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Morphological characterization of in vitro neuronal networks
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We usein vitro neuronal networks as a model system for studying self-organization processes in the nervous
system. We follow the neuronal growth process, from isolated neurons to fully connected two-dimensional
networks. The mature networks are mapped into connected graphs and their morphological characteristics are
measured. The distributions of segment lengths, node connectivity, and path length between nodes, and the
clustering coefficient of the networks are used to characterize network morphology and to demonstrate that our
networks fall into the category of small-world networks.
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I. INTRODUCTION

One of the most profound questions in science is how
collection of elements self-organize to form new and e
tremely complex systems~@1# and references therein,@2,3#!.
This question becomes far more challenging when talk
about biological systems, where the building blocks the
selves are living entities@4#. In the case of the nervous sy
tem this issue translates to the open question of how a fu
tioning neuronal network~a small circuit as well as a
complex brain! emerges from a collection of single entitie
the individual neurons@5–9#.

As in networks in general, there is a strong relation b
tween the neuronal network structure, or ‘‘wiring diagram
and its function, i.e. the form-function relation@10#. This
enables determination of the dynamics and activity of a n
work by analyzing its morphology and topology of conne
tivity.

An attempt in this direction has been recently made
Watts and Strogatz in introducing their ‘‘small-world ne
works’’ concept@10–13#. A small world network is one tha
interpolates between the two extreme cases of a regular
tice, on the one hand, and a random graph, on the other.
characterized by a local neighborhood, which is highly cl
tered~as in regular lattices!, and by a short path length be
tween vertices~as in random networks!.

Watts and Strogatz state that small-world characteris
are a prevalent feature of real life biological networks. Y
so far, only a few such systems have been examined ex
mentally. These include metabolic networks in various
ganisms@14#, as well as the large-scale organization of me
bolic networks@15#, and the nervous system of the wor
Caenorhabditis elegans@11#.

We are presently studying two-dimensionalin vitro neu-
ronal networks. While these cultured networks lack so
features ofin vivo neuronal networks, they retain many ot
ers~ @16# and references therein!. They develop organotopic
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synaptic connections and exhibit a rich variety of electri
properties similar to those observedin vivo. The two-
dimensional system enables easy access for noninvasive
tical observations, allowing us to follow the dynamics
neuronal growth and network organization. In addition, o
use of invertebrate~locust! cells is advantageous due to th
large size of the neurons and the ease with which they ca
cultured under various conditions@2,8,10,17–21#. All the
above, together with recent progress in multielectrode ar
technology, optical imaging, and fluorescence microsco
make invertebrate cultured neuronal networks a favora
model system for studies of neuronal networks and the n
vous system.

In our culture preparations, fully differentiated adult ne
rons, which lose their dendrites and axon during dissociat
regenerate neurites that interconnect to form an elabo
network. During the growth process, growth cones conn
to nonself, as well as self previously extended neurites, w
no clear evidence for self-avoidance~see Fig. 1!. It appears
that the cultured neurons cannot be considered as simpl
ements; even the single isolated cell shows spontaneous
trical activity and forms a complex morphological structur

Neuronal systems can be modeled as networks or gra
of coupled systems, where the vertices represent the
ments of the system, and the edges represent the interac
between them. Once in the framework of a wired graph, o

n

s:
FIG. 1. A single cultured neuron, two days after plating. T

neurites outgrow from the round soma, branch and connect to o
neurites extending from the same cell. Scale bar5 50m.
©2002 The American Physical Society05-1
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can apply the mathematical tools of graph theory to anal
the system under study and to look for universal, gene
features that are common to different kinds of netwo
within as well as outside the nervous system.

As a first step we needed to define vertices and edge
our system. According to the ‘‘neuron paradigm’’ the buil
ing blocks of the nervous system are the neurons~vertices!
and synapses~edges!. However, based on the branching a
growth process of the cultured networks, we chose the n
rons, the synapses, and synapselike connections betwee
neurites of the same neuron, to be the vertices. Our m
working assumption was that these structures are esse
for information processing in the network.

In this work we describe the results for three differe
neuronal networks grown in culture under controlled con
tions. These networks are characterized by a high cluste
coefficient compared to random graphs, and a path len
that is closer to random networks than to regular ones.
thus classify the studied neuronal networks as small-wo
networks.

II. GROWTH OF THE NEURONAL NETWORK

Cell cultures.Neurons were dissociated from the front
ganglion of adult locusts and maintained under control
conditions. Culturing method followed Shefiet al. @2#. Plated
neurons varied in size from 10mm to 50 mm. The number
of ganglia per dish determined the density of the culture,
thus the average distance between cells.

A charge coupled device camera mounted onto a ph
contrast microscope was used to acquire images of the

FIG. 2. A part of a mature 6-day-old network. At this stage
the neurons in the network are connected to each other. The ne
are straight segments that show high tension along the proce
between junctions. The junction points appear to be more fir
attached to the substrate than are the neurites that connect
Scale bar5 50m.
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tured neurons and networks into a PC for image proces
analysis.

Growth process.Time-lapse observations on the grow
process of cultured neurons revealed that the most inte
stage of development was between day 1 and day 5. A
this rapid growth stage there was a pronounced decreas
growth rate@2,3#. By day 6 in culture most of the neuron
had developed interconnections and were already a part o
elaborate network~Fig. 2!. Hence, we analyzed the networ
at that point.

During the growth process, growth cones connected
just to neighbor cells but also to neurites previously exten
from their own cell body, with no evidence for sel
avoidance. They thereby formed close loops. The juncti
or interconnection points acted as anchors that seemed t
more firmly attached to the substrate than the neurites th
selves. Tension was generated along the neurites as
stretched between these anchors to form straight segm
giving the close loops polygonal shapes~Figs. 1 and 2!.

Connectivity statistics was found to change significan
with the age of the single neuronal cell in culture and t
developmental stage of the network as a whole@2#. After the
initial stage of intense neurite formation, the neuronal c
bodies started to aggregate into packed clusters. The clu
ing of cells was accompanied by absorption of branches
even whole neurites, together with rearrangements of n
rites and what appeared to be fusion of parallel ones.
somata were observed to migrate along newly form
bundles toward one another. Thus, relatively homogen
cultures, in which single neurons were scattered, evol
into cultures organized into a few centers comprised of cl
ters of neurons connected by thick nervelike bundles@2,22#.

l
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y
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FIG. 3. Illustration of the points considered as vertices in
networks: numbers 1 and 8 are somata of neurons and numbers
are connection points between neurites. In the adjacency m
pairs of vertices that are connected as 1-2, 2-3, 3-4, 4-5, 5-6,
etc. obtain the value 1 while the nonconnected pairs obtain
value 0.
5-2
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III. MORPHOLOGY ANALYSIS

Abstraction process.We took a static snapshot of th
evolving networks structure at a particular time point, day
in culture, on which the networks demonstrate maximum
terconnections between neurites. We mapped the neur
network into a simple graph using the following assumptio
~see Fig. 3!.

~1! All vertices are identical.
~2! All edges are identical. That is, we ignored ed

length, the possibility that different edges have different s
aptic efficacies and/or edges directionality.

~3! We ignored edge multiplicity, i.e., we considered on
whether vertices were adjacent or not.

Physical properties of the networks.Our main findings
obtained for three 6-day-old networks cultured and gro
under the same conditions are summarized in Table I. Be
taking the graph theory approach and describing the
works as simple labeled graphs~which are devoid of any
physical properties!, we examine in further detail the statis
tics obtained for one network, the largest of the three~net-

FIG. 4. Distribution of the physical lengths of connecting se
ments in network number 3~240 nodes, 290 segments!. Horizontal
axis is log10 of segment length~measured in micrometers!. Vertical
axis is the normalized frequency of occurrence. Note the bimoda
of the distribution in log space, and the apparent symmetry of
long-segments distribution.

TABLE I. Descriptive parameters measured for three 6-day-
neuronal networks, cultured and grown under controlled conditio

n, number of nodes;k̄, average node connectivity,l̄ , characteristic
path length. Values for a regular ring graph (l reg5n/2k) and a
random graph are also given for comparison.crand and l rand are
calculated for ten numerically generated random graphs with
same parameters as the corresponding studied network.

Net n k̄ l reg/l /l rand c/crand

1 104 2.33 22.35/11.03/4.886.28 0.092/.0176.010

2 140 2.62 26.70/9.66/4.826.12 0.129/.0166.010

3 240 2.38 50.53/17.58/5.906.13 0.113/.0096.007
02190
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work number 3 in Table I, with 240 nodes and 290 edge!.
Distribution of the measured lengths between all pairs
nodes on a semilogarithmic scale is shown in Fig. 4. T
bimodal distribution, with the majority of the samples at t
lower end of the distribution~short segments,r;10 mm),
and the remaining samples distributed in a symmetrical m
ner in the log space between.101 and 102.5 mm
(10–300 mm), is typical for networks with spatially clus
tered structures@22#.

Mapping of the network into a graph.The neuronal net-
work is described as labeled graphG. Such a graph can be
described solely by its adjacency matrixA(G) @23#. This
symmetric matrix is defined as follows: Let the nodes ofG
be labeledv1 ,v2 , . . . ,vn . The Adjacency MatrixA5ai , j of
G is a binary matrix of ordern, with

ai j 5H 1 if v i andv j are joined by an edge

~i.e., adjacent, or neighbors!

0 otherwise.

~1!

For each of the networks under study,A(G) is constructed
by manually labeling all nodes and marking all connec
pairs ~see Fig. 3!. The properties of the adjacency matr
facilitate calculation of all of the required characteristics
the graph~see below!, through simple algebraic manipula
tions. In particular, we stress the following important pro
erty @23#: If G is a labeled graph with adjacency matrixA,
then the (i , j ) element ofAl is the number of walks of length
l from v i to v j .

Node Connectivity.The degreek of a vertex is the numbe
of other vertices to which it is directly connecte
~5adjacent!. For each vertexv i ,k is obtained by adding up
the elements in row~or column! i in A(G). The distribution
of k values for network 3 is depicted in Fig. 5. The avera
connectivity isk̄52.38. It can be seen that the network ha

-

ty
e

FIG. 5. Distribution of the node connectivity in network numb
3 ~240 nodes, 290 connections!. Horizontal axis isk, the number of
nodes to which each node is connected. Vertical axis is the norm

ized frequency of occurrence.k̄52.38.
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pronounced scale of connectivity. That is, it is far from bei
‘‘scale free,’’ a feature claimed to be common among ‘‘re
world’’ networks @24#. However, as Amaralet al. have
shown@25#, the node connectivity of various networks~real
as well as manmade! can exhibit either scale-free, broa
scale or single scale statistics.

Path length.The path lengthl betweenv i and v j is de-
fined as the number of edges included in the shortest

betweenv i and v j . The characteristic path lengthl̄ of the
graphG is l averaged over all pairs of vertices. The distrib
tion of path length values in network 3 is shown in Fig.
The characteristic path length of the corresponding grap
l̄ 517.58.

Clustering coefficient.Another important parameter in th
context of small-world networks is the clustering coefficie
of the graph. The clustering coefficient of vertexv, C(v), is
defined as the number of edges among thekv neighbors ofv
~5adjacent vertices!, divided by the maximal number o
such edges,kv(kv21)/2. Thus,C(v) ~which is in the range
@0–1#! measures the ‘‘cliquishness’’ of the neighborhood
v, i.e., what fraction of the vertices adjacent tov are also
adjacent to each other. By extension, the clustering co
cient of the graphG, C̄, is the average ofC(v) over all
vertices. For network 3 we obtainC̄50.113.

Small-world test.Using the results presented in Table
we can now attempt to test whether ourin vitro neuronal
networks fall into the category of small-world networks. F
this purpose, the table contains a comparison to two ben
mark cases: a random graph and a regular graph@11#, with
the same number of nodesn and average connectivityk̄ as
the network under study. The formal definition of a sma
world network requires that such a network satisfies~1!

C̄@Crandom (Crandom;k/n), that is, a small-world net-
work is much more highly clustered than the correspo
ing random graph and~2! l regular@ l̄ > l random, i.e.,
the characteristic free path of a small-world network
close to that of a random graph, and much smaller t
that of a regular graph. Specifically,l̄ should scale as

FIG. 6. Distribution of the path length values in network numb
3 ~240 nodes, 290 connections!. Horizontal axis is the path length
i.e., the number of edges in the shortest path between two no

Vertical axis is the normalized frequency of occurrence.l̄ 517.58.
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ln(n)/ln(k), rather than asn/2k.1

A comparison between the average path length and c
tering coefficient of our three networks and various real n
works ~following Albert and Barabsi@26#!, with the theoret-
ical values for random and regular graphs, is presented
Fig. 7. It can be seen that our three networks fall within t

1One should note that a random graph with the samen and k̄ as
our networks will not, in general, be fully interconnected. The ch
acteristic path length for such a graph corresponds only to c
nected subgraphs. The fact that our graphs are completely
nected at these parameter values is, of course, a feature
distinguishes them from random graphs.

r

es.

FIG. 7. ~a! Average path length of the neuronal networks stud
~filled dots!, compared to the prediction of random graph theo
@ l rand5 ln(N)/ln(^k&, solid line# and regular graphs@ l reg5n/2k,
open triangles#. Data for our networks are also compared to oth
real networks~open dots, data taken from Albert and Barabasi@26#,
Table I!. ~b! The network’s clustering coefficient compared to t
prediction of random graph theory (crand5^k&/N), and other real
networks@26# @symbols as in~a!#.
5-4
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‘‘cloud’’ of real-world networks. As presented in Table I, th
clustering coefficient is indeed much higher~5–13 times!
than that of the corresponding random graphs. The data
not allow us to verify thatl̄ scales as ln(n)/ln(k) but the
characteristic path length is closer tol random than tol regular ,
as in small-world networks.

IV. DISCUSSION

During development of the nervous system, two oppos
forces impose the morphology of the evolving neuronal n
works. On the one hand, single neurons grow axons
highly branched dendritic trees in order to achieve maxim
interconnected networks. This enables efficient informat
flow, and adds to the strength of the networks as comp
tional units. On the other hand, developing extended
vastly branched neurites has a high energetic cost. Hence
final structure of the neuronal network is a consequence
the interplay between these factors. One category of
works that could be the result of such competition is sm
world networks, combining fast information transmissi
with maximal economy in wiring length~energetic cost!.

We studiedin vitro two-dimensional neuronal network
generated by culturing neurons dissociated from locust g
glia. The in vitro networks were mapped onto graphs whe
the vertices represent the elements of the system and
edges represent the interactions between them. We exam
our networks at the stage where they were practically fu
connected. In order to determine whether the networks
f
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within the small-world regime, we calculated the clusteri
coefficient and path length of each network and compa
these parameters to random and regular graphs with the s
n and k̄.

For the three networks tested, the clustering coefficie
were indeed much higher than those of the correspond
random graphs, and the characteristic path lengths w
closer tol random than to l regular . According to this test, the
networks can be classified as small-world networks.

Distribution of the lengths of segments connecting t
nodes in our networks is typical to networks with a spatia
clustered structure. This becomes very apparent as the
works mature. The culture goes through a dynamical proc
starting with single entities, continues to a fully connect
network, and finally develops to cultures organized into
few centers comprised of groups of neurons connected
thick nervelike bundles. The latter can be characterized
efficient information transmission together with tight an
thrifty structure, the features of a small-world network.

The growing process that was observed in our tw
dimensional cultures serves to demonstrate the s
organization process that leads to the characteristic struc
of the nervous systemin vivo: concentrations of neuronal ce
bodies, namely, ganglia, interconnected by nerve tracts.
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