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Abstract

This paper studies the problem of spreading a product (an idea, cultural fad or technol-

ogy) among agents in a social network. An agent obtains the product with a probability

that depends on the spreading rate of the product as well as on the behavior of the

agent’s neighbors. This paper shows, using a mean field approach, that there exists

a threshold for the spreading rate that determines whether the product spreads and

becomes persistent or it does not spread and vanishes. This threshold depends crucially

on the connectivity distribution of the network and on the mechanism of diffusion.
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1 Introduction

Introducing a new product, technology or idea in the market is an issue of major social-

economic relevance. Innovations do not necessarily spread at once, but often spread gradu-

ally through social and geographic networks. In fact, many products promote rather easily

in a social system through a domino effect. In a first stage a few innovators adopt the

product, and this makes more likely that their neighbors do the same, then their neighbors’

neighbors and so forth. One possible explanation for this phenomenon is that individuals’

opinion heavily depends on the opinion of their interpersonal ties. Indeed, most products

spread more efficiently due to “consumer-to-consumer dialogue” since these communication

channels are more trusted and have greater effectiveness than mass media advertisements.

Another feature that favors diffusion is the coordination effect. In fact, there are many

cases where in order to exploit the benefits of your product, you have to coordinate in your

decision with your neighbors. A recent example is that of the mobile phones. They be-

came popular in the mid 90’s and, at present, almost every individual possesses a phone,

which is considered as an essential commodity in developed countries. Apart from the in-

trinsic advantages that the new product might provide to its users, the fast spreading of it

in the population is reinforced by more subtle aspects, such as fashion and benefits from

coordinating in the decision with your contacts. Traditional marketing is being replaced

by new strategies in which the product is turned into “epidemics” where consumers do the

marketing themselves.1 This phenomenon shares common features with the contagion of an

infectious disease in a population. The aim of this paper is to generalize existing epidemic

models in order to accommodate them to describe diffusion in social and economic contexts.

In particular, we address the following question: How does the spreading pattern depend on

the properties of the social network and on the diffusion (or contagion) mechanism?

We consider a large population with a complex pattern of interaction among agents. In

fact, the population is described as a network structure where individuals (nodes) interact

exclusively with a fixed group of neighbors (nodes with whom they are directly linked).

Traditionally, the study of networks has been a topic of graph theory. Graph theory, however,

has concentrated in small networks with a high degree of regularity. This paper, however,

focuses on the large-scale statistical properties of the network instead of on the properties

of single vertices. For instance, the number of edges a node has -the connectivity of the

node- is characterized by a distribution function P (k), which gives the probability that a

randomly selected node has exactly k edges. We assume that the precise topology of the

network is unknown and thus it is considered as a “random ensemble”. These networks
1 In a recent book, Godin (2001) describes how an “idea” can spread in a population in the same way as

a “virus” does.
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are referred as “random networks". The seminal papers on random networks developed by

Erdos and Renyi (1959), define a random graph by a group of N nodes such that every

pair of nodes is connected with a certain probability p > 0. The graphs generated in this

manner have a binomial connectivity distribution which tends to a Poisson distribution, as

the size of the population tends to infinity. Hence, this distribution has its peak at the

average connectivity. In other words, the majority of nodes have a similar connectivity.

Recent studies, however, show that most large complex networks are characterized by a

connectivity distribution different to a Poisson distribution (e.g., Barabási and Albert, 1999;

Barabási et al., 2000; Faloutsos et al., 1999; Lijeros et al., 2001). For instance, the world

wide web, Internet or the network of human sexual contacts, among others, have a power-law

connectivity distribution, i.e. P (k) ∼ k−γ where γ ranges between 2 and 3. This implies

that each node has a statistically significant probability of having a very large number of

connections compared to the average connectivity which generates an extreme heterogeneity

in the connectivity of agents. Such random networks are called scale-free. In this paper we

focus on generalized random networks. These networks are random, in the sense that the link

formation process is still determined in a stochastically independent fashion across nodes.

However, the underlying connectivity distribution is allowed to be arbitrary. Therefore, the

"Erdos and Renyi" (Poisson) random networks, as well as the scale-free (power-law) random

networks simply become particular cases of this general setup. Although this work attempts

to be of general applicability, we pay special attention to the differential properties of Poisson

and scale-free networks, due to their long tradition in the literature on social networks.

We therefore consider agents are connected by means of a generalized random network. Each

agent, classified as either an “active” or a “potential” consumer, is represented by a node in

the network. The transition from a potential to an active consumer depends on the intrinsic

properties of the product as well as on the number and behavior of neighbors. Conversely,

an active consumer becomes potential at an exogenously given rate. This reflects the idea

that the technology in question is subject to a decay, obsolescence or breakdown. Therefore,

with a certain probability, independent of the behavior of neighbors, an agent may need to

replace the product and hence may become a potential consumer again.

The framework considered in this work is closely related to the so-called “susceptible-

infected-susceptible” (SIS) model, commonly used in epidemiology. Some paradigmatic

examples that are described using the SIS model are the diffusion of sexually transmitted

diseases in a sexual contact network or the spreading of a computer virus via Internet (e.g.,

Pastor-Satorrás and Vespignani, 2001; Lloyd and May, 2001). Each agent is represented

by a node and can be either “healthy” or “infected”. In each time step a healthy node is

infected at a certain rate if it is directly connected to at least one infected agent. Conversely,

an infected agent is cured at another certain rate. This paper extends the SIS model by
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introducing a richer framework to reflect local dependencies or neighborhood effects. Unlike

epidemiological models, where contagion events between pairs of individuals are indepen-

dent, the effect that a single infected neighbor has on a given node depends critically on the

states of the node‘s other neighbors. The SIS model considers the contagion of a disease as

a linear function of the absolute number of infected neighbors, whereas the present model

allows for non-linear mechanisms. Indeed, we could consider a concave mechanism where

adding more active consumers in the neighborhood of an agent increases the chances that the

agent becomes active, but with a decreasing marginal impact. Furthermore, the intensity

of each interaction could depend on the total number of interactions. In other words, the

more neighbors an agent has, the less significant any one of them becomes. Consequently,

the contagion mechanism is not necessarily expressed in terms of the absolute number of a

node’s neighbors adopting the product, but could instead depend on the corresponding frac-

tion of the neighborhood. One of the objectives of this work is to account for the differences

in the results as we vary the mechanism of diffusion.

The theoretical results of our model are derived using the so-called mean field theory. This

approach is commonly used in physics and biology since it provides a reasonable guide of

the qualitative behavior of complex systems. Heuristically, it is a continuous time system

where all decisions happen for certain at a rate proportional to the mean. Moreover, it

simplifies the description of the exact contagion process by substituting local variables of

the dynamics by their global mean values.

We show, using the mean field theory, that there exists a threshold for the degree of contagion

(or spreading rate) of the product, such that, above the threshold the technology spreads

and becomes persistent. This threshold depends crucially on two features: the mechanism

of diffusion and the connectivity distribution of agents in the population. We also show

that, when the contagion of the product only depends on the absolute number of active

consumers among neighbors (i.e. the effect of the size of the neighborhood is absent), then

networks with a higher variance have lower thresholds. Consequently, the diffusion of the

product is easier and greater in scale-free networks than in Poisson networks, as expected

from the recent empirical results (e.g., Barabási et al., 2000; Faloutsos et al., 1999; Lijeros

et al., 2001). In contrast, if the intensity of each interaction decreases in parallel with the

number of neighbors, i.e. , the contagion of the product depends on the relative proportion

of active consumers among neighbors, the results change significantly. In particular, if the

probability that an individual becomes active is proportional to the fraction of neighboring

active consumers, the threshold coincides for all networks. Finally, for concave diffusion

functions there always exists a continuous transition from the absence to the existence of

diffusion, whereas for some particular non-concave diffusion functions, a phase transition or

hysteresis phenomenon occurs.
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The formal framework considered in this paper is close to the literature on epidemiology

and complex systems, mentioned above, where the mean field theory is often used. The

inspiration for this work, however, comes mainly from the literature on social and economic

networks. Recent instances of this literature show that the pattern of interaction between

individuals is crucial in determining the nature of outcomes. A wide number of papers have

focused on the analysis of lattices; that is, regular networks in which all players have the same

number of direct connections (e.g., Anderlini and Ianni, 1996; Blume, 1995; Ellison, 1993;

Young, 2003). One step beyond comes from Morris (2000) who has developed techniques

to study coordination games in general networks, and from Calvó-Armengol and Jackson

(2004) who deal with the diffusion of information on job opportunities in a population. The

present paper shares a flavour with Morris (2000) and Calvó-Armengol and Jackson (2004)

but introduces important novelties. First, we study very general contagion mechanisms

characterized by the fact that the transition from one individual state to the other (active

to potential consumer and vice versa) is stochastic and asymmetric. Second, we consider

complex random networks rather than networks with a deterministic geometric form.

The paper is organized as follows. The model is contained in Section 2. Section 3 introduces

the mean field theory. The main results of the paper are presented in Section 4. Then,

we introduce some stylized examples in Section 5. Further results are considered in Section

6 and in Section 7 we run some simulations of the original dynamics in order to test the

validity of the results based on the mean field theory. Finally, Section 8 concludes. Some

proofs have been relegated to an Appendix.

2 The model

2.1 Generalized random networks

Let N = {1, 2, ..., i, ...n} be a finite but large set of agents. Assume agents communicate one
with another through certain channels which determine the social system. More precisely,

each agent interacts only with her fixed group of neighbors which represents her personal

and professional contacts. Let Ki ⊆ N be the set of neighbors of player i and let ki be its

cardinality which is referred as her connectivity from here onwards. We assume that the net-

work is undirected, i.e., if a node i is connected to j then j is connected to i as well. Assume

that the pattern of interactions between agents is complex. Moreover, the network structure

has a high degree of randomness and thus can only be described by its large-scale statistical

properties. Denote by P (k) to the connectivity distribution of the network, i.e. the fraction

of agents in the population that have exactly k direct neighbors. Equivalently, P (k) is the

probability that an agent chosen uniformly at random has connectivity k. Throughout this
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paper, the network is characterized by being “random” and having a connectivity distrib-

ution P (k) which is exogenously given. More precisely we consider a so-called generalized

random network. These networks extend the Erdos-Renyi random graphs by incorporating

the property of non-Poisson connectivity distributions. Formally, consider any connectivity

distribution P (k) defined on N . Let ΓN,P be the collection of networks defined on N that

display the degree distribution P (k). Then, a generalized random network is simply a sta-

tistical ensemble in which every network in ΓN,P is selected with equal probability.2 One

of the aims of this work is to explicitly account for the influence of P (k) in the spreading

behavior of the product. For most of our results we will focus on the differential properties

of the three following types of connectivity distributions:

(i) Scale-free networks

Scale-free networks are characterized by having a power-law connectivity distribution. In

particular,

P (k) ∝ k−γ ,

where γ ranges between 2 and 3. This property implies that there exists a significant

proportion of agents with large connectivity with respect to the average (denoted by hki).
These are the "hubs" of the network.

(ii) Homogeneous networks

Homogeneous networks are such that all nodes have approximately the same connectivity.

In particular,

P (k) ∼

⎧⎨⎩ 0 if k 6= hki
1 if k = hki

Note that, the variance of P (k) is approximately zero.

(iii) Poisson networks

Poisson networks are characterized by having a Poisson connectivity distribution. In par-

ticular,

P (k) =
1

k!
e−hki hkik .

It is straightforward to show that the variance in the connectivity of nodes for Poisson

networks lies in between the variance of scale-free and homogeneous networks.

2.2 The diffusion mechanism

Assume there is a new product in the market. We focus on its spreading among the pop-

ulation N . To do so, consider that an agent i ∈ N can only exist in two discrete states

si ∈ {0,1}, where si = 0 if i is a “potential” consumer and si = 1 if i is an “active” con-

sumer. A potential consumer is an agent that does not have the product but is susceptible

2For further details on generalized random networks the reader is referred to Newman (2003).
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of obtaining it if exposed to someone who does. An active consumer is an agent that has

already adopted the product and so can influence her neighbors in favor of obtaining it.

Consider a stochastic continuous time dynamics process as follows. At time t, the state of

the system is a vector

st = (s1t, s2t, ...sit, ....snt) ∈ Sn ≡ {0, 1}n ,

where sit = 0 if i is a potential consumer at time t whereas sit = 1 if i is an active consumer

at time t. Assume i is a potential consumer at time t. She becomes an active consumer

at a rate that depends crucially on: her connectivity ki, the number of neighbors that are

active consumers at time t (ai hereafter) and the spreading rate (or degree of contagion) of

the product, denoted by ν ≥ 0. More precisely, the transition rate from potential to active

consumer is given by a function F (ν, ki, ai) that determines the properties of the mechanism

of diffusion. We assume independence of the spreading rate effect and the effect that the

behavior of neighbors has over the agent’s decision. Thus,

F (ν, ki, ai) = ν · f(ki, ai),

where f(ki, ai), named as the diffusion function from here onwards, is a non-negative func-

tion only defined for (ki, ai) ∈ N × N such that 0 ≤ ai ≤ ki. It is worth noting that, the

connectivity of an agent is fixed throughout the dynamics. Instead, the number of active

consumers among neighbors “ai” might change over time. We suppose that a necessary

condition for the adoption of the product is that at least one neighbor has already adopted

it. More precisely,

f(k, 0) = 0 for all k ≥ 1. (A-1)

Roughly speaking, the transition from a potential to an active consumer can be interpreted

as follows. At a rate ν any given agent becomes aware of the existence of the product -e.g.

through mass media advertisement- and considers the possibility of adopting it. The agent’s

final decision, however, depends crucially on her neighbors’ behavior. More precisely, the

agent responds to her neighbors current configuration by choosing an action according to

some choice rule. The particular choice rule considered is characterized by f(ki, ai).

Conversely, consider agent i ∈ N is an active consumer at time t. Then, i becomes a potential

consumer at some stochastically constant rate δ > 0 which indicates the rate at which the

agent may need to replace the product because it is lost or deteriorated. Notice that, this

transition is independent of her neighbors’ behavior. It is implicit in this formulation that

the cost of “maintaining” the product is approximately zero and thus agents never have

incentives for getting rid of it. Finally, let us define the effective spreading rate of the

product by λ = ν
δ .
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For concreteness, we will now define formally what we mean by the mechanism of diffusion.

A diffusion mechanism is a pair m = (λ, f(·)) where λ denotes the effective spreading of
the product and f(·) denotes the diffusion function.

Notice that, since the transition rates only depend on the properties of the present state,

the dynamics induced by the connectivity distribution P (k) and the diffusion mechanism m

determines a continuous Markov chain over the space of possible states Sn.

The aim of this work is to analyze whether and how the product spreads in the population.

Several questions raise as natural:

• Is there prevalence of the product in the long-run of the dynamics?

• Are small perturbations of the initial state in which there are no active consumers
enough to converge to states with a positive fraction of active consumers?

• Is there a discontinuity (or phase transition) in the long-run proportion of active
consumers as we increase λ?

In the next section, we partially respond to these question by describing when and how the

product spreads in the population. The analytical results of the exact model are extremely

complicated and thus will not be tackled in this paper. Nevertheless, to proceed, two

complementary approaches can be considered. On the one hand, the analysis of the model

can be simplified using the so-called mean field theory. This approach is described and

studied in detail in the next section. On the other hand, we can simulate the dynamics in

order to obtain numerical approximations of the results for the exact stochastic model. This

second alternative will be tackled in Section 6 below.

3 The mean field theory

The analytical study of this model can be undertaken in terms of a dynamical mean-field

theory. Other reports show that mean-field approximations can be expected to give a reason-

able guide to the qualitative behavior of complex dynamics. Before describing the theoretical

framework, we will present some additional notation. Let ρk(t) be the relative density of

active consumers at time t with connectivity k. Consequently, ρ(t) =
P

k P (k)ρk(t) is the

relative density of active consumers at time t. From here onwards, the state of the sys-

tem at any given time t, will be characterized by the profile (ρk(t))k≥1. Denote by θ(t)

to the probability that any given link points to an active consumer. Therefore, the prob-

ability that a potential agent with k links has exactly a neighboring active consumers is¡
k
a

¢
θ(t)a(1 − θ(t))(k−a) since this event follows a binomial distribution with parameters k

8



and θ(t). Obviously, there is an approximation inherent in this formulation because we have

assumed that θ(t) is the same for all vertices, when in general it too will be dependent on

vertex connectivity and other local properties of the vertex. This is precisely the nature of

a mean-field approximation.

Consider a potential consumer with k neighbors and a active consumers among them at

time t. She becomes an active consumer at a rate νf(k, a). Thus, the transition rate from

potential to active consumer for an agent with connectivity k is given by

egν,k(θ(t)) = kX
a=0

νf(k, a)
¡
k
a

¢
θ(t)a(1− θ(t))(k−a).

The dynamical mean-field equation can thus be written as,

dρk(t)

dt
= −ρk(t)δ + (1− ρk(t))egν,k(θ(t)). (1)

Roughly speaking, equation (1) says the following: the variation of the relative density of

active consumers with k links at time t equals the proportion of potential consumers with

k neighbors at time t that become active consumers (i.e. (1 − ρk(t))egν,k(θ(t))) minus the
proportion of active consumers with k neighbors at time t that become potential consumers

(i.e. ρk(t)δ).

Assume that the time scale of the dynamics is much smaller than the life-span of the agents

in the population; therefore terms reflecting birth or death of individuals are not included.

Moreover, several assumptions are implicit in equation (1). First, we assume the size of

the population is large, i.e. n → + ∞. Second, we consider the so-called homogeneous
mixing hypothesis. This implies, on the one hand, no correlation between the connectivity

of connected agents and, on the other hand, an homogeneous distribution of initial adopters

in the population. In addition, in each period, the only source of heterogeneity in the

population considered is the connectivity of agents.

After imposing the stationary condition dρk(t)
dt = 0 in equation (1) for all k ≥ 1, the equation,

valid for the behavior of the system at large times is,

ρk =
gλ,k(θ)

1 + gλ,k(θ)
, (2)

where

gλ,k(θ) =
1

δ
egν,k(θ) = kX

a=0

λf(k, a)
¡
k
a

¢
θa(1− θ)(k−a).

The exact calculation of θ for general networks is a difficult task. However, we can calculate

its value for the case of a random network, in which there are no correlations among the

connectivities of different nodes. For this case, it is straightforward to see that,

θ =
1

hki
X
k

kP (k)ρk, (3)
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where hki is the average connectivity of the network, i.e. hki =
P

k kP (k).

The system formed by the equations (2) and (3) determine the stationary values for θ and

(ρk)k. To solve this system, we should simply replace equation (2) in equation (3) and

obtain,

θ = Hλ(θ), (4)

where

Hλ(θ) ≡
1

hki
X
k

kP (k)
gλ,k(θ)

1 + gλ,k(θ)
. (5)

The solutions of equation (4) are the stationary values of θ. Note that, these values cor-

respond to the set of fixed points of the function Hλ(θ). Although the exact stationary

values for θ are generally difficult to obtain, the main questions raised at the introduction of

the paper can be answered by simply analyzing the shape of all the functions in the family

{Hλ(θ)}λ≥0. Upon replacing θ in equation (2) we also determine the stationary values (ρk)k.

4 The main results

In what follows we will present the main results of the paper. For concreteness, we will

define first the concepts of sustainable diffusion, positive diffusion and unique diffusion of

the product.

Given P (k) and m, we say that there is sustainable diffusion of the product if there exists

a locally stable state of the mean field dynamics with a positive fraction of active consumers.

The concept of stability required in this definition is the standard one. Roughly speaking,

a state is stable if it is a stationary state of the dynamics resistant to small perturbations.

Notice that, sustainable diffusion implies that, under certain initial conditions, the dynamics

converges to a state with a positive fraction of active consumers. Next, we will define the

concept of positive diffusion.

Given P (k) and m, we say that there is positive diffusion of the product if, starting at

any initial state θ0 6= 0, the mean field dynamics converges to a stable state with a positive
fraction of active consumers.

Notice that, positive diffusion does not imply uniqueness of the non-null stable state. Thus,

the long-run behavior of the dynamics can depend on the initial conditions. However,

it implies that, if we slightly perturb the initial state with no active consumers, i.e. we

introduce a “small” number of initial adopters, the dynamics leads towards a non-null stable

state. Finally, the following definition addresses the global behavior of the dynamics.

Given P (k) and m, we say that there is unique diffusion of the product if there exists a

unique stable state of the mean field dynamics with a positive fraction of active consumers.
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In other words, in the case of unique diffusion, the long-run behavior of the dynamics does

not depend on the initial conditions.

It is straightforward to show that the following implications hold;

unique diffusion⇒ positive diffusion⇒ sustainable diffusion

Notice that, the existence of a non-null solution of equation (4) implies the existence of

a non-null stable state θ∗ of the dynamics, which also implies sustainable diffusion of the

product.

Let ρk(λ) be a function that provides for every given value of the effective spreading rate

λ ≥ 0, the relative density of active consumers with connectivity k predicted in the long-run
of the dynamics, when the initial state is taken to be infinitesimally close to the one with no

active consumers. Moreover, let ρ(λ) =
P

k P (k)ρk(λ) be the degree of diffusion function.

The aim of this section is to describe in some detail the relationship between the connectivity

distribution of the network P (k) and the mechanism of diffusion m with the spreading

behavior of the product. It is straightforward to show that, given (A-1) the state with no

active consumers (θ = 0) is stationary. Thus, to spread the product in the population there

must be an initial shock of active consumers. This section analyzes a situation where the

initial state of the dynamics is such that there is a “small” proportion of initial adopters, i.e.

θ0 ∼ 0. One interpretation for this is that the firm interested in the diffusion of the product

initially gives it “for free”. It is reasonable to assume that the firm is going to choose a small

number of initial adopters and then rely on the contagion process for the diffusion of it to a

larger fraction of agents. Given the nature of the question, we will first focus on the concept

of positive diffusion defined above. Unique and sustainable diffusion, will be studied later

in the paper.

Theorem 1 Given a network with connectivity distribution P (k), and a diffusion func-

tion f(k, a) satisfying (A-1), there exists a threshold for the effective spreading rate λp =
hkiP

k k
2P (k)f(k,1) such that, there is positive diffusion of the product if and only if λ > λp.

A detailed proof of the Theorem is presented in the Appendix. The sketch of the proof,

however, is the following. For every value of λ ≥ 0, the stationary states of the dynamics
are given by the fix points of Hλ(θ). Notice that, assumption (A-1) implies that Hλ(0) = 0

and therefore, as mentioned above, the state θ = 0 is stationary. Since gλ,k(θ) ≥ 0 then
0 ≤ Hλ(θ) < 1. In particular, this implies that, positive diffusion occurs if and only if the

state θ = 0 is unstable (i.e. there exist an � > 0 such that Hλ(θ) > θ for all θ ∈ (0, �) )
or equivalently dHλ(θ)

dθ cθ=0 > 1. The threshold is obtained simply by solving for λ in this

equation. A graphical illustration is provided in Figure 1.
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Figure 1: Computation of the threshold for positive diffusion (λp)

Several interesting points follow from this result. The threshold that determines the diffusion

of the product, depends both on the connectivity distribution of the network (P (k)) and

on the particular diffusion function considered (f(k, 1)). Specifically, in order to assess

the existence or not of some positive prevalence, it is enough to consider what happens in a

neighborhood with only one active agent. As highlighted above, this is merely a consequence

of the fact that, for positive diffusion to occur, the state with no active consumers has to

be unstable. Notice that, If λ > λp then, in the long-run, the product spreads and becomes

persistent in a fraction of the population. The degree of the diffusion, however, might depend

on the initial conditions. If, on the contrary, we assume λ ≤ λp then, if there is only a small

fraction of initial adopters, in the long-run, the product will disappear from the market. In

other words, we either never reach a state with a positive fraction of active consumers or, if

we do, it must be because there is a sufficiently high “stock” of initial adopters.

The following corollary is obtained directly from the above result.

Corollary 2 If the transition rate from potential to active consumer is independent of the

connectivity of the agent (i.e. f(k, a) = f(k0, a) ≡ f(a) ∀ k, k0 ≥ 0) then the threshold is
λp =

1
f(1)

hki
hk2i .

One of the main conclusions obtained from Corollary 2 is that the threshold depends on the

connectivity distribution P (k). In particular, it depends on the ratio between its first and

second order moments. Therefore, if we compare two generalized random networks with the

same average connectivity, the one with the highest variance has the lowest threshold. The

reason for this is the following: the variance of the connectivity distribution P (k) is given

by var(k) =

k2
®
− hki2, thus


k2
®
= var(k) + hki2. Since λp is inversely proportional to

the second order moment, if we compare two networks with the same average connectivity,

the value of the variance determines the value of the threshold. As an illustration, consider

the three types of networks introduced above -scale-free, homogeneous and Poisson- and
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assume they have the same average connectivity. Then it is straightforward to show that

their thresholds are ranked as follows:

λSFp < λPp < λHp ,

since this is also the ordering of their corresponding variances. Note also that for scale-free

networks, the variance of the connectivity tends to infinity when the size of the population

becomes arbitrarily large (i.e.,

k2
®
→∞ when n→ +∞). Consequently, λSFp → 0. In other

words, no matter how small the spreading rate is, positive diffusion of the product in the

population will always occur. The intuition behind this result is the following. In scale-free

networks there is a significant proportion of hubs, i.e., nodes with very high connectivity

compared to the average. These nodes play a crucial role for the spreading of the product

since they easily adopt the product due to their high connectivity. Furthermore, if they are

active consumers, they are capable of influencing a significant fraction of individuals in the

population.

5 Some stylized examples of diffusion mechanisms

In this section we present several stylized models that fit into the general setting introduced

above.

5.1 A model of diffusion with bounded rationality

Consider a population of agents N = {0, 1, ..., n}. As before, agents interact only with their
fixed group of neighbors. The pattern of interaction among them is described through a

social network where each node represents one agent and the connections among them are

represented by links.

Let x be a new technology. Assume that the cost incurred by an individual i in case of

adopting x is randomly determined by eci. For the sake of concreteness, suppose eci ∼ U [0, C]

where C is the highest possible cost. Also assume that (ecj)j∈N are i.i.d. Therefore (ex-

post) the cost can be different across agents. For simplicity, assume that, once adopting the

product, the cost of maintaining it is zero.

Suppose that, if two players are neighbors, there is a pairwise interaction that can generate

mutual payoffs. The common set of strategies is S = {0, 1} where si = 1 means agents i

is an active consumer whereas si = 0 otherwise. For each pair of strategies s, s0 ∈ S, the

payoff earned by a player i choosing s when interacting with her partner j choosing s0 is
b > 0 if both players are active consumers and zero otherwise. For the sake of concreteness

assume b < C.
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At a constant rate, ν > 0 a potential consumer considers the possibility of adopting the

new technology. If this were the case, the player uses a myopic best response to update

her strategy. Thus, the player compares the benefits obtained next period in the case of

adopting with those obtained in case of remaining as a potential consumer. Assume that

players interact with all their neighbors every period. Heuristically, this implies agents

are continuously observing at all neighbors and thus benefits are computed as the sum

of the benefits obtained from each bilateral interaction. Hence, a potential consumer i

with connectivity ki and with ai active consumers among her neighbors becomes an active

consumer iff,

aib− ci ≥ 0.

Consequently, i’s rate of transition from potential to active consumer is the probability that

agent i’s cost is below her benefits, i.e.

P (eci ≤ aib) = f(ai) =

⎧⎨⎩ b
C ai if ai ≤ C

b

1 if ai > C
b

Note that, the reverse transition, i.e. from active to potential consumer, is never a best

response of the player. Nevertheless, we assume that at a rate δ > 0 the product deteriorates

and needs to be replaced. If this were the case, agents have to re-consider the possibility of

adopting it or not.

Observe that, here, the diffusion function only depends on the absolute number of active

consumers among neighbors. In consequence, two agents with the same number of neigh-

boring active consumers have the same probability of becoming active consumers and this

is independent of their respective connectivities. In this case, the threshold for positive

diffusion is equal to C
b
hki
hk2i . Notice that the threshold not only depends on the connectivity

properties of the network in the same way as shown in Corollary 2, but also on the two ad-

ditional parameters introduced, i.e., C and b. This feature depends crucially on the specific

context considered as illustrated through the alternative example presented below.

Consider now the setting presented above and assume that the intensity of each interaction

decreases with the total number of interactions. For simplicity, assume that i’s benefit from

interacting with an active consumer if he becomes active is given by b
ki
. Also here, overall

benefits are computed as the sum of the benefits obtained from each bilateral interaction.

Therefore, if we consider any potential consumer i with connectivity ki and with ai active

consumers among her neighbors. Then, this agent will become an active consumer iff,

ai
ki
b− ci ≥ 0.

14



Consequently, i’s rate of transition from potential to active consumer is the probability that

agent i’s cost is below her benefits, i.e.

P (eci ≤ ai
ki
b) = f(ki, ai) =

⎧⎨⎩ b
C
ai
ki

if ai
ki
≤ C

b

1 if ai
ki

> C
b

As before, assume that at a rate δ > 0 an agent needs to replace the product because it is

lost or deteriorated.

Note that here the diffusion function depends both on the absolute number of active con-

sumers among neighbors and on the total number of neighbors. In particular, it depends

on the fraction of active consumers among neighbors. It is straightforward to see that the

threshold in this case equals λp = C
b independently of the connectivity of the network.

Therefore, in this case, scale-free networks have no comparative advantage for diffusion pur-

poses with respect to other networks. The intuition behind this result is the following. As in

the previous example, once a “hub agent” is an active consumer this facilitates the contagion

of the product due to her high connectivity. Nevertheless, hub agents in this case rarely

become active since what influences their decision is the fraction of active neighbors and not

the absolute number of active neighbors. It is precisely the interaction of these two opposite

effects what generates the result.

To conclude with this section, and building on the previous example, assume that the cost

is no longer randomly determined but takes the fixed and known value c < b. It is straight-

forward to show that if this were the case, a potential consumer would adopt the product

(with probability 1) if and only if the proportion of active consumer in the neighborhood

would be above c
b . Specifically,

f(k, a) =

⎧⎨⎩ 1 if a
k ≥

c
b

0 otherwise

Notice that here the diffusion function is a discontinuous step-function. The threshold in

this case has the following expression,

λp =
hki

E[ bc ]X
k

k2P (k)

,

where E[ bc ] denotes the integer value of
b
c .

It is worth mentioning that, if bc → 0, the threshold coincides basically with the one obtained

for the case in which the neighborhood effects are absent, that is, λp =
hki
hk2i therefore

implying that the threshold for scale-free networks tends to zero.
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5.2 Two testable models

We now introduce two simple examples that provide a sufficiently rich benchmark to run

simulations of the stochastic dynamics.

First, we consider the epidemic model introduced by Pastor-Satorrás and Vespignani (2001).

A potential consumer (susceptible agent) becomes active at a rate υ if there exists one active

consumer in the neighborhood. Moreover, this rate increases linearly with the number of

active consumers. Thus, the transition rate from potential to active for an agent with a

active neighboring consumers is equal to υa (independently on the agent’s connectivity).

Notice that, Pastor-Satorrás and Vespignani’s model simply becomes a particular case (for

f(k, a) = a) of the general setup presented in this paper and therefore we know its critical

threshold (λp =
hki
hk2i ).

Secondly, we consider a model in which a potential consumer adopts the product with

probability equal to the proportion of active consumer in the neighborhood. Specifically

f(k, a) = a
k . In this case, the critical spreading rate is equal to unity, i.e., λp = 1. As

before, this is independent of what might be the underlying network (scale-free, Poisson,

homogeneous, etc.).

6 Further results

Up to now we have analyzed whether there is or not prevalence of the product in the

population when the initial state is “close” to the state with no active consumers. We now

want to go one step beyond and study more general properties of the dynamics.

6.1 Concave diffusion functions

In this section, we find conditions over the diffusion mechanisms that guarantee a unique

long-run behavior of the dynamics. In other words, we analyze the convergence of the

dynamics independently of initial conditions. Consider a diffusion function satisfying an

additional assumption. For all k ≥ 1, f(k, a) as a function of a is (weakly) concave. In other
words, the following must hold:

f(k, a)− f(k, a− 1) ≥ f(k, a+ 1)− f(k, a) for all 0 < a < k. (A-2)

Hence, for any given agent, adding one more active consumer among her neighbors has an

impact over her probability of obtaining the product, which is (weakly) decreasing with

respect to the existing number of active consumers among her neighbors.

The following proposition determines the threshold for unique diffusion of the product.
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Proposition 3 Given a network with connectivity distribution P (k), and a diffusion func-

tion f(k, a) satisfying (A-1) and (A-2) there exists a threshold for the effective spreading

rate λu =
hkiP

k k
2P (k)f(k,1)such that, there is unique diffusion of the product if and only if

λ > λu. Moreover, if λ ≤ λu the dynamics converge to the state with no active consumer.

A detailed proof of Proposition 3 is presented in the Appendix. The sketch of the proof is

the following. Assumption (A-2) implies Hλ(θ) is concave for all λ ≥ 0 (this is proved in the
Appendix). Thus, if dHλ(θ)

dθ cθ=0 > 1 there is a non-null stationary state which is globally

stable.3 However, if dHλ(θ)
dθ cθ=0 ≤ 1 then θ = 0 is the unique stable state.Let λs denote the

threshold for sustainable diffusion. Note that, we obtain:

λs = λp = λu.

As a consequence of this result we have the following corollaries.

Corollary 4 Given a network with connectivity distribution P (k), and a diffusion function

f(k, a) satisfying (A-1) and (A-2), then the degree of diffusion function ρ(λ) is continuous.

The proof of this result is straightforward. Notice that, as aforementioned, for all λ ≥ 0,
Hλ(θ) is concave. Moreover, for all θ ∈ [0, 1], Hλ(θ) as a function of λ is increasing and

continuous. This implies that, the solution of equation (4), i.e. θ(λ), as a function of λ is

also continuous, and by the same token the degree of diffusion function ρ(λ) is continuous

as well.

As an example, consider a diffusion function satisfying (A-1) and (A-2) and such that it is

independent of the connectivity of agents (i.e. f(k, a) = f(k0, a) ≡ f(a) ∀ k, k0 ≥ 0). Then,
the degree of diffusion function for the three types of networks aforementioned -scale-free,

homogeneous and Poisson- is continuous (see the graphs represented in Figure 2). Notice

that, for low values of λ the degree of diffusion is higher for scale-free networks than for

Poisson networks and higher for Poisson than for homogeneous networks.

Corollary 5 If f(k, a) = a
k then ρ(λ) = λ

1−λ if λ > λp and ρ(λ) = 0 otherwise.

The proof of this result is attained by simply substituting f(k, a) = a
k in the expression for

gλ,k(θ). That is,

gλ,k(θ) =
1

k

kX
a=0

λa
¡
k
a

¢
θa(1− θ)(k−a) =

1

k
λθk = λθ.

3A state θ is globally stable if for any initial state θ0 ∈ (0, 1), the dynamics converges to this state.
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Figure 2: Degree of diffusion function for scale-free, homogeneous and Poisson networks

when f(k, a) = f(k0, a) ≡ f(a) ∀ k, k0 ≥ 0.
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Figure 3: Degree of diffusion function for scale-free, homogeneous and Poisson networks

when f(k, a) = a
k .

Notice that, gλ,k(θ) does not depend on k. Then, replacing gλ,k(θ) in equation (5) the

following holds:

Hλ(θ) =
λθ

1 + λθ
. (6)

It can be easily shown that, equation (6) has a unique non-null solution when λ > 1 which

is θ∗ = λ−1
λ . Thus, after simple algebraic operations, the degree of diffusion is:

ρ(λ) =

⎧⎨⎩ 0 if λ ≤ 1
λ
1−λ if λ > 1

It is worthwhile mentioning that, in this case, the degree of diffusion function does not

depend on the connectivity distribution of the network (see Figure 3).
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6.2 Other diffusion functions: phase transition

Assume now that for all k ≥ 1, f(k, a) as a function of a is (weakly) convex. The following
must hold:

f(k, a+ 1)− f(k, a) ≥ f(k, a)− f(k, a− 1) for all 0 < a < k.

Hence, for any given agent, adding one more active consumer among her neighbors has

an impact over her probability of obtaining the product, which is (weakly) increasing with

respect to the existing number of active consumers among her neighbors.

Due to its operational complexity, general results for convex diffusion functions are not easy

to obtain. In what follows, we analyze an illustrative example to highlight the difference

with the results obtained for concave diffusion functions. The diffusion function considered

is,

f(k, a) =
³a
k

´2
. (7)

This contagion mechanism takes into account the relative density of active consumers among

an agent’s neighbors in a convex way. The threshold for positive diffusion in this case is equal

to the average connectivity, λp = hki (see Theorem 1). To study the threshold for unique

and sustainable diffusion we will analyze the shape of the family of functions {Hλ(θ)}λ≥0.
Note that, in this case, function gλ,k(θ) is equal to the expression,

gλ,k(θ) = λ
kX

a=0

(
a

k
)2
¡
k
a

¢
θa(1− θ)(k−a) =

λ

k2
E[χ2],

where χ is a random variable that follows a binomial distribution with parameters θ, k.

That is, χ ∼ Bin(k, θ). Therefore, the following holds,

E[χ2] = V ar[χ] +E[χ]2 = kθ(1− θ) + (θk)2 = (k2 − k)θ2 + kθ,

and thus,

gλ,k(θ) =
λ

k2
((k2 − k)θ2 + kθ) =

λ

k
((k − 1)θ2 + θ).

The function Hλ(θ) in this case has the form,

Hλ(θ) ≡
1

hki
X
k

kP (k)
λ
k ((k − 1)θ

2 + θ)

1 + λ
k ((k − 1)θ

2 + θ)
.

The shape of Hλ(θ) depends crucially on P (k). Therefore, for the sake of simplicity, we will

focus on two specific types of networks: (i) a scale-free network with γ = 3, i.e. P (k) ∝ k−3

and (ii) an homogeneous network.

It is straightforward to show that, if hki is sufficiently high (higher than 5) for both cases (i)
and (ii) the family of functions {Hλ(θ)}λ≥0 exhibits the following pattern. For low values
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Figure 4: The thresholds λp, λu and λs, graphical illustration.

of λ the function is convex. As λ increases the function has an S-shape, i.e. convex for

low values of θ and concave for high values of θ. Finally, if λ is sufficiently high Hλ(θ) is

concave. For simplicity, a family of functions {Hλ(θ)}λ≥0 satisfying this property is referred
as an S-shape family.

Note that, if {Hλ(θ)}λ≥0 is an S-shape family of functions, the following holds:

positive diffusion⇔ unique diffusion

and thus λp = λu.

Moreover, there exists a threshold eλ (concavity threshold) for the spreading rate such that, if
λ > eλ then Hλ(θ) is concave. This value is implicitly obtained by the expression H 00

λ(0) = 0.

After some simple algebraic operations we obtain the following expression,

H 00
λ (0) =

λ

hki
X
k

P (k)
2k(k − 1)− 2λk2

k
.

It is straightforward to show that, the two types of networks considered satisfy,

H 00
λp(0) > 0.

This implies, in particular, that the threshold for positive diffusion is below the threshold

for concavity, i.e. λp < eλ. In other words, the function associated with the threshold for
positive (or unique) diffusion, has an S-shape. Therefore,

λs < λp.

Figure 4 presents a graphical illustration of the way the thresholds are obtained.

The main consequences of this result are the following:

• If λs < λ < λp, there are two different (non-null) stationary states of the dynamics;

an unstable state, denoted by θ∗1 and a stable state denoted by θ∗2 (see Figure 4).
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f(k, a) = (ak )
2

Two effects take place when the spreading rate becomes higher. On the one hand,

the proportion of active consumers in the non-null stable state (θ∗2) increases. On the

other hand, its basin of attraction also becomes larger.

• There is a phase transition or discontinuity in the degree of diffusion function. In other
words, when the spreading rate λ is “slightly” above the threshold λp, the degree of

diffusion ρ(λ) is significantly positive.

• The effect of varying the value of the spreading rate λ can be analyzed using a different
approach. Assume that the contagion dynamics has already reached a certain stable

state. Where would the dynamics converge if there was an increase or decrease of

the effective spreading rate? In other words, taking as initial condition the previously

established stable state, what would be the new long-run prediction of the dynamics?

As illustrated by the graph represented in Figure 5, if the spreading rate increases

(upward arrows in the figure) then the long-run behavior of the dynamics would coin-

cide with the one exhibited by function ρ(λ), thus, having a discontinuity at λ = λp.

However, if the spreading rate decreases (downward arrows in the figure), the degree of

diffusion will continue to be positive until λ reaches the threshold for sustainable dif-

fusion λs. The existence of two different thresholds depending on the direction of the

spreading rate is a well-known occurrence, present in many other phenomena referred

as hysteresis.
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7 Simulations

In this section we develop simulations to test the validity of the mean-field approximations

used throughout the paper. We generate two different random networks in terms of their

connectivity distributions: (i) a scale-free (specifically, P (k) ∝ k−3) network (ii) a Poisson

network.4 Both networks have a total of 1000 nodes and an average connectivity of approx-

imately 9 neighbors per node. We consider the discrete version of the continuous dynamics

used to derive the theoretical results. In this respect, we assume that, in every period one

(and only one) agent is chosen to revise her “strategy”. For the sake of concreteness, we

have focused on testing the contents of the models in Section 5.2.

All figures presented below have in common the following characteristics. We represent how

the number of active consumers (n(t), ordinate) changes as a function of time (t periods,

abscissa) at different values of the spreading rate λ. The data are the average of 100 simu-

lations. For each simulation, the initial condition is randomly chosen such that individuals

are active in round t = 1 with probability 0.01.

In the first model of Section 5.2, we consider a diffusion function that depends linearly on

the absolute number of active consumers in the neighborhood of an agent. Specifically,

f(a) = a. We want to test if the threshold for the scale-free network tends to zero and if it

is lower than the threshold for the Poisson network.

The graph in Figure 6 represents how the number of active consumers changes over a total

of 105 periods for the scale-free network at three different values of the spreading rate

(λ = 0.05, 0.5 and 5; green, blue and red line, respectively). Observe that, as expected,

the degree of diffusion is higher the higher the spreading rate is. Moreover, as the period

increase, the number of active consumers increases as well. Also note that, for λ = 0.05

there is prevalence of the product in the long-run, thus this could indicate that, in this case,

the threshold for positive diffusion tends to zero.

The graph in Figure 7 represents how the number of active consumers changes over a total

of 5 × 104 periods for the Poisson network at three different values of the spreading rate
(λ = 0.05, 0.5 and 5; green, blue and red line, respectively). In contrast with the previous

case, for λ = 0.05 there is no prevalence of the product in the long-run. This indicates that

the threshold for positive diffusion in the Poisson network is above 0.05 and thus higher

than for the scale-free network.

These simulations also provide relevant information concerning the rate of convergence to

the stationary state, an aspect of the dynamics that has not been addressed in the theoretical

4Both of these networks were generated using the program Pajek, a software package for Large Network

Analysis.
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Figure 6: Number of active consumers n(t) for the scale-free network when f(k, a) = a,

λ = 0.05, 0.5 and 5, and t ∈ [1, 105]

Figure 7: Number of active consumers n(t) for the Poisson network when f(k, a) = a,

λ = 0.05, 0.5 and 5, and t ∈ [1, 5× 104]
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Figure 8: Number of active consumers n(t) for the scale-free network when f(k, a) = a
k ,

λ = 0.8, 1, 1.2 and 1.4, and t ∈ [1, 105]

analysis. Observe that, there is a significant evidence reflecting a higher rate of convergence

in the Poisson network than in the scale-free network.

In the second model of Section 5.2, we consider the diffusion function f(k, a) = a
k . We want

to test if the diffusion threshold for the scale-free and Poisson networks is equal to 1.

The graph in Figure 8 represents how the number of active consumers changes over a total of

105 periods for the scale-free network at four different values of the spreading rate (λ = 0.8,

1, 1.2 and 1.4; yellow, green, blue and red line, respectively). Notice that, the threshold for

positive diffusion is close to 1 (between λ = 1 and λ = 1.2) and thus significantly higher

than the threshold obtained for the diffusion function considered previously as predicted by

the theoretical results.

The last set of simulations, presented in Figure 9 represent how the number of active con-

sumers changes over a total of 105 periods for the Poisson network at four different values

of the spreading rate (λ = 0.8, 1, 1.2 and 1.4; yellow, green, blue and red line, respectively).

The threshold for positive diffusion is approximately at λ = 1, thus, in this case, “close” to

the threshold obtained for the scale-free network.

8 Conclusion

The objective of this paper is to analyze how the diffusion of a new product or technology

takes place on a social complex network. The network is characterized by one of its large-

scale statistical properties -the connectivity distribution- rather than by a specific geometric
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Figure 9: Number of active consumers n(t) for the Poisson network when f(k, a) = a
k ,

λ = 0.8, 1, 1.2 and 1.4, and t ∈ [1, 105]

form (such as lines, circles, lattices and so forth). A wide class of diffusion dynamics (or

mechanisms) has been considered. In all of them, the probability of agents adopting the

product depends on the product’s spreading rate and the behavior of the agents’ closest

neighbors.

The main contribution of this paper is to characterize the diffusion threshold in terms of

the properties of the network and the diffusion mechanism. One of the principal findings is

that the threshold depends crucially on the network considered when the intensity of each

interaction is assumed to be independent of the neighborhoods size. More specifically, the

higher the variance in the connectivity distribution of the network, the lower the threshold.

This implies, in particular, that scale-free networks are optimal for spreading the product

in these contexts. In contrast with this result, if the diffusion mechanism considered is such

that the intensity of each interaction is inversely proportional to the neighborhoods size, all

networks have the same positive threshold. Finally, we also show that, for some particular

diffusion mechanisms, there is a phase transition in the degree of the diffusion function. In

other words, there is a discontinuity in the fraction of active consumers in the long-run of

the dynamics as the spreading rate increases.

The simulations presented in the last section of the paper show that the theoretical results,

obtained using mean field approximations, provide a reasonable guide of the qualitative

properties and long-run predictions of the diffusion dynamics.

25



9 Appendix

Proof of Theorem 1:

Assumption (A-1) implies that θ = 0 is a stationary state of the dynamics (i.e. Hλ(0) = 0).

In addition, 0 ≤ Hλ(θ) ≤ 1 for all θ ∈ [0, 1] since gλ,k(θ) ≥ 0. Therefore, given λ ≥ 0,

there exists a non-null stable state of the diffusion dynamics if and only if θ = 0 is unstable.

Formally, this means that there must exist an ε > 0 such that, θ < Hλ(θ) for all θ ∈ (0, ε).
Equivalently,

dHλ(θ)

dθ
cθ=0 ≡ H 0

λ(0) > 1. (8)

Let us now calculate the exact value for the threshold.

Recall that,

Hλ(θ) ≡
1

hki
X
k

kP (k)
gλ,k(θ)

1 + gλ,k(θ)
, (9)

where

gλ,k(θ) =
kX

a=0

λf(k, a)
¡
k
a

¢
θa(1− θ)(k−a).

Then, using equation (9) we express H 0
λ(θ) as follows,

H 0
λ(θ) =

1

hki
X
k

kP (k)
g0λ,k(θ)

(1 + gλ,k(θ))2
, (10)

where

g0λ,k(θ) =
kX

a=0

λf(k, a)
¡
k
a

¢
(aθa−1(1− θ)(k−a) − θa(k − a)(1− θ)(k−a−1)). (11)

If θ = 0 is substituted in equation (10) we obtain that,

H 0
λ(0) =

λ
P

k k
2P (k)f(k, 1)

hki > 1⇔ λ >
hkiP

k k
2P (k)f(k, 1)

.

¤
Proof of Proposition 3:

It is straightforward to show that, for every given 0 ≤ θ ≤ 1, Hλ(θ) as a function of λ, is

increasing. That is,

Hλ(θ) ≤ Hλ0(θ)⇔ λ ≤ λ0. (12)

Let us show that, given λ ≥ 0, assumption (A-2) implies Hλ(θ) is concave for all θ ∈ [0, 1].
Notice that,

H
00

λ (θ) =
1

hki
X
k

kP (k)
g
00

λ,k(θ)(1 + gλ,k(θ))− 2(g0λ,k(θ))2

(1 + gλ,k(θ))3
.
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Thus, it is enough to prove that g
00

λ,k(θ) ≤ 0, since this would imply that H
00

λ (θ) ≤ 0 as well.
If we group the coefficients of the same polynomial on θ in equation (11) we obtain,

g0λ,k(θ) =
k−1X
a=0

λ(−f(k, a)
¡
k
a

¢
(k − a) + f(k, a+ 1)

¡
k
a+1

¢
(a+ 1))θa(1− θ)(k−a−1). (13)

Note that, the coefficients of f(k, a) and f(k, a+ 1) are equal but with opposite sign since¡
k
a

¢
(k − a) =

¡
k
a+1

¢
(a+ 1) =

k!

a!(k − a− 1)! .

Therefore, we can simplify equation (13) as follows:

g0λ,k(θ) =
k−1X
a=0

k!

a!(k − a− 1)!λ(f(k, a+ 1)− f(k, a))θa(1− θ)(k−a−1),

whose second derivative is,

g00λ,k(θ) =
k−1X
a=0

k!

a!(k − a− 1)!λ(f(k, a+ 1)− f(k, a))

(aθa−1(1− θ)(k−a−1) − θa(k − a− 1)(1− θ)(k−a−2)).

Again, grouping the coefficients of the same polynomials on θ we obtain,

g00λ,k(θ) =
k−1X
a=0

λ(
¡
k
a+1

¢
(k − a− 1)(a+ 1)(f(k, a+ 2)− f(k, a+ 1))

−
¡
k
a

¢
(k − a)(k − a− 1)(f(k, a+ 1)− f(k, a)))θa(1− θ)(k−a−2).

Since, ¡
k
a+1

¢
(k − a− 1)(a+ 1) =

¡
k
a

¢
(k − a)(k − a− 1) = k!

a!(k − a− 2)! ,

we thus can simplify g00λ,k(θ) as follows:

g00λ,k(θ) =
k−2X
a=0

k!

a!(k − a− 2)!λ((f(k, a+ 2)− f(k, a+ 1)

−(f(k, a+ 1)− f(k, a))θa(1− θ)(k−a−2).

To conclude, observe that assumption (A-2) implies that g00λ,k(θ) ≤ 0.

It is straightforward to show that, the concavity of Hλ(θ) for all λ ≥ 0, assumption (A-1)
and condition (12) completes the proof. ¤
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