types
of studies, scientists are interested to identify variables that agree in their estimation of a
common property of the objects. This is the case in environmental studies where ecologists
are interested in identifying groups of concordant species that are indicators of some property
of the environment and can be combined into indices of its quality, in particular in cases of
pollution or contamination; see the example in Section 10.

The contribution of individual judges to the W statistic can easily be assessed by a
modified form of permutation test. The null hypothesis is the monotonic independence
of the judge subjected to the test, with respect to all the other judges in the study. The
alternative hypothesis is that this judge is concordant with other judges in the set under study,
having similar rankings of values (one-tailed test). The statistic W can be used directly in
a posteriori tests (see also next paragraph). Step 3 of the testing procedure, described in
the previous section, is modified: only the judge under test is permuted. If the judge under
test has values that are monotonically independent of the other judges, permuting its values
at random should have little influence on the overall W ∗ statistic. If, on the contrary, it is
concordant with one or several other judges, permuting its values at random should break
the concordance and have a noticeable influence on W ∗. The importance of the concordance
between this judge and all the others is assessed in Steps 4 and 5 of the testing procedure.

Two specific partial concordance statistics could be used in a posteriori tests. The first
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Table 3. Results of the tests of concordance involving mite group 1. The 24 species were ordered
by the values of the partial concordance statistics, rj and Wj, to facilitate interpretation. P
= permutational probability based upon 9,999 random permutations. PH = probability after
Holm adjustment, computed using the 35 P values from Tables 3 and 4. * Reject H0 at α =
.05.

(a) Overall test of the W statistic. H0: The 24
species are not concordant with one another

Kendall’s W = .30979 P = .0001* Reject H0

(b) A posteriori tests
H0: This species is not concordant with most of the others

rj Wj P PH

Species 2 .42581 .44974 .0001 .0035*
Species 27 .42176 .44585 .0001 .0035*
Species 17 .42122 .44533 .0001 .0035*
Species 20 .41807 .44232 .0001 .0035*
Species 13 .41773 .44200 .0001 .0035*
Species 11 .41385 .43827 .0001 .0035*
Species 21 .36234 .38891 .0001 .0035*
Species 4 .35906 .38576 .0001 .0035*
Species 14 .33012 .35803 .0001 .0035*
Species 26 .30162 .33072 .0001 .0035*
Species 7 .28333 .31319 .0001 .0035*
Species 28 .25770 .28863 .0001 .0035*
Species 19 .25748 .28842 .0002 .0035*
Species 5 .25055 .28178 .0002 .0035*
Species 10 .24447 .27595 .0001 .0035*
Species 30 .23014 .26222 .0001 .0035*
Species 24 .21882 .25137 .0012 .0156*
Species 15 .21854 .25110 .0002 .0035*
Species 1 .18512 .21907 .0025 .0300*
Species 6 .18022 .21437 .0045 .0360*
Species 12 .12638 .16278 .0325 .1938
Species 22 .12502 .16148 .0701 .1938
Species 29 .11080 .14785 .0435 .1938
Species 8 .09248 .13029 .0851 .1938

one is the mean, rj , of the pairwise Spearman correlations between judge j under test and
all the other judges. The second statistic, Wj , is obtained by applying Equation (3.5) to rj

instead of r, with p the total number of judges. These two statistics are shown in Tables
2–4 for the example data. rj and Wj are clearly monotonic to each other since p is constant
in a given permutation test. Within a given a posteriori test, W is also monotonic to Wj

because, in the procedure described in the previous paragraph, only the values related to
judge j are permuted when testing judge j. These three statistics are thus equivalent for a
posteriori permutation tests, producing the same permutational probabilities. Like rj , Wj

can take negative values; this was not the case of W .
There are advantages in performing a single a posteriori test for judge j, instead of

(p−1) tests of the Spearman correlation coefficients between judge j and all the other judges:
the tests of the (p−1) correlation coefficients would have to be corrected for multiple testing,
and they could provide discordant information; a single test of the contribution of judge j

to the W statistic has greater power and provides a single, clearer answer.



SPECIES ASSOCIATIONS: THE KENDALL COEFFICIENT OF CONCORDANCE REVISITED 235

Table 4. Results of the tests of concordance involving mite group 2. The 11 species were ordered
by the values of the partial concordance statistics, rj and Wj, to facilitate interpretation. P
= permutational probability based upon 9,999 random permutations. PH = probability after
Holm adjustment, computed using the 35 P values from Tables 3 and 4. * Reject H0 at α =
.05.

(a) Overall test of the W statistic. H0: The 11 species are
not concordant with one another

Kendall’s W = .29119 P = .0001 Reject H0

(b) A posteriori tests
H0: This species is not concordant with most of the others

rj Wj P PH

Species 31 .34466 .40423 .0001 .0035*
Species 25 .33423 .39476 .0001 .0035*
Species 33 .31889 .38081 .0001 .0035*
Species 9 .27121 .33746 .0001 .0035*
Species 35 .24989 .31808 .0001 .0035*
Species 16 .19064 .26422 .0031 .0310*
Species 32 .18331 .25755 .0025 .0300*
Species 34 .17642 .25129 .0033 .0310*
Species 18 .13756 .21596 .0253 .1771
Species 23 .13424 .21295 .0323 .1938
Species 3 .12226 .20205 .0390 .1938

In order to preserve a correct or approximately correct experimentwise error rate, the
probabilities of the a posteriori tests should be adjusted for multiple testing. Wright (1992)
recommended the Holm (1979) procedure for sets of nonindependent tests such as we have
here. This procedure is less conservative than an ordinary Bonferroni adjustment.

A posteriori tests are useful to identify the judges that are not concordant with the
others, as will be seen in the examples, but they do not tell us if there are one or several
groups of congruent judges among those for which the null hypothesis of independence is
rejected. This information can be obtained by computing Spearman correlations among the
judges and clustering the judges into groups of variables that are significantly and positively
correlated. Because the alternative hypothesis of Kendall’s test of concordance is one-tailed,
one-tailed tests should also be used for the Spearman statistics.

6. SIMULATION METHOD

Simulations have been performed to compare the classical χ2 test and the permutation
test of concordance in terms of Type I error and power. Type I error concerns rejecting the
null hypothesis of the test when the data conform to this hypothesis. To be valid, a test of
significance should have a rate of rejection of the null hypothesis no larger than the nominal
(α) significance level of the test (Edgington 1995, p. 37) when the null hypothesis (H0) is
true. On the other hand, a test of significance should be able to reject the null hypothesis
when H0 is false; the frequency of rejection of H0 in these circumstances is referred to as
the power of the test.

The simulations involved two types of judges: a number pIJ of independently generated
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judges (IJ), and a number pPJ of partly similar judges (PJ). Independently generated judges
were created by generating vectors of random standard normal deviates N(0, 1). A group
of partly similar judges was created by first generating a vector of random standard normal
deviates N(0, 1); for each judge of the group, random normal deviates with a preselected
standard deviation were added to the values of this common vector to make the judges partly
different. The standard deviation values used in the simulations were σ = {.5, 1.0, 2.0}.
The values for each judge were transformed into ranks.

In the simulations to estimate Type I error, only independent judges (IJ) were generated.
The simulations to estimate power, in which the alternative hypothesis of the test must be true
(at least some of the judges must be concordant), involved various combinations of IJ andPJ

judges. There were n = {5, 10, 20, 50, 100} objects and pIJ = {2, 3, 4, 5, 10, 20, 25, 30}
judges in the simulations for Type I error. There were n = 20 objects and p = {5, 10}
judges in the simulations for power, which involved all combinations of the two types of
judges (pIJ + pPJ = p).

For each result, 10,000 replicate simulations were run; 999 random permutations were
used for the permutation tests in each simulation. The rate of rejection of the null hypothesis
was calculated, together with its 95% confidence interval. A simulation result consists of:
the rate of rejection of the null hypothesis by the classical χ2 test at the α = .05 significance
level together with its 95% confidence interval, and the same information for the permutation
test as well as for the a posteriori tests of significance.

Additional simulations were carried out to determine if the method was able to identify
several groups of correlated judges (e.g., species). A correlation matrix, containing positive
correlations among the group members and null or negative correlations between groups,
was read into the simulation program and subjected to Cholesky factorization, R = L′L,
where L is an upper triangular matrix. Vectors containing random standard normal deviates
were generated and written to a work matrix X. Matrix W containing the correlated vectors
(judges) was obtained by computing W = XL. Justification of this procedure was given
by Legendre (2000, sec. 5.1).

7. SIMULATION RESULTS

7.1 OVERALL TEST OF W

Figure 1 presents the empirical Type I error rates at α = .05 for the classical χ2 test and
the permutation test of W . The classical χ2 test is overly conservative, although it remains
valid, having rejection rates well below the significance level (α = .05 in these results). For
20 judges and more, the 95% confidence intervals of the rejection rates of the classical χ2

test almost always included the significance value, α = .05. The permutation test always
had a correct rate of Type I error. Siegel and Castellan (1988, pp. 270, 365) recommended
the use of a permutation-based table of critical values for W only when n ≤ 7 and p ≤ 20.
For n > 7, they recommend using the χ2 approximation. The simulation results presented
here show that the classical χ2 test remains too conservative for any sample size (n), when
the number of judges p is smaller than 20.
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Figure 1. Type I error rate of (a) the classical χ2 test and (b) the permutation test of W for different numbers of
objects (sample size n) and independent judges (pIJ , symbols). The α = .05 significance level is materialized by
a horizontal line. Each point (rejection rate) is the result of 10,000 simulations.

Simulation results also show that the power of the permutation test is higher than that
of the classical χ2 test (Figure 2). The differences in power are due to the differences in
rates of Type I error between the two forms of test (Figure 1). The differences in power
disappear asymptotically as the number of judges increases.

7.2 A POSTERIORI COMPARISONS

Simulations were also done to assess the a posteriori comparisons obtained by per-
muting a single judge at a time. The a posteriori tests on individual independent judges

Figure 2. Power study: rejection rate of the classical χ2 test (empty symbols) and the permutation test (filled
symbols) of W, at α = .05, for various numbers of partly similar judges (PJ). σ(PJ) is the standard deviation of
the random components of the partly similar judges. (a) 5 judges, (b) 10 judges in total; n = 20. For the leftmost
point of each curve (pPJ = 1), the null hypothesis of independence of the judges was true.
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Figure 3. (a) Type I error rate of a posteriori tests for n = 20 objects and pIJ = 2-5 independent judges. The
α = .05 significance level is materialized by a horizontal line. The a posteriori test of judge k can only be done
when the number of judges is larger than or equal to k. (b) Power of a posteriori tests for simulations with n =
20 objects and p = 5 judges. The standard deviation of the normal error of the partly similar judges (PJ) in the
results shown was the intermediate value, σ(PJ) = 1. When pPJ = 2, for example, it is the first two judges that
were generated to be similar; likewise for pPJ = 3, 4, or 5. All judges are independent when pPJ = 1. Open
circles represent the rejection rates of the null hypothesis in tests involving judge 1 only; similarly for the other
symbols (judges). Some symbols have been moved sideways to improve the clarity of the graph.

had, individually, correct rates of Type I error for all combinations of number of objects
(n = 5, 10, 20, 50, and 100) and number of independent judges (pIJ ) in the study (Figure
3(a) shows results for n = 20 objects and 2 to 5 independent judges).

When H0 was false by construct for the judge under test, the a posteriori test had a re-
jection rate higher than the significance level (Figure 3(b)), but when one of the independent
judges was permuted, the rejection rate was at or near the α significance level, as it should.
Power of the a posteriori tests also increased with n when H0 was false (not shown). So,
when the null hypothesis of the overall test is rejected and there is a single group of partly
similar judges in the dataset, it should be possible to identify the concordant judges. This
property will be illustrated in the real-case applications of Sections 9 and 10.

7.3 ADDITIONAL SIMULATIONS: TWO OR THREE GROUPS OF JUDGES

Simulations were also produced for 2 and 3 groups of correlated judges. For 2 groups
of 10 correlated judges (within-group correlations = {.25, .50, .75}, between-group corre-
lations = 0, for n = 50 and a total of 25 judges), the tests had very high power (rejection
rate of H0 = 1.0 for the global test and near 1.0 for the a posteriori tests). The a posteriori
tests did not allow, however, distinguishing the members of the two groups. When nega-
tive correlations of –.3 were introduced between members of different groups of judges,
the power of the overall test remained high (rejection of H0 at or near 1.0) as long as the
positive within-group correlations were higher than the negative among-group correlations.
The power of the a posteriori tests decreased faster than that of the global test. Type 1 error
of the a posteriori tests remained correct for the independent judges (IJ).
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For three groups (10, 5, and 5 correlated judges, among 25 judges, n = 50) and
correlations of 0 among the groups, power of the global test was very high (rejection rate
of H0 = 1.0). Power of the a posteriori tests was higher for the members of the largest
group of 10 judges. With correlations of .5 within the groups and –.3 among the groups,
the a posteriori tests were not able to detect the members of the two smallest groups of
correlated judges, although they did identify correctly the members of the 10-judge group.

For three very small groups of correlated judges (3, 3, and 2 correlated judges, among
10 judges, n = 50) and correlations of 0 among the groups, power of the global test was
slightly lower (rejection rate of H0 = .97) than with larger groups of correlated judges.
Power of the a posteriori tests was higher (rejection rate of H0 about .80) for members of
the two largest groups of three judges than for the group of two judges (rejection rate of H0

about .32). When negative correlations of –.3 were imposed among the groups, even the
global test failed to reject H0.

8. PROCEDURE FOR THE IDENTIFICATION OF ASSOCIATED
SPECIES

The simulation results reported in Section 7 indicate that an appropriate procedure for
the identification of associated species requires a division of the dataset into groups of po-
tentially concordant species, on the basis of their correlations. Starting with an appropriately
transformed species abundance data table, the strategy is the following:

1. First, conduct an overall test of concordance using all species.
2. If that test is significant, look for groups of correlated species. This can be done in

several ways. (a) A principal component analysis based upon standardized species
vectors, with eigenvectors normalized to the square root of the respective eigen-
values, will produce a plot of the species with angles representing the correlations
among species. Groups of species may be identifiable on that plot. (b) Use the
full table of eigenvectors in a clustering or K-means partitioning of the species.
(c) Standardize the species data and apply K-means partitioning to find groups
of species. (d) Or, compute a Pearson or Spearman correlation matrix among the
species and use agglomerative clustering to find groups of correlated species. Meth-
ods (b)–(d), which involve clustering, can help delineate several groups of species,
whereas the PCA used in (a) is only adequate when two groups are present. These
strategies will all be used in Section 10.

3. Submit each group of species to a separate analysis of concordance. The a posteriori
tests will identify the species that are significantly associated.

9. ORIBATID MITES: ANALYSIS OF A SUBSET

A small subset of the oribatid mite data will be used to illustrate the calculations. Ten
sites were selected along the long axis of the sampling area (rectangular area shown in
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Figure 5, p. 242), one in every one-meter section. The site coordinates are given in a file
included in the mite data package at http://www.bio.umontreal.ca/legendre/. Four species
were selected: three from the largest group of associated species identified in section 10
(species #13, 14, and 15) plus one of the nonassociated species (#23). Table 1 presents the
Hellinger-transformed species abundances as well as the sites ranked according to each
species. The sum-of-squares statistic (S or S′) was computed from the sums of ranks
(column 10 of the Table) using Equation (3.1); that value was used in Equation (3.2) to
compute Kendall’s coefficient of concordance W .

A test of concordance for only 10 objects (sites) has little power. Nevertheless, the
overall test involving the four mite species is significant at the α =  .05 level (Table 2(a)),
and so are the a posteriori tests for species 14 and 15 (Table 2(b)). Species 13 does not
reach the .05 significance level here, although it will be significant in the analysis of the full
dataset (Section 10). Table 2(c) shows how the rj statistic is computed as the mean of the
Spearman correlations of species j with all the other species. Wj is obtained by applying
Equation (3.5) to rj instead of r.

10. ORIBATID MITES: RESULTS

Concordance analysis involving all 35 mite species (data described in Section 2) in-
dicated that one or some of the species were concordant with one or some of the other
species (Kendall’s W = .06886, P = .0001 after 9,999 permutations). This is not a very
interesting conclusion, however, if one wants to use the species as indicators of the major
environmental and spatial trend. Siegel (1956) suggested that the variables that produce a
highly significant coefficient of concordance could be pooled into an overall index. Ap-
plying this suggestion, the 35 species abundances were summed. This new variable bore
little relationship to the environmental variables: a multiple regression against the three
environmental variables mentioned above, plus water content of the substratum, and a set
of dummy variables representing seven types of substrate, led to a parsimonious model with
R2 = .128 (adjusted R2 = .088) which included only three dummy variables representing
three of the seven classes of substratum. A third-degree polynomial trend surface model of
this index was not strongly related to the Y geographic direction of the map: an R2 = .092
was obtained.

Let us explore whether groups of concordant species can produce better environmental
and spatial models. The four procedures described in Section 8 were used to identify groups
of positively correlated species:

(a) A principal component analysis (PCA) was computed after standardizing the
Hellinger-transformed species vectors to means of 0 and variances of 1. The eigen-
vectors were normalized to the square roots of their respective eigenvalues, so that
angles between the species vectors in the PCA plot are projections of their correla-
tions. Two groups of species are easily identified in Figure 4: 24 species on the left
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Figure 4. Principal component plot: the mite species vectors projected in the space of PCA axes 1 and 2. Total
variance accounted for: 38% (axis 1: 28.8%, axis 2: 9.2%).

(group 1) and 11 species on the right (group 2).
(b) The full table of eigenvectors from the PCA was used in a K-means partitioning

procedure, which produced partitions into two to ten groups. The Calinski and
Harabasz (1974) criterion (C-H) was computed in order to decide which partition
was the best. C-H is simply the F -statistic of multivariate analysis of variance and
canonical analysis; it is the ratio of the mean square for the given partition divided
by the mean square for the residuals. The partition for which C-H is maximum is
the best one in the least-squares sense. A simulation study conducted by Milligan
and Cooper (1985) showed that, among 30 such criteria, C-H was the best one to
recover the correct number of clusters in multivariate datasets. For random data not
structured into distinct groups, C-H decreases smoothly as the number of groups K

increases, so that C-H is maximum for K = 2 groups (no C-H value can be computed
for a single group). With the mite data, C-H was maximum for two groups, the same
two groups as shown in Figure 4. Because the value of C-H was much larger for
two than for three or more groups, the criterion was interpreted to indicate, in that
case, the presence of two recognizable groups of species.

(c) The Hellinger-transformed species data were standardized to means of 0 and vari-
ances of 1. K-means partitioning of the species was applied directly to that table
(in paragraph b, the partitioning procedure was applied to the PCA eigenvectors).
The C-H criterion identified again the partition in two groups as the best one in the
least-squares sense; the two groups were the same as in (a) and (b).
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Figure 5. Bubble plot maps of the square-root-transformed sums (a) of the 20 concordant species belonging
to group 1, (b) of the 8 concordant species pertaining to group 2. Bubble size is proportional to the value. The
coordinates of the 70 soil cores are in meters. The edge of the forest is at the bottom of the figures, the open water
at the top.

(d) A Spearman correlation matrix was computed among the Hellinger-transformed
species vectors. The Spearman correlations were interpreted as similarity indices
among the species and used in Ward’s agglomerative clustering, which produced
the same two groups as the previous methods did.

For the 24 species belonging to group 1, the a posteriori tests (Table 3(b)) indicated
that 20 species are significantly concordant with most of the other species in that group. For
group 2, the a posteriori tests (Table 4(b)) showed that 8 of the 11 species are significantly
concordant. Seven mite species remain unattached to the two groups of concordant species.
The global tests reported in Tables 3(a) and 4(a) were not necessary since the global test of
Table 2(a) was significant.

The sum of abundances of the 20 concordant species from group 1 (Figure 5(a)) was
used as the dependent variable in multiple regression modeling. This index produced a
highly significant environmental model (R2 = .731) featuring substratum microtopography
(positive regression coefficient), density (positive coefficient), and water content (negative
coefficient), and a positive association with two types of mosses, as well as a highly signifi-
cant polynomial trend-surface spatial model (R2 = .664). Likewise, the sum of abundances
of the 8 concordant species from group 2 (Figure 5(b)) was used as the dependent variable
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in multiple regression. This variable produced a highly significant environmental model
(R2 = .304) featuring a positive regression coefficient for water content and a negative
coefficient, indicating avoidance, for the dummy variable coding for the bare peat substrate,
as well as a highly significant polynomial trend-surface model (R2 = .375) depicting a spa-
tial structure different from that of the species from group 1. Detailed relationships would
be revealed by analyzing, by canonical redundancy analysis, each group of concordant
species with respect to the environmental variables and drawing biplots of the species and
the environmental variables.

11. DISCUSSION

11.1 STATISTICAL ASPECTS

The Kendall coefficient of concordance can be used to assess the degree to which a
group of species, or other types of judges, provide a common ranking of a set of sites or
other types of objects. It should only be used to obtain a statement about variables that
are all meant to measure a single general property of the objects, the same one for all the
judges included in the analysis. It should not be used to analyze sets of variables in which
the negative and positive correlations have equal importance for the interpretation.

The partial concordance coefficients and a posteriori tests of significance are essential
complements of the overall test of concordance. In several fields, there is interest in iden-
tifying discordant variables or judges; this is the case in all fields that use panels of judges
to assess the overall quality of the objects under study (sports, law, consumer protection,
etc.). In other applications, one is interested in using the sum of ranks, or the sum of values,
provided by several variables or judges, as an overall indicator of the response of the objects
under study. The a posteriori tests, combined with the (rank) correlation coefficients and
clustering results, allow scientists to determine which variables significantly belong to the
same group, before summing their ranks or values into an overall index.

The simulation results summarized in Figure 1 (p. 237) show that, when the null
hypothesis is true, permutation testing leads to correct Type I error in tests of significance
of the Kendall coefficient of concordance. In the classical χ2 test, however, Type I error
is too low when the number of judges is smaller than 20, leading to tests that are overly
conservative and, thus, have reduced power. Because in most real-life applications of the
method the number of judges is small, permutation tests should be routinely used to test
Kendall’s W statistic.

The overall test of significance using permutations is interpreted as follows. The null
hypothesis is that of independence of all judges. If the probability is smaller than or equal to
the nominal significance level α, the null hypothesis should be rejected with a probability
of Type I error equal to α. One concludes that the judges are not all independent of one
another. There is at least partial concordance among them.

Siegel (1956, p. 237) as well as Siegel and Castellan (1988, p. 271) wrote: “A high
or significant value of W may be interpreted as meaning that the observers or judges are
applying essentially the same standard in ranking the N objects under study. Often their
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pooled ordering may serve as a ‘standard,’ especially when there is no relevant criterion
for ordering the objects.” When H0 is rejected, one cannot conclude that all judges are
concordant with one another; only that at least one of the judges is concordant with one,
or some of the others. The partial concordance coefficients and a posteriori tests help in
identifying the groups of judges that ranked the objects in the same way. It is advisable to
look, for instance by clustering, for one or several groups of judges that rank the objects
broadly in the same way, and then carry out a posteriori tests on the putative members of
each group, before pooling their values or ranks into an overall index used for ranking the
objects.

The a posteriori tests are interpreted as follows. The null hypothesis is that of indepen-
dence of a given judge with respect to all other judges.

• If the probability is smaller than or equal to the nominal significance level α, the
null hypothesis should be rejected for this judge with a probability of Type I error
equal to α. This judge is concordant with other judges in the set under study.

• If the probability is larger than the nominal significance level α, the null hypothesis
cannot be rejected. One concludes that this judge differs from most or all the other
judges. The strength of the evidence against the null hypothesis is measured by the
probability (Baird 1988): the higher it is, the more different the corresponding judge
is with respect to most of the other judges in the analysis.

11.2 ECOLOGICAL ASPECTS

For the mite data, the a posteriori tests allowed the identification of two separate
groups of concordant species that can be used as indicators of two sets of environmental
determinants. This result is ecologically quite interesting: none of our previous analyses
(papers cited in Section 2) had shown, on statistical grounds, a separation of the mites into
two groups. The groups correspond to the second view of species associations described
by Whittaker’s (1962): species are associated (positive correlations) as a result of their
concordant abundances across the sites, without any implication of present or past biological
interactions among them.

By applying the method described in Section 8, ecological community composition
data can be used to produce indicators of environmental quality, including pollution and en-
vironmental contamination of various kinds. In Section 10, simple indices were constructed
by summing the abundances of the species found to be concordant. More sophisticated in-
dices could be obtained by canonical analysis (canonical redundancy analysis or canonical
correspondence analysis) of the abundances of the species that belong to the concordant
groups, against the environmental or contamination variables; see Legendre and Legendre
(1998, chap. 11) for details on these asymmetric forms of canonical analysis.
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