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Morphological characterization of in vitro neuronal networks
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We usein vitro neuronal networks as a model system for studying self-organization processes in the nervous
system. We follow the neuronal growth process, from isolated neurons to fully connected two-dimensional
networks. The mature networks are mapped into connected graphs and their morphological characteristics are
measured. The distributions of segment lengths, node connectivity, and path length between nodes, and the
clustering coefficient of the networks are used to characterize network morphology and to demonstrate that our
networks fall into the category of small-world networks.
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[. INTRODUCTION synaptic connections and exhibit a rich variety of electrical
properties similar to those observed vivo. The two-

One of the most profound questions in science is how @limensional system enables easy access for noninvasive op-
collection of elements self-organize to form new and ex-tical observations, allowing us to follow the dynamics of
tremely complex system@1] and references thereif2,3]). neuronal growth and network organization. In addition, our
This question becomes far more challenging when talking!Se of invertebraté¢locusy cells is advantageous due to the
about biological systems, where the building blocks themlarge size of the neurons and the ease with which they can be
selves are living entitief4]. In the case of the nervous sys- cultured under various condition,8,10,17-21 All the
tem this issue translates to the open question of how a fun@bove, together with recent progress in multielectrode array
tioning neuronal network(a small circuit as well as a technology, optical imaging, and fluorescence microscopy,
complex braif emerges from a collection of single entities, make invertebrate cultured neuronal networks a favorable
the individual neuron§5—9]. model system for studies of neuronal networks and the ner-

As in networks in general, there is a strong relation be-vOous system.
tween the neuronal network structure, or “Wiring diagram," In our culture preparations, fU”y differentiated adult neu-
and its function, i.e. the form-function relatidd0]. This  rons, which lose their dendrites and axon during dissociation,
enables determination of the dynamics and activity of a nett€generate neurites that interconnect to form an elaborate
work by analyzing its morphology and topology of connec-network. During the growth process, growth cones connect
tivity. to nonself, as well as self previously extended neurites, with

An attempt in this direction has been recently made byno clear evidence for self-avoidantgee Fig. 1 It appears
Watts and Strogatz in introducing their “small-world net- that the cultured neurons cannot be considered as simple el-
works” concept[10—13. A small world network is one that ements; even the single isolated cell shows spontaneous elec-
interpolates between the two extreme cases of a regular laftical activity and forms a complex morphological structure.
tice, on the one hand, and a random graph, on the other. It is Neuronal systems can be modeled as networks or graphs
characterized by a local neighborhood, which is highly clus-0f coupled systems, where the vertices represent the ele-
tered(as in regular lattices and by a short path length be- ments of the system, and the edges represent the interactions
tween Verticegas in random networks between them. Once in the framework of a wired graph, one

Watts and Strogatz state that small-world characteristics
are a prevalent feature of real life biological networks. Yet,
so far, only a few such systems have been examined experi-
mentally. These include metabolic networks in various or-
ganismg14], as well as the large-scale organization of meta-
bolic networks[15], and the nervous system of the worm
Caenorhabditis elegansl1].

We are presently studying two-dimensiomalvitro neu-
ronal networks. While these cultured networks lack some
features ofin vivo neuronal networks, they retain many oth-
ers( [16] and references therginThey develop organotopic

*Present address: Department of Molecular Biology, Princeton

University, Princeton NJ 08544-1014. FIG. 1. A single cultured neuron, two days after plating. The
TCorresponding author. Fax: 972-3-6409403. Email addressneurites outgrow from the round soma, branch and connect to other
ayali@post.tau.ac.il neurites extending from the same cell. Scale Ha50u.
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FIG. 3. lllustration of the points considered as vertices in the
networks: numbers 1 and 8 are somata of neurons and numbers 2—7
old network. At this stage all are connection points between neurites. In the adjacency matrix
girs of vertices that are connected as 1-2, 2-3, 3-4, 4-5, 5-6, 5-7,
fc. obtain the value 1 while the nonconnected pairs obtain the
alue 0.

FIG. 2. A part of a mature 6-day-
the neurons in the network are connected to each other. The neurit®
are straight segments that show high tension along the processg
between junctions. The junction points appear to be more firmlyv
attached to the substrate than are the neurites that connect them.

Scale bar= 50u. tured neurons and networks into a PC for image processing

. analysis.
can apply the mathematical tools of graph theory to analyze growth processTime-lapse observations on the growth

the system under study and to look for universal, generi, ,cess of cultured neurons revealed that the most intense
features that are common to different kinds of networks

ithi I tside th A stage of development was between day 1 and day 5. After
within as well as oulside the nervous system. this rapid growth stage there was a pronounced decrease in
As a first step we needed to define vertices and edges in .
; B . .~ growth rate[2,3]. By day 6 in culture most of the neurons

our system. According to the “neuron paradigm” the build-

ing blocks of the nervous system are the neuriestices had developed interconnections and were already a part of an

and synapsegedges. However, based on the branching and elalaorate'networKFlg. 2). Hence, we analyzed the network
growth process of the cultured networks, we chose the nel@t that point.

rons, the synapses, and synapselike connections between thePUring the growth process, growth cones connected not
neurites of the same neuron, to be the vertices. Our maif/St to neighbor cells but also to neurites previously extended

working assumption was that these structures are essentfm their own cell body, with no evidence for self-
for information processing in the network. avoidance. They thereby formed close loops. The junctions

In this work we describe the results for three different©r interconnection points acted as anchors that seemed to be
neuronal networks grown in culture under controlled condi-More firmly attached to the substrate than the neurites them-
tions. These networks are characterized by a high clusteringelves. Tension was generated along the neurites as they
coefficient compared to random graphs, and a path |engtﬁtretched between these anchors to form straight segments,
that is closer to random networks than to regular ones. W8iving the close loops polygonal shap@sgs. 1 and 2
thus classify the studied neuronal networks as small-world Connectivity statistics was found to change significantly

networks. with the age of the single neuronal cell in culture and the
developmental stage of the network as a whale After the
Il GROWTH OF THE NEURONAL NETWORK initial stage of intense neurite formation, the neuronal cell

bodies started to aggregate into packed clusters. The cluster-
Cell cultures.Neurons were dissociated from the frontal ing of cells was accompanied by absorption of branches and
ganglion of adult locusts and maintained under controlleceven whole neurites, together with rearrangements of neu-
conditions. Culturing method followed Shetfi al.[2]. Plated rites and what appeared to be fusion of parallel ones. The
neurons varied in size from 1@«m to 50 um. The number somata were observed to migrate along newly formed
of ganglia per dish determined the density of the culture, antbundles toward one another. Thus, relatively homogenous
thus the average distance between cells. cultures, in which single neurons were scattered, evolved
A charge coupled device camera mounted onto a phasato cultures organized into a few centers comprised of clus-
contrast microscope was used to acquire images of the culers of neurons connected by thick nervelike bund&22).
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FIG. 4. Distribution of the physical lengths of connecting seg-  FIG. 5. Distribution of the node connectivity in network number
ments in network number @40 nodes, 290 segmehtsiorizontal 3 (240 nodes, 290 connectign$lorizontal axis ik, the number of
axis is logg of segment lengtiimeasured in micrometersvertical nodes to which each node is connected. Vertical axis is the normal-
axis is the normalized frequency of occurrence. Note the bimodalityzed frequency of occurrenck=2.38.
of the distribution in log space, and the apparent symmetry of the

long-segments distribution. ] )
work number 3 in Table I, with 240 nodes and 290 edgiges

IIl. MORPHOLOGY ANALYSIS Distribution of th_e me_asur_ed Iengths betwee_n aI_I pairs of
nodes on a semilogarithmic scale is shown in Fig. 4. The
Abstraction processWe took a static snapshot of the bimodal distribution, with the majority of the samples at the
evolving networks structure at a particular time point, day 6lower end of the distributiorishort segments,~10 wxm),
in culture, on which the networks demonstrate maximum inand the remaining samples distributed in a symmetrical man-
terconnections between neurites. We mapped the neuronggy in the log space betweer-10* and 165 um
networ_k into a simple graph using the following assumpt|ons(10_300 um), is typical for networks with spatially clus-
(see FI?I. 3 dentical tered structuref22].
(1) All vertices are identical. Mapping of the network into a grapf:he neuronal net-

(2) All edges are identical. That is, we ignored edge ; :
length, the possibility that different edges have different syn-Work 'S described asllabelgd gra@h Such a graph can be
; . oF o ) described solely by its adjacency mati(G) [23]. This
aptic efficacies and/or edges directionality.

(3) We ignored edge multiplicity, i.e., we considered only symmetric matrix is defined as f_ollows: Let the nodesof
whether vertices were adjacent or not. be labeled,v,, . .. v,. The Adjacency MatriA=a; ; of

Physical properties of the network&ur main findings G is a binary matrix of orden, with
obtained for three 6-day-old networks cultured and grown
under the same conditions are summarized in Table |. Before
taking the graph theory approach and describing the net- _ .
works as simple labeled graplfehich are devoid of any 1 ifvj andv; are joined by an edge
physical propertigs we examine in further detail the statis- ;= (i.e., adjacent, or neighbars 1)

tics obtained for one network, the largest of the th@eet- 0 otherwise

TABLE |. Descriptive parameters measured for three 6-day-old

neuronal networks, cultured and grown under controlled condltlonsl':or each of the networks under study(G) is constructed

n, number of nodesk, average node'connectivity, characteristic by manually labeling all nodes and marking all connected
path length. Values for a regular ring grapheg=n/2k) and @ a5 (see Fig. 3 The properties of the adjacency matrix

random graph are also given for comparisofng and lrang ar® - facilitate calculation of all of the required characteristics of
calculated for ten numerically gener_ated rar_ndom graphs with th?he graph(see beloy; through simple algebraic manipula-

same parameters as the corresponding studied network. tions. In particular, we stress the following important prop-
erty [23]: If G is a labeled graph with adjacency matAx

Net n &k lreg/l/lrang Cferand then the {,j) element ofA! is the number of walks of length
| fromv; to v .

1 104 2.33 22.35/11.03/4.8828 0.092/.01F.010 Node ConnectivityThe degred of a vertex is the number
of other vertices to which it is directly connected

2 140 262 26.70/9.66/4.8212 0.129/.016 .010 (=adjacenk For each vertex; k is obtained by adding up
the elements in rowor column i in A(G). The distribution

3 240 238 50.53/17.58/5.9013 0.113/.009 007 of k values for network 3 is depicted in Fig. 5. The average

connectivity isk=2.38. It can be seen that the network has a
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FIG. 6. Distribution of the path length values in network number | i
3 (240 nodes, 290 connectign$lorizontal axis is the path length, . . . . .

i.e., the number of edges in the shortest path between two nodes @) 1 2 3
Vertical axis is the normalized frequency of occurrenice 17.58.

pronounced scale of connectivity. That is, it is far from being
“scale free,” a feature claimed to be common among “real- _,|
world” networks [24]. However, as Amaralet al. have
shown[25], the node connectivity of various network®al
as well as manmadecan exhibit either scale-free, broad
scale or single scale statistics. 2
Path length.The path lengtH betweenv; andv; is de- (\‘;_
5

3_

fined as the number of edges included in the shortest pati™a

betweenv; andv;. The characteristic path lengthof the o
graphG is | averaged over all pairs of vertices. The distribu-
tion of path length values in network 3 is shown in Fig. 6.
The characteristic path length of the corresponding graph is

| =17.58.

Clustering coefficientAnother important parameter in the
context of small-world networks is the clustering coefficient (b_) 1 2 3 4
of the graph. The clustering coefficient of vertexC(v), is log, ()
defined as the number of edges amongkheeighbors ol
(=adjacent vertices divided by the maximal number of
such edgesk, (k,—1)/2. Thus,C(v) (which is in the range
[O_.l]) measures '_[he C“qu'Shne.SS of the neighborhood 01Eopen trianglek Data for our networks are also compared to other
U, .I'e" what fraction of the Vemce.s adjacent doan_:“ also real networkgopen dots, data taken from Albert and Baralhasi,
adjacent to each Othe_r' By extension, the clustering Coeff"'l'able ). (b) The network’s clustering coefficient compared to the
cient of the graphG, C, is the average o€(v) over all  prediction of random graph theorg4,q=(k)/N), and other real
vertices. For network 3 we obtaid=0.113. networks[26] [symbols as in(@)].

Small-world testUsing the results presented in Table I,
we can now attempt to test whether darvitro neuronal  In(n)/In(K), rather than as/2k.*
networks fall into the category of small-world networks. For A comparison between the average path length and clus-
this purpose, the table contains a comparison to two bencHering coefficient of our three networks and various real net-
mark cases: a random graph and a regular gfaph with works (following Albert and Barabsj26]), with the theoret-
the same number of nodesand average connectiviﬂ?as ic_al values for random and regular graphs, is pres_er_lted in
the network under study. The formal definition of a small-Fig. 7. It can be seen that our three networks fall within the
world network requires that such a network satisfigs
C>Candom (Crandom—k/n), that is, a small-world net- _ _
work is much more highly clustered than the correspond- One should note that a random graph with the samamdk as
. — . our networks will not, in general, be fully interconnected. The char-
Ing random graph and(2) lregular>I erandow I.e.,

2. ._acteristic path length for such a graph corresponds only to con-
the characteristic free path of a small-world network is,qcteq subgraphs. The fact that our graphs are completely con-

close to that of a random graph, and much smaller thaQecteq at these parameter values is, of course, a feature that
that of a regular graph. Specifically, should scale as distinguishes them from random graphs.

4_

FIG. 7. (a) Average path length of the neuronal networks studied
(filled doty, compared to the prediction of random graph theory
[lrang=IN(N)/In((k), solid ling] and regular graphg$l,.q=n/2k,
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“cloud” of real-world networks. As presented in Table |, the within the small-world regime, we calculated the clustering
clustering coefficient is indeed much highé&—-13 time$  coefficient and path length of each network and compared
than that of the corresponding random graphs. The data dinese parameters to random and regular graphs with the same

not allow us to verify thatl scales as Im)/In(k) but the nandk.

characteristic path length is closerltgnqomthan tol,cgyiar. For the three networks tested, the clustering coefficients
as in small-world networks. were indeed much higher than those of the corresponding
random graphs, and the characteristic path lengths were

IV. DISCUSSION closer tolan40m than tol e gyiar- According to this test, the

] _ networks can be classified as small-world networks.

During development of the nervous system, two opposing  pistribution of the lengths of segments connecting the
forces impose the morphology of the evolving neuronal netyodes in our networks is typical to networks with a spatially
works. On the one hand, single neurons grow axons angjystered structure. This becomes very apparent as the net-
highly branched dendritic trees in order to achieve maximumyorks mature. The culture goes through a dynamical process,
interconnected networks. This enables efficient mformanorgtarting with single entities, continues to a fully connected
flow, and adds to the strength of the networks as computasetwork, and finally develops to cultures organized into a
tional units. On the _other hand_, developln_g extended angs\y centers comprised of groups of neurons connected by
vastly branched neurites has a high energetic cost. Hence, thgick nervelike bundles. The latter can be characterized by
final structure of the neuronal network is a consequence Officient information transmission together with tight and

the interplay between these factors. One category of netnity structure, the features of a small-world network.
works that could be the result of such competition is small- The growing process that was observed in our two-

world networks, combining fast information transmission gimensional cultures serves to demonstrate the self-

with maximal economy in wiring lengtfenergetic cost organization process that leads to the characteristic structure
We studiedin vitro two-dimensional neuronal networks of the nervous systein vivo: concentrations of neuronal cell

ggnerateq b)_/ culturing neurons dissociated from locust gansggies. namely, ganglia, interconnected by nerve tracts.
glia. Thein vitro networks were mapped onto graphs where

the vertices represent the _elements of the system and_the ACKNOWLEDGMENTS
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