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Abstract

The analysis of a family of physically based landscape models leads to the analysis of two stochastic processes that
seem to determine the shape and structure of river basins. The partial differential equation determine the scaling
invariances of the landscape through these processes. The models bridge the gap between the stochastic and
deterministic approach to landscape evolution because they produce noise by sediment divergences seeded by

instabilities in the water flow. The first process is a channelization process corresponding to Brownian motion of the
initial slopes. It is driven by white noise and characterized by the spatial roughness coefficient of 0:5. The second
process, driven by colored noise, is a maturation process where the landscape moves closer to a mature landscape

determined by separable solutions. This process is characterized by the spatial roughness coefficient of 0:75 and is
analogous to an interface driven through random media with quenched noise. The values of the two scaling exponents,
which are interpreted as reflecting universal, but distinct, physical mechanisms involving diffusion driven by noise,

correspond well with field measurements from areas for which the advective sediment transport processes of our models
are applicable. Various other scaling laws, such as Hack’s law and the law of exceedence probabilities, are shown to
result from the two scalings, and Horton’s laws for a river network are derived from the first one. # 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

In three preceding papers (Smith et al., 1997a,b,
2000), we showed that a family of landscape evolution

models capture, at least to a first approximation, the
emergence and development of stable, dendritic patterns
of valleys and ridges. In this paper we demonstrate the

manner in which these models also capture the effects of
random influences in driving the processes of landscape
evolution. In particular, our results provide a physical
basis for explaining various fundamental scaling rela-

tionships that characterize fluvial landscapes and suggest
a bridge between deterministic and stochastic theories of
drainage basin evolution.

An important criticism of the discrete stochastic

models is that, despite their impressive simulations of
many planar features of fluvial landscapes, they contain
no acceptable bridge to the more physically acceptable

theories based on PDEs. The complexity of fluvial
processes and landforms, however, has long provided a
justification for models that incorporate stochastic

elements. The growing body of research focused on
scaling relationships in landscapes, recently summarized
in Rodriguez-Iturbe and Rinaldo (1997), emphasizes the
importance of integrating deterministic and stochastic

representations of fluvial processes into a tractable and
useful theory. A general goal of this paper, therefore, is
to show that by interpreting PDE-based models of

landscape evolution as driven by random influences, one
obtains significant insights not only into the nature of
landscape scaling laws, but also into the manner in
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which the deterministic and stochastic lines of investiga-
tion may be bridged.

In relation to our modeling context, we note that the
models described later in Section 2 focus on the advective
entrainment and transport of sediment in transport limited

conditions as the dominant process in drainage basin
evolution. Whereas other processes, such as detachment-
limited entrainment and gravity-driven diffusion, are
important processes in many geomorphic contexts, the

modeling results presented in Smith et al. (1997a,b)
indicate that advective entrainment and transport
processes are in some sense the fundamental processes

underlying drainage basin evolution. We believe that
isolating and understanding the effects of these processes
is a necessary and critical step in understanding the

effects of many interacting processes on landscape
development.
In relation to our analytical context, we apply the

methods developed in a large and rapidly growing body
of research focused on explaining the dynamics and
forms of complex surfaces and interfaces evolving in a
variety of physical contexts. Important goals of this

literature are to characterize the qualitative behavior of
high- and infinite-dimensional, nonlinear systems that
are driven by noise and to explain the origin of temporal

and spatial scaling behavior in a wide variety of
phenomena (Schroeder, 1991; Zipf, 1949; Mandelbrot,
1983). It is now known that the evolution of surfaces

whose dynamics are driven by various forms of noise are
frequently characterized by scaling laws. Such laws
often, but not always, indicate that the system is
insensitive to differences in the details of the underlying

mechanisms and processes. This insensitivity leads to the
observation that seemingly different systems exhibit
qualitatively similar, or universality classes of, behaviors

(see, for example, Sneppen, 1998). This fact is of great
value insofar as it allows one to extend results that are
known about the response of one system to noisy inputs

to other systems in the same universality class. In the
following analysis, we make use of such extensions in
understanding how the two types of

noise (homogeneous and quenched) lead to distinct
emergent scalings in the eroding surfaces described by
our models.
We employ several specific techniques from the

emerging theory of complex surface evolution in
investigating the models discussed in Smith et al.
(1997a,b) as systems driven by noise or stochastic

processes. First, we characterize the statistical structure
of eroding surfaces and flows in terms of various
structure functions that represent the statistical correla-

tion structure of complex surfaces. Second, we apply
known results from this theory concerning the form of
scalings that emerge from appropriate universality

classes of PDEs when subjected to random driving
forces of a specific form. As noted above, the rationale

for such application is that systems belonging to the
same universality class manifest qualitatively similar

behaviors. In order to take advantage of these known
results we employ suitable approximations of our
models in conjunction with specific models of noise that

we justify in terms of the basic properties of our models.
We also connect part of our theory to the concept of
self-organized criticality (SOC) as proposed by Bak et al.
(1988), Bak and Paczuski (1995), Paczuski (1995),

Sneppen (1998). Although this concept has yet to find
an appropriate mathematical formulation, it is based on
the underlying idea of an attractor poised at criticality to

which a system is driven by random perturbations. Such
systems are characterized by essential relationships
between the spatial and the temporal scalings of events

(Sapozhnikov and FouFoula-Georgiou, 1996) and by
specific asymptotic forms of the structure functions. We
believe, in fact, that our theory may provide some of the

foundation for a mathematical theory of self-organized
criticality.
In relation to the statistical structure of our eroding

surfaces and flows, our main results are the discovery of

two fundamental scaling relationships that are repre-
sented in terms of the asymptotic forms of a structure
function characterizing the width, or height–height

correlation function (see Section 2.3 below), of eroding
surfaces. A first scaling relation, with an exponent of 0:5
characterizing the depth of water flow and the slope of

the water surface, emerges early. This scaling is
fundamentally associated with the development of
channelized flows on unstable surfaces and indicates
the importance of stochastic influences in determining

the configuration of emerging channel networks. A
second scaling, with an exponent of approximately 0:75,
is associated with self-similar separable solutions which

are associated with the mature stages of development
and the emergence of a variational principle. This
scaling characterizes the form of the land surfaces

and its slope. The differences between the two
scalings suggest that they are determined by different
mechanisms.

We note with great interest that field values of the
same height–height correlation function obtained for
landscapes in Ethiopia, Somalia, and Saudi Arabia by
Weissel and Pratson (1994), fall neatly into the range

0.5–0.7. Although empirical scaling results of this form
tend to cluster around a relatively small set of values,
these results provide some validation for our theory,

particularly since our models may be interpreted as
representing conditions under which our advective
models of sediment entrainment and transport apply,

since the diffusive mass-wasting processes of humid
landscapes are relatively unimportant. We may therefore
interpret our models as providing physi-

cally based explanations for such empirical scaling
relationships.
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In relation to the application of known results from
the theory of complex surfaces to explain the physical

mechanisms underlying these scalings, we first construct
appropriate linearizations of our models in the two
relevant regimes: the early channel initiation regime and

the mature, separable surface regime. We show that,
when viewed at their fast time scales, these linearized
models possess noise-generating mechanisms. These
mechanisms act as seeds of the noise that drives the

erosion equations at their long time scales and thereby
produce the observed scalings. We may interpret the
initial, small, random variations as characteristic of the

eroding elevations and of the rainfall process.1

The mechanisms that generate this driving noise are
important since they provide a linkage between the

observed scalings and the physical mechanisms under-
lying the evolution of the eroding surfaces. We identify
two plausible mechanisms of noise generation that stem

from instabilities in the flow of water over the eroding
surfaces and that take place on the short time scales
associated with such flows. A mechanism that we
associate with the regime of early channel initiation

involves the formation of shocks or hydraulic jumps2 in
the flow of water over locally convex portions of
landscapes in which channels are first emerging. These

shock formations are of two types. The first is associated
with nonlinearities in the water flow, the second with
both nonlinearities in the sediment flow and the linear

propagation of singularities in the water flow. As we
show later, noise generated by shocks of both types may
be viewed as seeds for the instabilities in the sediment
flow that drive the process of channelization. A second

mechanism of noise generation that we associate with
the regime of mature, separable surfaces again takes
place on a short time scale and involves the formation of

shocks on characteristically concave surfaces at the
points where the derivatives of the surface elevation
function are singular, and hydraulic jumps on the lower

reaches of the slopes and in the valleys. Although we
emphasize that these mechanisms of nonlinear noise
generation are specific to our simple advective models,

mechanisms involving analogous effects almost certainly
exist in more complex models. The details of how the
noise-generating mechanisms make the water flow
turbulent and lead to divergences in the sediment flow

are not completely understood. These mechanisms and
how to model them mathematically are the topic of
current investigations. We will elaborate on the intuitive

reasoning that instabilities in the water flow act as seeds

to the divergences in the sediment flow and that the
resulting mathematical model for the sediment transport

must be a noise-driven gradient flow.
The cumulative effects of the noise generated in the

flow of water at short time scales impact the sediment

flows at the longer time scale of erosion and lead to the
observed scalings. Hence we view the first scaling
relation, which arises from an erosion process driven
by noise, generated by water-seeded divergences in the

sediment flow, as resulting from universal phenomena
that are modeled as diffusive (random) processes driven
by homogeneous noise. Since this scaling is associated

with the development of channelized flows on unstable
surfaces, it indicates the importance of stochastic
influences in determining the configuration of emerging

channel networks. In particular, we show that such
configurations may be viewed as arising from a random
walk. The second scaling relation, which arises from

erosion processes being seeded by instabilities in the
water flow but over separable surfaces with singularities
(Smith et al., 1997a), is also a universal phenomenon
generated by a noise-driven diffusive process. Whereas

the noise generated by shocks (hydraulic jumps) over the
initial channelizing surfaces is spatially homogeneous,
the noise seeded by the shock-inducing singularities of

the separable surfaces is highly inhomogeneous in space
due to nonlinear quenching. Thus the sediment diver-
gences are seeded by homogeneous instabilities in the

water flow in case of the first process but colored
instabilites in case of the second process. In addition the
sediment divergences themselves differ in the two cases.
Hence, although the two processes are similar in both

being diffusive and noise-driven, the differences in forms
of the associated noise result in differing scaling
exponents.

We show that various other scaling relations follow
from our two basic scaling relations. In particular, we
show that the second scaling leads to a simple derivation

of the established scaling relationship between stream
length and drainage area known as Hack’s law.
Furthermore, the noise that leads to the first scaling

also drives the initial growth of channels, allowing us to
characterize, in terms of random walks, the nature of the
process by which channels emerge from unstructured
surfaces. We emphasize that our contributions in

relation to our scaling results are not simply in showing
how one particular model gives rise to (self-similar)
scaling, but to show that the scaling of surfaces and

processes in a large class of relevant models may be
viewed as being caused by universal physical processes.
Many details of this theory remain for investigation

and significant efforts will be required to generalize the
theory to cases involving other geomorphic processes.
Specific questions of interest include whether the two

suggested mechanisms of noise generation can be
generalized to other, more comprehensive models;

1 In computing solutions to our basic model, we simulate such

noise as a combination of perturbations to the initial eroding

surface and the round-off error in the numerical computations.
2A shock is a discontinuity in a wave-like form that occurs

when the higher parts of the wave propagate at a higher velocity

than the lower part (see, for example, Smoller, 1994).
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whether the scaling results can be shown to follow in the
full nonlinear regime of the equations; and whether the

two scalings are sufficient to determine all of the other
scaling relations of fluvial landscapes, or whether there
are other scalings that we have either yet to find or that

arise as a result of processes not encompassed within our
advective models. Despite these daunting research
problems, we believe that the results presented in this
paper provide a reasonable qualitative model of the

emergence of form and scalings over a broad range of
fluvial contexts and that such results are likely to be
independent of many specific modeling details.

The paper is structured as follows. In Section 2 we
discuss the mathematical models, the nonlinear shock
formation that seeds the noise, and the structure

functions that give rise to the scaling relations. The
results of numerical simulations of the mathematical
models, which are presented in Section 3, provide a basis

for the empirical and analytical investigations presented
in the remaining sections of the paper. In Section 4, we
provide a theoretical explanation for the first scaling
relation that is associated with the emergence of chann-

elization on unstructured surfaces. In Section 5, we
provide a theoretical explanation for the second scaling
relation that is associated with the separable landscapes.

We discuss the implications of our results for the
understanding of geomorphic phenomena in Section 6,
while Section 7 contains a summary of our results. A

derivation of the formation of hydraulic jumps (shocks)
in the water flow over concave surfaces in contained in
Appendix A. A proof of the formation of shocks from
surface singularities and their linear propagation, and an

explanation for the observed scaling of the gradient of
the water surface are contained in Appendices B and C,
respectively, and a derivation of a relationship between

Horton’s laws is contained in Appendix D.

2. Modeling eroding surfaces and their scaling laws

Because the surfaces generated by fluvial erosion are

the result of highly nonlinear processes driven by noisy
inputs, they are complex and difficult to represent in
traditional terms. We now discuss the models of
nonlinear erosion processes from which our results are

generated, and briefly indicate the nature and origin of
the random effects that drive the equations. We then
describe the manner in which such surfaces may be

represented in terms of structure functions, the asymp-
totic forms of such structure functions, and the
associated scaling laws.

2.1. A family of landscape evolution models

The scaling results presented in this paper are derived
from the same family of models studied analytically and

numerically by Smith et al. (1997a,b), and Birnir et al.
(1998). These models represent the advective entrainment

and transport of sediment in transport limited conditions
(Howard, 1994). Based on our previous analyses and on
the results reported in this paper, we believe that they

capture essential aspects of fluvial erosion at small to
medium scales of spatial resolution (see, for example,
Howard et al., 1994). Whether they capture essential
aspects at large scales of spatial resolution is an open

issue. Whereas it is straightforward to extend these
models to represent other processes that are significant
in the evolution of fluvial landscapes, such as gravity-

driven diffusion processes on hillslopes, we believe that
their effects would mask the scaling relations associated
with the advective processes of sediment transport in

channel and overland flows. We plan to explore the
effects of such processes on scaling in later papers.
We now provide a summary description of the family

of models. A more detailed description of their
derivation is provided in Smith et al. (1997a). We also
provide a brief discussion of those aspects of the
characteristic time scales of the models that are relevant

to the present context. The models are based on
conditions describing the conservation of water and
sediment fluxes over a continuous, erodible surface z ¼
zðx; y; tÞ

�Rþ
qh
qt

¼ r � ðuwqwÞ; ð1Þ

qz
qt

¼ r � ðuwqsÞ ð2Þ

in which h ¼ hðx; y; tÞ is the depth of water varying
continuously over the landsurface, �uw ¼ �rH=jrHj is
a unit vector in the direction of both water and the

advected sediment flows, H ¼ Hðx; y; tÞ ¼ zðx; y; tÞþ
hðx; y; tÞ is a free water surface, qw represents the flux
of water per unit width, and qs represents the advected

flux of sediment per unit width.
There are three natural time scales that characterize

the dynamics of Eqs. (1) and (2). These time scales may

be derived by transforming the variables of Eqs. (1) and
(2) to dimensionless form, using relations v ¼ ½v
v* in
which ½v
 is a scale and v* a dimensionless variable.

Given values for the scaling parameters ½H
; ½h
;
½qw
; ½qs
; ½R
 and ½x
 ¼ ½y
 that are characteristic of the
variables in Eqs. (1) and (2), we may then define
representative values of the scaling parameter for the

time variable (½t
) by setting the values of specific
dimensionless parameters of the problem to unity. A
useful set of such values characterize the representative

scales when the basic model (Eqs. 1,2) is used to
represent the erosion of a small, linear ridge.
A short time scale ½t
 for t may be defined by the

relation ½t
½qw
=½h
½x
 ¼ 1, which may be interpreted to
imply that ½t
 is the time scale at which the volume of
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water flowing over a lateral cross-section of the ridge is
approximately the same as the volume of water on the

surface. Applying this scaling to dimensionless versions
of Eqs. (1) and (2) and dropping the asterisks denoting
dimensionless variables, we obtain

qh
qt

¼ r � ðuwqwÞ þ
½x
½R

½qw


R;

qH
qt

�
½h

½H


qh
qt

¼
½h
½qs

½H
½qw


r � ðuwqsÞ:

It is natural to choose a scaling that makes the

dimensionless parameter ½x
½R
=½qw
 ¼ 1 in the water
flow equation and interpret all terms in this equation as
being Oð1Þ (see, for example, Fowler, 1997). The

significance of this fact, as we show in Section 2.4 and
in Appendix A, is that the flows described by this
equation are characterized by shock waves that we may

interpret as short term noise. The order of the
dimensionless parameter ½h
½qs
=½H
½qw
 in the erosion
equation is much smaller than unity and smaller than
½h
=½H
. Hence we obtain the (approximate) erosion

equation

qH
qt

�
½h

½H


qh
qt

which indicates that variations in the water surface H
are small at this time scale and driven by short term
variations in the flow depth h described by the water

flow equation. This equation also implies that erosion of
the surface is negligible at this time scale.
A time scale ½t
 that is intermediate between the

previous short scale and longer scales may be defined by
the relation ½t
½qs
=½h
½x
 ¼ 1, which implies that we may
interpret ½t
 as a time scale at which the volume of
sediment flowing over a lateral cross-section of the ridge

is approximately equal to the volume of water on the
ridge at any time. On applying this scaling to Eqs. (1)
and (2) we obtain

½qs

½qw


qh
qt

¼ r � ðuwqwÞ þ R;

qH
qt

¼
½h

½H


r � ðuwqsÞ þ
½h

½H


qh
qt
;

where we have once more used the scaling relation
½x
½R
=½qw
 ¼ 1. We note that the dimensionless para-
meter ½qs
=½qw
 that multiplies the term qh=qt has a
magnitude that is greater than its magnitude at the short

time scale. Since the evolution of the water surface H is
determined by two terms that we may assume to be Oð1Þ
(see Fowler, 1997), and since both are multiplied by the

same small dimensionless parameter ½h
=½H
, we may
interpret this to mean that changes in the surface H are
determined to a significant degree by small fluctuations

in the depth of water h, indicated by the water flow
equation, as well as by the erosion of the z surface.

A long time scale ½t
 may be defined by the relation
½t
½qs
=½H
½x
 ¼ 1 and we may interpret ½t
 as the time

scale at which the volume of sediment flowing over a
lateral cross-section of the ridge represents a significant
proportion of the volume of the ridge. On applying this

scaling to Eqs. (1) and (2) and again using the scaling
relation ½x
½R
=½qw
 ¼ 1, we obtain

½h
½qs

½H
½qw


qh
qt

¼ r � ðuwqwÞ þ
½x
½R

½qw


R;

qH
qt

¼ r � ðuwqsÞ þ
½h

½H


qh
qt
:

The small size of the dimensionless parameter on the

LHS of the water flow equation, ½h
½qs
=½H
½qw
51,
suggests that the basic flow is essentially an equilibrium
flow down the surface gradient. It is not unreasonable,

therefore, to adopt the following approximation to the
water flow relation:

0 � r � ðuwqwÞ þ
½x
½R

½qw


R ð3Þ

as was done in the analyses in Smith and Bretherton
(1972), Loewenherz-Lawrence (1991), Smith et al.

(1997a,b). Whereas we may interpret the dominant
balance in the erosion equation as being between the
first two terms, we may interpret the relatively small

term ½h
=½H
qh=qt as representing random variations
that drive the sediment flow.

2.2. Previous results for long time scale approximations

Smith et al. (1997a,b) analyzed a subfamily of models
Eqs. (1) and (2) that was obtained with the use of the
following assumption. First, the long time scale approx-

imation Eq. (3) to the basic model was assumed,
together with the additional scaling relationship
½h
=½H
 ¼ ½qs
=½qw
 � Z. Second, a Manning-type consti-
tutive relation

qw ¼ nh5=3jrHj1=2; ð4Þ

where n, the inverse of the channel roughness, is a
constant, was adopted to represent the flux of water.
Third, a power law relation

qs ¼ kh5g=3jrHjg=2þd ð5Þ

was employed in representing the flux of sediment qs
(Julien and Simons, 1985). These assumptions lead to
the following dimensionless equations:

�R ¼ r �
rH

jrHj
h5=3jrHj1=2

� �
; ð6Þ

qH
qt

� Z
qh
qt

¼ r �
rH

jrHj
h5g=3jrHjg=2þd

� �
: ð7Þ

The initial and boundary conditions employed in these
analyses modeled a linear ridge undergoing erosion
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as a result of a uniform rainfall (see Eqs. (9) and (10)
later).

Applying the numerical methods described in Smith
et al. (1997b) to Eqs. (6) and (7), it was shown (Smith
et al., 1997b) that initially unstructured but randomly

perturbed two-dimensional surfaces are unstable when
eroded by water. Channelized flows develop on the
surfaces with a region of maximum channelization first
emerging towards the lower boundary of surfaces with

an initially planar configuration. A variety of numerical
experiments have shown that channelization occurs on
surfaces with a large array of initial configurations. This

process of channelization involves the merging of
‘‘rivulets’’ and the formation of larger ‘‘channels’’. The
longitudinal profiles of the ridge simultaneously develop

a concavity that also emerges initially near the base of
the ridge under the influence of the fixed lower
boundary. The region characterized by the maximum

rate of channelization and by the emergence of the
concavity gradually moves towards the upper boundary
of the ridge as the surface erodes.
A pattern of dendritic valleys separated by ridges

emerges and comes to dominate the eroding surface.
Such a pattern is illustrated in Figs. 1 and 2, which
represent the surface after 10% of an initially planar

surface has been eroded. After a characteristic period of
erosion, the surfaces evolve towards stable landscapes of
concave valleys and ridges that decay slowly in a self-

similar manner. Such a pattern is illustrated in Figs. 3
and 4, which represent the surface after 60% of an initial
planar surface has been eroded. We note, in particular,
the sharpness of the longitudinal ridges, or divides,

separating the valleys.
The convergence to these forms occurs from initial

surfaces that are both planar and non-planar. The

characteristic period of erosion that precedes this
convergence, which we measure in terms of the

percentage of the original surface eroded, depends on
the nature of the initial surface, the rainfall rate, and the

parameters as g and d. These mature landscapes,
consisting of stable patterns of concavities, valleys,
ridges, and associated flows, are well-described by a class

of solutions to the nonlinear PDEs (6) and (7) for cases
in which Zðqh=qtÞ may be ignored in Eq. (7) relative to
qH=qt (Smith et al., 1997a). Such solutions depend on
the characteristics of the water and sediment transport

laws and on the boundary conditions for the PDEs; they
are separable in time and space

Hðx; y; tÞ ¼ TH ðtÞH0ðx; yÞ; hðx; y; tÞ ¼ ThðtÞh0ðx; yÞ ð8Þ

and they are stable (Smith et al., 1997a). They are also
characterized in terms of a variational principle (Smith
et al., 1997a), by which a simple function of the sediment
transport over the surface is minimized, subject to

constraints involving the conservation of water flow and
the elevations of the initial surface.

2.3. The models underlying the present analysis

The analysis presented in the current paper is similarly

based on the use of Eqs. (1) and (2) the Manning-type
constitutive relation Eq. (4) for the flux of water, a
power-law relation Eq. (5) for the flux of sediment, and

the initial and boundary conditions prescribed in
Eqs. (11) and (12). For reasons that we discuss later,
however, we no longer assume that the term qh=qt in

Eq. (1) is always negligible. As we show this term leads
to significant disturbances in the flow of water at the
short time scales discussed in Section 2.1. We interpret
these disturbances as noise, whose cumulative effects, as

we discuss below, are significant in seeding the
instabilities in the flow of sediment at the longer time
scales.

Fig. 1. Water surface H of typical run at 10% of surface eroded.

B. Birnir et al. / Computers & Geosciences 27 (2001) 1189–12161194



We therefore focus our attention on the model

Z2
qh
qt

¼ r �
rH

jrHj
h5=3jrHj1=2

� �
þ R; ð9Þ

qH
qt

� Z
qh
qt

¼ r �
rH

jrHj
h5g=3jrHjg=2þd

� �
ð10Þ

in which we have adopted the scaling relation
½h
=½H
 ¼ ½qw
=½qs
 � Z. In relation to the three time

scales discussed above, we note that there is no loss of
generality in this representation. In particular, we may

obtain the short time scale version of the equations by
applying the transformation t ¼ t=Z2 and the inter-
mediate time scale version by applying the transforma-

tion t ¼ t=Z.
We use the same boundary and initial conditions as

Smith et al. (1997a,b) to model a linear ridge extending

uniformly in the lateral (x)-direction and defined over a
rectangular domain of length L and width W ,

D ¼ fðx; yÞ 2 R2 j 04x4L; 04y4Wg

Fig. 2. Water depth h and slope of water surface jrH j of typical run at 10% of surface eroded.
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with initial conditions

hðx; y; 0Þ ¼ dðyÞ; dð0Þ ¼ h0; dðWÞ ¼ 0;

Hðx; y; 0Þ ¼ cyþ h0; 04y4W ð11Þ

and boundary conditions

hðx;W ; tÞ ¼ 0;

Hðx; 0; tÞ ¼ h0 ¼ hðx; 0; tÞ ð12Þ

corresponding to a water depth of zero at the top of the
ridge and an absorbing body of water at the base of the

ridge. While the water surface must be considered to be
a free surface at the top of the ridge, it may be viewed as
consisting of finitely many smooth curves that are

solutions of a nonlinear ODE (the PDE restricted to the
boundary). These curves are joined in a continuous, but
not smooth, moving boundary (see, for example, Fig. 3).

The upper boundary is characterized by the additional
conditions

qw ¼ qs ¼ 0

indicating the absence of any flux of water or sediment
over this boundary. Since qw and qs are expressed as
powers of h and rH in the constitutive relations, these

conditions imply that the vanishing of the water depth
dominates the blow-up of the gradient of H (in qw and
qsÞ and that the normal derivative of H may become

infinite at the upper boundary

n � rHðx;w; tÞ ¼ 1:

The boundary conditions on the lateral boundaries of

the ridge at x ¼ 0 and L are taken to be periodic,
modeling a linear ridge of infinite extent.

2.4. The role of noise and its generation

The reasons for retaining the term Z2ðqh=qtÞ in the
water flow equation Eq. (9) is related to the issue of

noise, its effect in driving the erosion process, and its

relation to the scaling relations that characterize eroding
land surfaces. Many investigations of PDEs that model
the evolution of complex surfaces and interfaces have
shown the significant role played by noisy inputs in

determining the behavior of such surfaces. As shown,
for example, by Sneppen (1998) the nature of the noise
driving the evolution of complex surfaces and interfaces

is often a major determinant of the structure, and hence
the scaling properties, in both emergent and mature
systems.

It is especially essential to consider the effects of noise
when modeling the evolution of geomorphic phenom-
ena. The complexities of geomorphic processes and

surfaces make it virtually impossible to model many
aspects of landscape evolution without representing
various classes of model inputs in stochastic terms.
The nonlinear properties of such systems may lead to

invalid analyses if explicit account is not taken of the
stochastic nature of various inputs. This is especially the
case for landscape phenomena whose evolution is

governed by complex, interdependent processes char-
acterized by differing time scales. Within the context of
our problem, for example, it is difficult to imagine

representations of either small scale (and hence short
term) perturbations to the landsurface zðx; y; tÞ or short
term variations in rainfall R that are not stochastic.
Given such inputs, the flow of water over the surface

zðx; y; tÞ, as modeled by Eq. (9), is itself assured to be
stochastic, as are any short term effects of such varia-
tions on the entrainment and transport of sediment. As

we show below, however, random effects such as these
that occur over relatively short time scales can neither be
ignored nor averaged out at longer time scales, since

their effects may accumulate in non-trivial ways.
Plausible sources for random inputs to the models

represented in Eqs. (9) and (10) and presented in Smith

Fig. 3. Water surface H of typical run at 60% of surface eroded.
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et al. (1997a,b) include, at the least, (1) the form of the

initial surface; (2) the structure of the eroding substrate;
and (3) the inputs of rainfall. In the investigations
described in Smith et al. (1997b), and again in the

present analysis, the initial surfaces from which channe-
lized forms evolve are randomly perturbed. Not only is
this necessary for breaking the symmetry of the surfaces,
and hence allowing channel-forming instabilities to

become effective, but accords with the preceding
argument on the impossibility of modeling, in a

deterministic manner, the processes and forms leading

to small surface perturbations.
In the investigations described in Smith et al. (1997b),

and again in the present analysis, neither the eroding

substrate nor the rainfall inputs are represented in terms
of stochastic effects. It is, therefore, valid to ask whether
this apparent lack of time-dependent stochastic varia-
tion in the model inputs leads to any significant lack of

generality in our modeling results. We do not believe this
to be the situation. First we note compelling empirical

Fig. 4. Water depth h and slope of water surface jrH j of typical run at 60% of surface eroded.
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evidence from a variety of studies (see, for example,
Morisawa, 1964 and Schumm et al., 1987) indicating

that the configuration of emergent drainage patterns is
strongly determined by initial, and essentially random,
surface configurations.

Second, and perhaps of greater intrinsic interest, is the
fact that the mechanisms of water flow embedded in
Eq. (9) are capable of generating variations in flows at
short time scales that may be interpreted as constituting

noise. In particular, we note that Eq. (9) is capable of
generating shock waves that provide a continuous source
of variation to the system. It is, for example, well-known

that flows described by the analogous kinematic wave
approximation of the Saint-Venant equations are
characterized by shocks (Dingman, 1984; Singh, 1996).

The kinematic wave approximation is known to hold
under conditions of overland flow on steep slopes and
for variations in discharge that are of small amplitude or

long wavelength (see, for example, Dingman, 1984;
Singh, 1996).
In Appendix A we show that the water flow equation

(9) becomes a one-dimensional equation describing the

flow of water down the gradient of the water surface

qh
qt

�
5

3Z2
h2=3jrHj1=2

qh
qs

¼
jrHj2DH � 1

2ðH
2
xHxx þ 2HxHyHxy þH2

yHyyÞ

jrHj5=2

" #
h5=3

Z2

þ
R

Z2
: ð13Þ

in which s parametrizes this direction. We provide a
proof of the existence of shocks in the flows described in
this equation in Appendix A, and show below that such
shocks lead to white noise that seeds the instabilities in

the flow of sediment in Eq. (10) on a longer time scale.
Two distinct mechanisms lead to such noise. First, on
convex surfaces the water flow equation (13) has

solutions that develop shocks. Second, the sediment
flow equation (10) develops solutions that are not
smooth and that possess singularities in a derivative of

H. These singularities, which we may interpret as
waterfalls or rapids, produce shocks in the flow of
water. While both of those mechanisms are present on

the convex surfaces that emerge and exist during the
early stages of the evolution of the land surface, the
second shock producing mechanism dominates the
concave surfaces characterizing the mature stage of

evolution.
In addition to these sources of noise, small round-off

errors in the numerical computations provide a con-

tinuous source of small random inputs to both the flow
of water over the surface and the erosion of the surface.
Since the numerical procedures that underly the current

analysis (described in Section 3.1) are more accurate
than the procedures used in Smith et al. (1997b), they do

not require the suppression of machine noise with the
use of large amounts of artificial viscosity in order to

obtain convergent computations. Instead there are very
small amounts of numerical viscosity present in these
more accurate methods, enough to suppress round-off

errors but small enough to give an accurate presentation
of the evolution of the small scales.
In summary, we have identified two mechanisms

capable of generating noise in the system, on the

intermediate time scale defined in Section 2.1, in
addition to the initial random perturbations to the
surface and the extremely small numerical noise. While

these randomly driven disturbances occur at the short
time scales defined by t ¼ t=Z2 and t=Z, their cumulative
effect is felt in the sediment flow on the long time scale of

erosion through the dependence on h and the term
�Zðqh=qtÞ. They act as seeds for the instabilites in the
sediment flow and are amplified into noise in the

sediment flow on the long time scale in Section 2.1.
These effects constitute the random variations in model
Eq. (9), Eq. (10) that drive the dynamics of the system.

2.5. Complex surfaces, structure functions, and scaling

relations

Surfaces and interfaces modeled by nonlinear PDEs

driven by noise are, in general, too complex to allow an
analytic representation. In many cases the solutions that
exist do not even possess derivatives. Hence various

methods have been developed to represent the structure,
and particularly the statistical structure, of such
surfaces. An important set of characterizations involve
structure functions that take the form

rkðx; tÞ ¼ hjFðxþ y; tÞ � Fðy; tÞjki ð14Þ

in which Fðx; tÞ is some function characterizing a

surface, x ¼ ðx; yÞ are lag variables, hi represents the
expectation operator taken over some ensemble of
(randomly selected) surfaces, and k ¼ 1; 2; . . . is a

positive integer. If these structure functions possess a
scaling, then we can conclude that the system is
statistically self-similar and has the same structure and

perhaps dynamics on all length scales including arbi-
trarily small ones.
Certain cases of the structure function are especially

important in applications, including the case k ¼ 1, in
which r1ðx; tÞ represents the mean value of the
differences of the function at different distances apart,
and the case k ¼ 2, which is often employed in terms of

its square root

WF ðx; tÞ � r2ðx; tÞ
1=2 ¼ hjFðxþ y; tÞ � Fðy; tÞj2i1=2 ð15Þ

to represent the root mean square of the elevation
differences as a function of different distances of

separation jxj. This function, known variously as the
variogram, height–height correlation function, roughness
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function, or width function (Edwards and Wilkinson,
1982; Kardar et al., 1986; Buldyrev et al., 1992), is often

used to characterize the roughness of the surface in the
direction of growth. We may also interpret WF ðx; tÞ as
measuring the correlation between heights at points

separated by a distance jxj. We note that the width
function and the spatial autocorrelation function

CF ðx; tÞ ¼ hFðyþ x; tÞFðy; tÞi ð16Þ

are related by

CF ðx; tÞ ¼ s2F ðtÞ �
1
2W

2
F ðx; tÞ; ð17Þ

in which sF is the variance. In practice the variance is

always finite for topographic surfaces. An increase in W
corresponds to an increase in correlations between two
points on a surface. However, the scalings of C and W2

are, in general, different. Brownian motion, for example,
is characterized by sF ðtÞ � t1=2 but by WF � t1=4.
Important questions concern the manner in which

structure functions and their analogs vary with changes
in the values of the lag variable x and time, and in
particular, whether their variation may be represented in

terms of simple polynomial functions. In many applica-
tions, the width function possesses particularly simple
asymptotic forms representing scaling invariances in the
system. It is often the case that the behavior of a surface

is well described by asymptotic forms of Eq. (15) that
are applicable in different space–time regimes of the
system’s dynamics (see, for example, Buldyrev et al.,

1992; Paczuski, 1995; Sneepen, 1998). Such forms have
the representation

WF ðx; tÞ � tbf ðt=jxjzÞ; ð18Þ

in which t is time, x is the lag variable, b is known as the
temporal roughness exponent, and z is called the dynamic

exponent. An interpretation of these scaling relations is
that there is an equivalence between the temporal and the
spatial scales given by t � jxjz that allows one to define

various space–time regimes of the process.
The roughening of the surface, such as occurs for

example when channelized forms emerge on fluvially
eroding surfaces, is a transient phenomenon. In the

space–time regime of transient behavior the roughness of
a surface, as measured by WF � tbf ðt=xzÞ, typically
increases. This regime is characterized by f ðyÞ � y�b for

y51, from which it follows that the width function may
be approximated by a simple power law

WF ðx; tÞ � tb ð19Þ

in which b is the temporal roughness exponent.
The width function in this case may also be

approximated by the relationship

WF ðx; tÞ � jxjw ð20Þ

in which w is the spatial roughness exponent, since
the temporal and spatial roughness exponents are

related by

w ¼ zb: ð21Þ

(This indicates that the dynamic exponent z may be
interpreted as the constant of proportionality linking the
temporal and spatial scales.) It is this growth in spatial

roughness that is easiest to compute and is estimated
numerically below. The length of the transient time
interval is of the order t � Lz; where L is the size of the

system. This indicates that the system takes time t ¼ Lz

to completely reorganize itself. Following this transient
period, there may be a space–time regime of stationary,
or saturated, behavior in which the roughness of the

surface fluctuates about statistically steady values. In
this regime, which is characterized by f ðyÞ � constant,
y41; pairs of points on the surface that are separated by

a distance jxj � L are characterized by differences in the
expected values of the width function of order of jxjw:
In surface growth models in which WF ðx; tÞ measures

the roughness of the surface in the direction of the
growth, wmay be interpreted as the fractional part of the
dimension of the surface, i.e., the embedding or
avalanche dimension is d þ w, where d is an integer.

Roughly speaking the dimension d characterizes the
spatial extent of the avalanche and w characterizes the
height of its ‘‘bulge’’, see Sneppen (1998).

If the roughness exponent w does not depend linearly
on k then the scaling is called multi-fractal, while if the
scaling exponent depends on the direction of the lag

vector, the scaling is said to be anisotropic (see, for
example, Klinkenberg and Goodchild, 1992; Lavall!eee
et al., 1993). For an arbitrary structure function of order

k, for example, this may take the form rkððx; yÞÞ ¼
constant� ðjxjkwx þ jyjkwy Þ in which wx 6¼ wy. In the
situation of single fractal and isotropic scalings, only
two scaling exponents are required to determine all others

(see, for example, Sneppen, 1998). The fractal dimension,
for example, may be represented as Df ¼ n� w, where n
is the total (spatial) dimension, while the embedding or

avalanche dimension may be represented by D ¼ d þ w,
where d is the ‘‘dimension’’ of the interface (1 for a fractal
line, 2 for a fractal surface, etc.). The avalanche

dimension relates the spatial extent of an avalanche to
its temporal growth, jxj � tD. We may define an
avalanche as a burst of activity in surface growth, in
which a significant number of sites move together.

An important class of statistical phenomena may be
characterized in terms of processes that take the form of
fractional Brownian motion (Mandelbrot and Ness,

1968). The variance of such processes, which are of
relevance for the analysis presented in Section 5.3,
satisfies scaling laws of the form

s � tHf ðt=jxjzÞ ð22Þ

in which 05H51 is known as the Hurst exponent. This
exponent is the leading exponent in the rate of increase
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of the correlation function and is, in general, different
from the temporal roughness exponent b that gives the

temporal rate of increase of the structure functions.
The usual Brownian motion is a special case of

fractional Brownian motion with Hurst exponent 1=2
and with time increments that are uncorrelated in time.
For fractional Brownian motion with Hurst exponent
H > 1=2, increasing trends in the past lead to a further
increases in the future while for fractional Brownian

motion with Hurst exponent H51=2, decreasing trends
in the past lead to further decreases in the future for
arbitrarily large times. It is important to note that

systems characterized by regular Brownian motion
achieve a statistically stationary state with respect to
their time-increments in the long run, whereas for

fractional Brownian motion H 6¼ 1=2, the long-time
state is not stationary. However, in both cases the long-
time behavior is different from the transient behavior,

which explains the difference between the Hurst
coefficient and the temporal roughness exponent b. It
follows that for Brownian motion (H ¼ 1=2) the
(generalized) time derivative is statistically stationary

white noise.

2.6. Estimating the scaling exponents from experimental

data

In the analysis presented below, we employ width
functions to characterize the correlation structure of:

(1) the water depth h in terms of the width function Wh;
(2) the water surface elevation H in terms of the width
function WH ; and (3) the water surface slope jrHj in
terms of the width function WjrHj. Because of relation
Eq. (20), we only require two exponents in characteriz-
ing scaling relations involving these width functions and

we employ the temporal and spatial roughness expo-
nents b and w. The spatial roughness exponent is
computed from the scaling of the width function
Eq. (15). We also make use of the fact that we may

represent various scaling relations in terms of scaling of
the (temporal) power spectrum (see Maslov et al., 1994).
For present purposes, it suffices to note that

#CC ¼ SðkÞ �
1

k1þ2b ð23Þ

in which SðkÞ represents the power spectrum at
frequency k. Employing the power spectrum, we may

compute the temporal roughness exponent b indepen-
dently of the spatial roughness coefficient w, and thus
also obtain the dynamic coefficient z ¼ w=b using

Eq. (20).
In validating and interpreting our results, we make

use of known results concerning the scaling of solutions

to equations in the same universality classes as those we
examine below.

3. The two scalings: numerical results

Numerical simulations of the evolution of eroding
surfaces generated by Eqs. (9), (10) provide convincing
evidence for the emergence of two fundamental land-

scape scalings. We briefly discuss the numerical methods
underlying our analysis and then describe the scaling
results.

3.1. Numerical methods for accurate scaling relations

While the numerical methods used by Smith et al.

(1997b) in solving Eqs. (6) and (7) lead to solutions that
represent the correct, separable landscapes, they turn
out to be insufficient for deriving numerically accurate

scaling results. These solution methods, described in
Smith et al. (1997b), involve alternative computations of
equilibrium water flows and very small erosional

changes to the land surface, using an explicit, two-step
MacCormack predictor–corrector finite-difference
scheme adapted for two-dimensional overland flow

(Zhang and Cundy, 1989; Smith and Merchant, 1995).
This scheme involves the use of artificial viscosity
(Fennema and Chaudhry, 1990) to avoid numerical
oscillations. By suppressing the noise that is amplified by

the instability of the initial surface, however the small
scale dynamics become inaccurate. Hence these methods
are inadequate for numerically accurate estimates of the

scaling parameters.
For the purposes of the current investigation, we

designed a significantly more accurate numerical scheme

capable of representing the correct small scale dynamics
and based on the existence theory of the nonlinear
PDEs. By solving the hyperbolic equation (9) in two
dimensions using an upwind scheme, we render the

scheme stable and eliminate the need for artificial
viscosity. An upwind scheme still produces small
amounts of numerical viscosity but of magnitude less

than the artificial viscosity in Fennema and Chaudhry
(1990). A Crank–Nicholson scheme may then be applied
in computing the nonlinear gradient flow Eq. (10) and

by solving the resulting implicit matrix equation. This
computation is significantly less expensive than the
previous computations because in the explicit scheme

significant amounts of computation are required in
order to dampen instabilities in the water depth by
artificial viscosity. We implemented the scheme on a
parallel supercomputer at the University of California,

Santa Barbara, employing as a final step the implemen-
tation of a four color scheme to parallelize the procedure
for maximum computational advantage.

We note in passing that the comparison with the
previous numerical scheme is an interesting study in
numerical analysis and we refer the reader to Birnir et al.

(1999) for further details on the new numerical scheme.
This code will also be made public.
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3.2. The numerical simulations

Employing the new code, we ran a full suite of
computational experiments simulating the erosion of a
section of a linear ridge satisfying the initial and

boundary conditions (12), (11), which are the same as
those employed in Smith et al. (1997a,b). These
experiments were run using various refinements of the
grids and over all relevant parameter values of model

(9), (10) to provide a basis for deriving the scaling
relationships that we describe in Section 3.3.
In Figs. 1–4, we show typical configurations of

eroding surfaces, water depth, and slopes of the water
surface for values of the sediment transport parameters
g ¼ 2; d ¼ 2 at two characteristic times: when 10% of the

surface is eroded and when 60% of the surface is eroded,
which is well into the separable regime. In these figures,
which indicate that the x-axis runs laterally across the

ridge and the y-axis runs longitudinally down the ridge,
we represent the water surface H ¼ zþ h, in Figs. 1 and
3; we represent the water depth h and the gradient of the
water surface jrHj, in Figs. 2 and 4, again at 10% and

60% of the surface eroded.

3.3. The basic scaling results

The scaling results that we discuss in this section are
based on numerical solutions obtained from experiments

with sediment transport parameters g ¼ 2; d ¼ 2. We
note that there is no significant variation of our results in
a whole neighborhood of such values of g and d and that

experiments starting with different initial conditions
result in the same scaling results.
Scaling results were obtained by computing the width

function Eq. (15) over sections of the ridge either in x-

direction transverse to the ridge or in y-direction parallel
to the longitudinal axis of the ridge. Estimates of the

exponent w of the asymptotic forms Eq. (21) were pro-
vided by the slope of log–log plots of width functions
averaged over an ensemble of results from randomly see-

ded runs. Numerical estimates of w were obtained by least-
squares fits. In Figs. 5 and 6, we illustrate typical log–log
plots taken at a given transverse section of the ridge for
the water depth h and water surface H, respectively. The

R2-value associated with each plot provides a measure of
the appropriateness of scaling relation.
It is convenient to view the values of the scaling

parameters as a function of their location on the ridge.
For example, the values characterizing scalings in
directions transverse to the ridge may be viewed as a

function of the location on the longitudinal axis of the
ridge wx ¼ wxðyÞ. We may then represent the scaling
relations found over sections of the ridge by plotting

both the estimated value of w and the associated R2-
value as a function of location on the ridge. This is
illustrated in Figs. 7–10, in which we represent the
scalings for h; H, and jrHj, at different cross-sections
of the ridge at the two erosion times.
The scaling results from solutions to Eqs. (9) and (10)

for a time of 10% eroded are shown in Figs. 7 and 8 as a

function of distance upslope. These figures indicate that,
initially, the structure functions of the water depth (Wh)
and the gradient of the water surface (WjrHj) scale with

the roughness exponent wx ¼ 0:5 in the lateral (or x)
direction. We note that this value characterizes a large
range of y-locations on the ridge. It should be noted
that, while in Fig. 8 the numerically computed value of

the exponent of jrHj is w ¼ 0:25, the true value of this
exponent is 0:5. The apparent discrepancy is caused by
the initial slope Hy ¼ c whose cross-term appears when

Fig. 5. Log–log plot of water depth at given cross-section.
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one squares the components of jrHj and then takes the
square root, as explained in Appendix C.
As the solutions converge towards the separable

forms defining the mature landscape of Eq. (8), the
above scaling disappears to be replaced by another
scaling. In a neighborhood of the separable landscape,

at 60% of the surface eroded, the water surface scales in
the x-direction as shown in Fig. 9 with the scaling
exponent wx ¼ 0:7, again over a large range of y-
locations on the ridge. Although the corresponding

numerically computed scaling of jrHj is wx ¼ 0:35, we

note again that the true value of this exponent is 0:7
rather than the smaller value, for the reasons stated
above and explained in Appendix C, the role of the

constant slope c now being played by the gradient of the
separable water surface rH2.
We note, therefore, that at 10% of the landsurface

eroded the water depth h and the gradient of the water
surface jrHj scale, whereas at 60% of the landsurface
eroded the water surface H itself and the gradient of the
water surface jrHj show the same scaling. In both cases

jrHj controls the scaling; in the former case it controls

Fig. 6. Log–log plot of water surface at given cross-section.

Fig. 7. Scaling for water depth.
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h; in the latter case it controls H. Our results indicate

that H does not scale over any significant range of y-
values in the first case, due to the presence of the initial
slope, whereas h does not scale in the latter case. This
clearly indicates that two distinct processes lead to the

two different scalings.
In characterizing some of the details of these scalings,

we may interpret the longitudinal axis of the ridge as a

time scale and may think of the figures as representing

increasing time values. Figs. 7–10 indicate that the

scaling is uniform neither in y nor in time. Initially, or
at 10% of the landsurface eroded, the roughness
exponent of Wh is approximately constant (0.5) for
most of the upslope direction but deviates at the top

where the boundary exerts its influence, as shown in
Fig. 7. As time increases this plateau disappears and one
obtains different exponents as functions of y. Similarly,

the width function of the water surface WH initially

Fig. 8. First scaling of gradient of water surface.

Fig. 9. Scaling of water surface.
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shows different values of wx as a function of y but as the

solution approaches the separable surface, a plateau is
formed where the roughness exponent is constant (0.7)
for a large portion of the upslope directions, as shown in

Fig. 9. Thus the existence of a plateau in wx, as a
function of y, implies that the ensemble average
possesses a scaling. These figures show the slope (or

scaling exponent) as a function of the distance y up the
ridge.
The scaling is anisotropic in the sense that there is no

plateau in wy as a function of x, but this is more due to

the fact that the upslope direction is really a time scale,
rather than a real anisotropy. We examined the slope-
free part of the gradient Hx, in Appendix C, in various

directions but found little evidence of significant
anisotropy. We also examined both higher and lower
structure functions rk; k 6¼ 2, or moments, of h; H and

rH but found no evidence that the first scaling is
multifractal. The second scaling on the other hand seems
to be multifractal but this will be explored in a later

publication. The spatial scalings were checked by
computing the spatial power spectrum. The temporal
power spectrum was very noisy due to the unevenness of
the temporal evolution in the upslope direction and

machine noise. It only gave reasonable results for the
first scaling and then only for the water depth h.

4. The emergence of channels and the first fundamental

scaling of fluvial landscapes

We now consider the emergence, early in the evolution
of surfaces determined by the models Eq. (9), Eq. (10),

of scalings in the water depth h and in the slope of the

water surface jrHj that are associated with the
emergence of channelized flows. In particular, we focus
on explaining how the fundamental scalings of 0:5 in the

width functions Wh and WjrHj are driven by noise
generated by divergences in the sediment flow that are
seeded by instabilities in the water flow. Since this

process is intimately related to the emergence of
channels, we view the nature and origin of this
fundamental diffusive scaling as providing significant
insight into the manner in which the early growth of

channel-like features is dominated by random influ-
ences. In particular, these considerations provide a
model of how random influences determine the location

of channels and, as such, may be used in justifying the
assumptions that underly the applications of various
discrete stochastic modeling approaches to fluvial

networks.

4.1. The emergence of channels and the fundamental
channelization instability

Results from previous analyses of models of the form
Eq. (1), Eq. (2), provide insight into the earliest stages of
channel evolution. Smith and Bretherton (1972) ana-

lyzed versions of Eqs. (6) and (7) in which the consti-
tutive relation for sediment transport was generalized to
qs ¼ Fðqw; jrHjÞ, with qF=qqw > 0 and qF=q=rH > 0.

The term qh=qt in Eq. (7) was not considered in these
analyses. Based on a linearized analysis of these
equations, they showed that if F=qw5qF=qqw, then

small amplitude disturbances of small lateral scale will
initially grow very rapidly, with the initial growth rate

Fig. 10. Second scaling of gradient of water surface.
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being greatest for disturbances with the smallest
wavelengths. This criterion is equivalent to the condition

g > 1 for the particular sediment transport law em-
bedded in Eq. (5). This latter fact leads to the
particularly simple criterion that channel incision takes

place when the sediment transporting capacity of water
increases at a faster rate than the discharge of water, and
occurs faster for shorter wavelength disturbances
because the convergence of water flows is greater for

disturbances with steeper lateral gradients. These results
were reconfirmed by Loewenherz-Lawrence (1991), who
also derived the full asymptotic solution in the small

wavelength limit.
The simulations of Smith et al. (1997b) confirmed

numerically that the highest initial growth rates occur at

the highest frequencies. They also found, however, that
the growth rates of lower frequencies became dominant
after a short initial period, presumably as a result of

saturation of the nonlinearities in the erosion process.
The significance of these results for the present analysis
is that they show that the instabilities of the initial
erosion process are highly susceptible to being driven by

random influences.
We now provide an alternative analysis of these early

channel forming instabilities of Eqs. (1) and (2) which

provides additional insight into the underlying pro-
cesses. In particular, we linearize the Eqs. (9) and (10)
about an initial surface, linear in y and uniform in the

x direction, and a constant water depth H ¼ cyþ
d; h ¼ d, where c and d are constants. Strictly speaking
we should let the water depth go to zero at the top
of the ridge to satisfy the boundary conditions there.

This, however, makes no difference to the results
of the analysis. We note that, while these initial
conditions differ from those in the stability analyses of

Smith and Bretherton (1972), Loewenherz-Lawrence
(1991), they lead to essentially the same results but can
be regarded as one step earlier in the evolution from a

ridge with constant slope. As such they provide an
additional interpretation of the channel forming in-
stabilities.

We let

h ¼ d þ eaðx; y; tÞ; H ¼ cyþ d þ ebðx; y; tÞ

and include a (very) small stochastic variation in the
rainfall rate

R ¼ R0 þ erðx; y; tÞ:

The linearized system of equations becomes

Z2
qa
qt

¼
5

3
d2=3c1=2

qa
qy

þ
d5=3

c1=2
q2b
qx2

þ
1

2

q2b
qy2

� �
þ r; ð24Þ

qb
qt

¼
5

3
d2=3c1=2

1

Z
þ 2c5=2d2=3

� �
qa
qy

þ
d5=3

c1=2
1

Z
þ c5=2d5=3

� �
q2b
qx2

þ
d5=3

c1=2
1

2Z
þ

5

2
c5=2d5=3

� �
q2b
qy2

þ
r

Z
: ð25Þ

The numerical results reported in Section 3.3 indicate

that the variation of the water surface b does not scale,
initially at least, with a roughness exponent that is
constant over a range of y values. However, the gradient
rb does scale from which it follows that the equations

generating the scaling must be Eq. (24) and the equation
(we have merely applied the r operator to Eq. (25)):

qrb

qt
¼
5

3
d2=3c1=2

1

Z
þ 2c5=2d2=3

� �
qra

qy

þ
d5=3

c1=2
1

Z
þ c5=2d5=3

� �
q2rb

qx2

þ
d5=3

c1=2
1

2Z
þ

5

2
c5=2d5=3

� �
q2rb

qy2
þ

rr

Z
: ð26Þ

Since Z ¼ d=100c � h=H is small, the term rr=Z can be

large if r is not exceedingly small. However in most cases
r can be taken to be very small and therefore we have
dropped it in the equation below, still keeping in mind

that very small fluctuations are always present in
landscape evolution.
A straightforward stability analysis shows that the

initial unchanneled surface is unstable on the long time
scale of the sediment flow. We set qh=qt ¼ 0 in the
Eqs. (9) and (10), or equivalently use the slow Eqs. (6)
and (7), with qh=qt ¼ 0. On taking the gradient, Eq. (24)

becomes

5

3
d2=3 c1=2

qra

qy
¼ �

d5=3

c1=2
q2rb

qx2
þ
1

2

q2rb

qy2

� �
ð27Þ

and a substitution into Eq. (26) gives the equation

qrb

qt
¼

5

3
d2=3c1=2 ð�2þ dÞ

q2rb

qx2

�

þ �
1

2
þ 3d

� �
q2rb

qy2

�
; ð28Þ

which is a negative heat equation if d51=6. Recall that
d is the initial water depth that can be taken to be very
small. The dispersion relation for Eq. (28)

o ¼ 5
3 d

2=3 c1=2½ð2� dÞk21 þ ð12 � 3dÞk22


shows that all the spatial frequencies are unstable and
that the highest frequencies grow the fastest. We note

that this is the same instability discovered by Smith and
Bretherton (1972), Loewenherz-Lawrence (1991), but
expressed in terms of the unstable growth of arbitrarily

small (spatial) frequencies in the slope of the surface
rather than in the elevation of the surface. In particular,
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this result is nicely in accordance with an interpretation
of the stability results of Smith and Bretherton (1972)

that suggests that smaller perturbations grow at faster
rates because, for a given amplitude of perturbation,
they possess steeper slopes which lead to more rapid

convergence of eroding water flows.
The significance of this result follows from our

preceding conclusion that fluctuations of arbitrarily
small frequencies are always present, and that these

instabilities always lead to the exponential amplification
of noise seeds, from the water flow, and the consequent
channelization of the initial surface.

4.2. The generation of noise during initial channelization

We now provide and justify a hypothesis that

instabilities in the water surface provide a significant
source of white noise that seeds the instabilities of the
erosion process. In particular, we show that shocks in

the form of hydraulic jumps form in the flow of water
over initially convex portions of the ridges between

emerging channels. Although a concavity in the long-
itudinal profile emerges early near the base of the ridge,

moves longitudinally towards the top of the ridge, and
then expands laterally across the emerging valleys (for
an analysis of this process, see Smith et al. (1997a)), the

lateral profiles of the ridges between emerging channels
take an initial form that is typically convex in their
upper parts. Two upridge sequences of lateral profiles
that indicate, respectively, the existence of initially

convex sections of the interfluvial ridges at 10% of the
surface eroded and the dominance of fully concave
lateral profiles at 60% of the surface eroded are shown

in Fig. 11.
We base our analysis of the mechanism that provides

a significant source of white noise on these convex

sections of ridge by linearizing Eqs. (9) and (10) around
a convex (interfluvial) profile. In particular, we assume
that our perturbed solutions take the form

hðx; y; tÞ ¼ h1ðx; y; tÞ þ vðx; y; tÞ;

Hðx; y; tÞ ¼ H1ðx; y; tÞ þ uðx; y; tÞ;

Fig. 11. Transverse sections at 10 m separation on eroding ridges at 10% and 60% eroded.
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where H1ðx; y; tÞ represents a convex portion of an
interfluvial ridge, h1ðx; y; tÞ the depth of water flow over

this portion, and vðx; y; tÞ; uðx; y; tÞ are the small
perturbations to these quantities. The linearized equa-
tions are

Z2
qv
qt

¼r �
5

3
h
2=3
1

rH1

jrH1j1=2
v

� �

þr � h
5=3
1

ru

jrH1j1=2
�

1

2
h
5=3
1 ðrH1 � ruÞ

rH1

jrH1j3=2

� �
;

ð29Þ

qu
qt

¼r �
h
5=3
1

jrH1j1=2
1

Z
þ h

5=3
1 jrH1j5=2

� �
ru

" #

þ r �
5

3
h
2=3
1

rH1

jrH1j1=2
1

Z
þ 2h

2=3
1 jrH1j5=2

� �
v

� �

þ r � h
5=3
1

�1

2Z
þ 2h

5=3
1 jrH1j5=2

� ��

� ðrH1 � ruÞ
rH1

jrH1j3=2

�
: ð30Þ

The first equation is a hyperbolic equation for v driven
by ru. The second equation is a parabolic equation for

u driven by v and rv.
Because the flow of water occurs down the gradient of

the surface H1ðx; y; tÞ, we may view the first equation as
a hyperbolic PDE in one space dimension. Namely, if we

let u denote the unit vector in the direction of the
gradient of the water surface, we can write the first
equation in the form

Z2
qv
qt

¼ 5
3 h

2=3
1 jrH1j1=2u � rvþ gðx; y; tÞvþ f ðx; y; tÞ: ð31Þ

If we then let the scalar s parametrize the direction of the
gradient, we may rewrite this equation in the form

Z2
qv
qt

¼
5

3
h
2=3
1 jrH1j1=2

qv
qs

þ gðx; y; tÞvþ f ðx; y; tÞ: ð32Þ

The last equation is analyzed in Appendicies A and B,
where it is shown that it develops shocks if the profiles

about which we linearize are convex or have knick-point
singularities.
After operating with the gradient, we may lump the

terms in Eq. (30) causing the instability and involving
the water depth together into a single noise term r. This
term is the noise seeded by the shocks in Eq. (29) and
generated by the sediment divergences in Eq. (30) that

amplify the instabilities produced by Eq. (29). These
instabilities do not lead to exponential growth because
the water changes on a faster scale than the sediment, see

Section 2, but instead give rise to white noise in the
sediment flow. We obtain, as a result, a heat equation
driven by white noise

qðruÞ
qt

¼ nDðruÞ þ rðx; y; tÞ; ð33Þ

where n ¼ d5=3=Zc1=2. We want to emphasize here that
we have provided an intuitive explanation of the noise-

making generation in the sediment flow but no detailed
mathematical model for it. The transition from Eqs. (29)
and (30) to (33) or the modeling of the amplification of

the fast-time noise in the water flow by the divergences
in the sediment flow to produce white noise, must be
taken to be a hypothesis. We hope to be able to provide a
detailed model of the noise-generating mechanism in

future publications. However, as will be shown below
with this hypothesis we can explain the numerically
observed scalings.

The solution to last Eq. (33) is well-known to be
Brownian motion

ru ¼
Z t

0

Z
R2

expð�jx� yj2=4vðt� tÞÞ
ð4pðt� tÞÞ

dWðy; tÞ; ð34Þ

where x ¼ ðx; yÞ; y ¼ ðx0; y0Þ and dy ¼ dx0 dy0 is the
volume element in R2 and formally the white noise can

be understood as dWðy; tÞ ¼ rðy; tÞ dy dt. Adding this
solution to rH1 we obtain a random walk

rH ¼ rH1 þ eru

of the slopes of the water surface down the channelizing

surface (H1), driven by white noise. The water depth
follows suit, by Eq. (9).

4.3. The scaling of the channelization process

We are now in a position to interpret the scaling

exponents that emerge during the initial stages of the
erosion process by using well-known results from the
theory of the evolution of complex interfaces. We note

that Eq. (33) is the Edward–Wilkinson equation of inter-
face growth theory, which is known to model surfaces
over which the deposition rate equals the removal (or

evaporation) rate (see Sneppen, 1998). The values of the
exponents of the associated width functions are

b ¼ 1
4; w ¼ 1

2; z ¼ 2:

We note that b is different from the Hurst exponent,

which has the value 1=2 for a pure random walk,
because bmeasures the transient towards a pure random
walk. The resulting motion may be interpreted as a
random walk occurring on top of another random walk.

The gradients of the water surface walk randomly in the
downslope direction and the nodes where rHðxþ yÞ �
rHðyÞ vanishes do another random walk on top of that.

Hence the configuration of the emerging channel forms
may be characterized in terms of random walks. We note
that this important finding provides a physically based

justification for various stochastic modeling approaches
to the emergence of network forms such, for example, as
described in Scheidegger (1967a), Takayasy et al. (1991).

The surprising observation is that the stochastic and the
deterministic approach lead to the same conclusions and
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can be considered to be equivalent methods to model
the same phenomena; the time-evolution of a fluvial

network.
This surface sits in a three-dimensional space and the

fractal dimension is Df ¼ 3� w ¼ 5=2. The avalanche

dimension is the same D ¼ 2þ w ¼ 5=2. The temporal
roughness coefficient b may be obtained from the power
spectrum. The reason is that the erosion is initially
greatest towards the bottom of the slope and then the

channelization migrates upstream and ends when the
concavity, forced by the boundary conditions at the
bottom of the slope, reaches the top of the slope, see

Smith et al. (1997a,b). This implies that the y direction is
really a time scale as discussed above. That is, instead of
measuring the percentage of the landsurface that has

been eroded, we can simply measure how far upstream
the channelization process has migrated.

5. Self-similar landscapes and the second fundamental

scaling of fluvial landscapes

In further support of our hypothesis that the observed
scalings arise from identifiable physical processes, we
now show that the second scaling of 0:7 in Section 3.3

may be interpreted as characterizing the erosion
processes in the mature, separable landscapes. These
processes are driven by noise that is seeded by shocks in

the water flow over the concave slopes of landscapes
such as those shown in Fig. 11, and as explained in
Appendix B. These water instabilities are then fed into

the divergences in the sediment flow and since the water
instabilities continue to vary on a faster scale, the
sediment divergences produce noise in the sediment
flow. That is different water profiles with different noise

are present whenever a significant amount of sediment is
eroded. However, there is little water on top of the
concave ridges in Fig. 11 (see Figs. 2 and 4), and there

the noise is quenched. On the lower reaches of the
concave slopes and in the valleys the same noise-
generating mechanism as discussed in the previous

section is at work, so the noise is not uniformly
distributed over mature landscapes. This results in a
colored noise and scaling which is very different from
the previous scaling. In particular, we provide evidence

indicating that the resulting behavior is characteristic of
a SOC system describing the driven motion of an
interface in random media (Leschorn, 1993, Sneppen,

1998).

5.1. The emergence of self-similar landscapes

Smith et al. (1997a) showed that model (Eq. 6), (Eq. 7)
possesses separable solutions Hðx; y; tÞ ¼ H0ðx; yÞTHðtÞ
and qwðx; y; tÞ ¼ q0ðx; yÞ. These are associated with an
optimality principle by which mature eroding surfaces

evolve to minimize a simple function of the sediment flux
over the surface, subject to two constraints. In their

analysis of numerical solutions of Eqs. (6) and (7), Smith
et al. (1997b) showed that after a characteristic erosion
time the surfaces exhibit clear and convincing evidence

of convergence towards such separable solutions, and
the corresponding satisfaction of the optimality criter-
ion. The characteristic time is 45% of the surface eroded
for planar initial surfaces with g ¼ d ¼ 2.

As shown in Section 3, this stage of development is
characterized by a dominant scaling of the width
function with exponent 0:7. We now analyze model

(Eq. 9), (Eq. 10) in order to determine the origin and
physical basis for this scaling.

5.2. The origin of the second diffusive scaling

The scaling of the water flow down the slope of a

mature landscape and the resulting scaling of the water
(and land) surface is different from the scaling of
channel formation in Section 4. To find and analyze

this scaling we linearize Eqs. (9) and (10) about the
separable solutions (Eq. 8) representing the mature
landscapes of valleys and ridges

H ¼ H2ðx; y; tÞ þ euðx; y; tÞ; h ¼ h2ðx; y; tÞ þ evðx; y; tÞ;

where H2 ¼ H0ðx; yÞTðtÞ; h2 ¼ h0ðx; yÞT�3=10ðtÞ; are the
separable solutions of Eqs. (9) and (10). As in our
previous analyses, we employ sediment transport para-

meter values g ¼ d ¼ 2, noting that similar results hold
for parameter values in a neighborhood of these. The
form of the equations that we obtain for uðx; y; tÞ;
vðx; y; tÞ by this linearization process is the same as that
characterizing the early period of channel emergence
discussed in Section 4.2, namely Eqs. (29) and (30), but

with the terms H1ðx; y; tÞ; h1ðx; y; tÞ replaced by the
separable solutions H2; h2.
Again, the first equation is a hyperbolic equation for v

driven by ru and the second is a parabolic equation for
u driven by v and rv. Since the first equation is really a
hyperbolic PDE in one space dimension, exactly as in
Section 4.2, we let the scalar s parametrize the direction

of the gradient to obtain

Z2
qv
qt

¼
5

3
h
5=3
2 jrH2j1=2

qv
qs

þ gðx; y; tÞvþ f ðu; tÞ: ð35Þ

A straight-forward analysis of this equation, presented
in Appendix B, shows that its solutions develop shocks,

for separable surfaces with (slope) singularities, since
concave slopes with knick points are the dominant
feature of the mature separable landscape, as illustrated

in Fig. 11.
Thus the water flow develops shocks at the top as it

flows down the separable ridges, which then propagate

down the slopes. In addition on the lower reaches of the
slopes and in the valleys the instabilities discussed in
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Section 4 are at work. The sediment flow is driven by the
pull of gravity down the slopes and because there is no

water on top of the concave ridges, see Figs. 2 and 4,
there the surface is pinned. Thus the divergences in the
sediment flow magnify the seed in the water flow into a

highly colored noise. We make this hypothesis and
consequently turn Eq. (30), with the separable solutions
H2ðx; y; tÞ; h2ðx; y; tÞ replacing H1ðx; y; tÞ; h1ðx; y; tÞ, into
a diffusion equation driven by quenched noise or the

Langevin equation

qu
qt

¼ Duþ F þ rðu; tÞ; ð36Þ

where F is the driving force and r is the quenched noise.
Moreover, it is different from Eq. (33) since the noise

term

5

3
h
2=3
2

rH2

jrH2j1=2
1

Z
þ 2h

2=3
2 jrH2j5=2

� �
� rv

is not spatially homogeneous. The water depth h2
becomes very small at various locations on the separable

surface, and at these locations the noise is quenched.
One can think of these spots as pinning the surface and
creating small local minima in the sediment flow. The

last term in Eq. (30) plays the role of the forcing. It is
known (see Sneppen (1998); Leschorn, 1993), that such
processes produce polynomial scaling with the spatial

roughness exponent close to 0:75. This implies that the
water surface

H ¼ H0ðx; yÞTðtÞ þ euðx; y; tÞ

executes a random motion driven by noise produced by
the divergence in the sediment flow, seeded by shocks
rh0ðx; yÞT�3=10ðtÞ þ ervðx; y; tÞ propagating down the
separable surface on a faster time scale, the surface being

pinned at randomly distributed sites. The slope rH
evolves in the same fashion.

5.3. The scaling of mature landscapes

We compute the exponents using the formulas in
Section 2.5, starting with the numerical value of the
spatial and temporal roughness exponents from Section
3. The values of the exponents are

b ¼ 0:4; w ¼ 0:7; z ¼ 1:8:

The fractal dimension becomes Df ¼ 3� w ¼ 2:3. The
avalanche dimension is D ¼ 2þ w ¼ 2:7. The values of

these exponents are close to the corresponding values for
a driven interface in random media in 1þ 2 dimensions
(see Leschorn, 1993; Sneppen, 1998) and described by

Eq. (36)

b ¼ 0:475; w ¼ 0:75; z ¼ 1:58:

The computed spatial roughness coefficient w is slightly

smaller (0:7) than the spatial roughness coefficient (0:75)
of the driven interface, however this may be due to the

fact that the system crosses over from one type of a
scaling (Edward–Wilkinson) to another (driven interface

in random media) and if we would follow it for a longer
time (than 60% eroded) the spatial roughness compo-
nent would eventually make it up to the latter value.

It is, in fact, well-known that landscapes generated by
discrete landscape models do not reproduce realistic
landscape unless random pinning that models quenched
noise is included in the model (see Calderri et al., 1996).

The latter models also give rise to values of the scaling
exponent b similar to ours. Thus two remarkable
features of the continuous model (Eq. 9), (Eq. 10) are

apparent. First, it generates the noise from the water
flowing down the separable surface (Eq. 8) and shocking
as it passes over surface singularities. Second, it

produces the pinning of the surface at random sites
where these shocks and their consequent noise in the
sediment flow is absent.

We note with interest that driven interface in random
media is known to be an example of an SOC system. As
noted in Sneppen (1998): A system is a SOC system if
the scaling (of the structure) functions during the

saturated stage is different from the scaling during the
transient stage and the activity during the saturated
stage occurs in bursts that are self-organized during the

transient. Hence we may interpret the landscapes
described by our advective model as SOC systems, at
least at stages in the landscape evolution where the

presence of the separable landscape is felt.

6. Discussion and significance of the results

The preceding results on the origins of scaling in
solutions to model (Eq. 9), (Eq. 10) have significant

implications both for the evolution of many of the
empirical regularities observed in fluvial landscapes and
for the manner in which one may model such

phenomena. We now describe a few of the more
important implications.

6.1. The two processes forming the landscape

A picture of two processes shaping the formation of

general landscapes emerges from the previous sections,
although for most landscapes important details such as
weathering, vegetation and mass wasting are missing.
We call the first process the Channelization Process. It

takes place on unchanneled surfaces and is characterized
by a Brownian motion of the slopes in the water (or
land-) surface marching down to form a network of

channels and ridges. This process characterizes the
initial stage of the landscape evolution (youth) and is
associated with the spatial roughness exponent w ¼ 0:5.
The system then gradually makes a transition to a
second process that we call the Maturation Process. This
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process emerges much later when a system of large
valleys and concave ridges close to a landscape

determined by separable solutions has emerged, char-
acterizing a mature landscape. The maturation process
evolves the landscape towards the slowly decaying but

self-similar separable landscape. Thus it characterizes
the maturation (middle-age) of the landscape and is
associated with the spatial roughness exponent of
w ¼ 0:75. We believe this to be the true value of w
although the transient numerically determined value of
0:7 is somewhat lower at 60% eroded.
One has to put those two processes together to

understand the shape of river basins. Namely, the
channelization process controls the shape of the river
basin along the main river, whereas the maturation

process controls the shape perpendicular to the main
river (see Fig. 12). The main river is formed by a biased
random walk down a slope (a drunk that stumbles in the

downhill direction) and this makes river networks
analogus to directed percolation networks (DP)
although the scaling exponents are in general different.
In the direction perpendicular to the main river one runs

into the separable slopes for the mature landscape. Thus
for the river basin which is the projection of the surface
in three dimensions to the plane the (planar) avalance

dimension becomes D ¼ 1þ w. The exponent one
measures the size of basin l along the main river and
the exponent w measures the size of its bulge lw (width),

in the perpendicular direction, see Fig. 12, where l is the
length of the main river.

6.2. The origin of observed landscape width scalings

We note with great interest that empirical results for

the height–height correlation function from Ethiopia,

Somalia, and Saudi Arabia, as well as values generated
for synthetic landscapes as reported by Weissel and

Pratson (1994), fall in the range 0.5–0.7. The Saudi
Arabian data is virtually isotropic with the value 0.5,
whereas some of the Somalian data is anisotropic, with

values roughly 0.5 in one direction and 0.7 in the other.
Although empirical scaling results of this form tend to
cluster around a relatively small set of values, these
values provide some validation for our theory particu-

larly since our models may be interpreted as representing
advective, transport-limited (or badland) conditions,
which presumably hold in these areas.

The theory presented in this paper suggests that the
spatial roughness scaling exponents for landscapes that
are approximately described by our advection models

should lie in a neighborhood of 0.5 and 0.7, the latter
exponent growing to the value 0:75 for older landscapes.
Young channelizing surfaces should exhibit isotropic

scaling with exponent close to 0.5, whereas more mature
surfaces should be anisotropic. This anisotropic scaling
should have the scaling exponent close to 0.7 on the
slopes of the separable ridges but on channelizing

surfaces along the main rivers the scaling exponent
should be close to 0.5.

6.3. The origin of Hack’s law

The preceding results allow us to derive some of the

fundamental scaling results that are known to char-
acterize fluvial landsurfaces. In particular, the avalanche
dimension derived in Section 5.3 allows us to derive
Hack’s law relating the length of a river l to the area A

of the basin that it drains. This is the area of the river
network that is given by the (planar) avalanche
dimensions

A � lD

and the (planar) avalanche dimensions is D ¼ 1þ w.
This relation says that if the length of the main river is l

then the width of the basin in the direction, perpendi-
cular to the main river, is lw. Stable scalings for the
surface emerge together with the emergence of the

separable solutions. We note that in this case w ¼ 0:75,
hence we obtain

l � A1=ð1þwÞ; ð37Þ

� A0:57 ð38Þ

a number that is in excellent agreement with observed
values of the exponent of Hack’s law of 0:568, see Gray
(1961). We note, in particular, that w is not the

roughness coefficient of a fractal Brownian motion.
We also note that the area A is the same as the area of
voids (areas without branches) in a DP network (see

Sneppen, 1998) and that Hack’s law is just the relation
between the area of the voids and the length of the DPFig. 12. Amazon river basin.
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backbone. Thus one can understand the ‘‘oval shape’’ of
most river basins, see Rodriguez-Iturbe and Rinaldo

(1997), as caused by the (second) scaling of the mature
separable landscape, that rules the surfaces in the upper
reaches of the river valleys and in the direction

perpendicular to the main rivers.

6.4. The scaling of exceedence probabilities

The probability P½A5a
 that the area A drained by a
channel exceeds a is known as the exceedence prob-
ability. Empirical values for the exponent of this

probability when it is approximated by the power law

P½A5a
 � ar; ð39Þ

which is a good approximation to observed variation,
are close to �0:4 (see, for example, Rodriguez-Iturbe

and Rinaldo, 1997).
Using the scaling relation perpendicular to the mean-

derings of the main river and the two scaling above we
can easily deduce this scaling of the exceedence

probability once we know Hack’s law. The idea to keep
in mind is that a river basin is similar to a pure DP
network, in that when two branches of the river network

approach each other, a small subbasin of the larger river
basin is created. The subbasins without a river branch
are the voids of the DP network, discussed above. The

time at which two branches originating at the same
location join, which is called the self-interaction time bsi,
can be measured in terms of the length l of the main
river branch. We let the dimension of the network along

the main river branch (backbone of the DP) be one and
the dimension in the cut perpendicular to the main river
branch be w as above. Then

P½A5a
 ¼ P½l5t


since by Hack’s law A ¼ l1þw and a ¼ t1þw, t being the
length of the main branch of the subbasin having area a.
HoweverZ t

0

P½l5s
 ds ¼
Z t

0

s�bsi ds � t1�bsi

and

1� bsi ¼ �w

see Sneppen (1998). Thus using Hack’s law again we

obtain

P½A5a
 � t�w ð40Þ

� a�w=ðwþ1Þ ð41Þ

� a�0:4; ð42Þ

for w ¼ 0:75. Notice that the exponent is the negative of
the dynamic roughness exponent b ¼ 0:4 in Section 5.3.

6.5. A bridge between deterministic and stochastic
modeling

Our analysis of the origin of the fundamental scaling
with exponent 0:5 in the width function indicates that it

arises as a result of white noise being generated by
divergences in the sediment flow seeded by shocks in the
water flow. In particular, we found that the evolution of
the width functions of both the slopes and the water

depths is well-characterized in terms of random walk
processes. Hence the behavior and configuration of the
emerging patterns of channels and valleys described by

the nonlinear Eqs. (9) and (10) and observed in the
studies of Smith et al. (1997b) is that resulting from a
random walk.

We note that these results represent an important
bridge between the deterministic and stochastic lines of
modeling that we discussed in Section 1. From the

stochastic modeling literature, it is well-known that
random walk models of erosion in the plane lead to
relatively realistic models of key aspects of river
networks (see, for example, Scheidegger, 1967b; Taka-

yasy et al., 1991) and are capable of generating
branching networks that obey Horton’s laws (see
Rodriguez-Iturbe and Rinaldo, 1997 for a summary).

We believe, in fact, that the mechanisms that we have
shown to underly the fundamental 0:5 scaling provide
the first demonstration that physically based PDE

models lead to tree-like drainage structures whose
configuration is determined by a random walk process.
Hence we may view our results as providing a physically
based justification for the assumptions underlying the

various stochastic modeling approaches. We note,
however, that further investigation is required in
order to lay a fully acceptable foundation for such

assumptions.

6.6. A model of the stages of drainage basin evolution

Based on the preceding results and the findings of our

previous papers (Smith et al., 1997a,b), we now suggest
an end-to-end theory of the evolution of landscapes that
are described by our advective models. In particular, this

theory characterizes landscape development in terms of
an evolutionary sequence involving three stages and
associated time scales. Clearly, the three stages do not
have well-defined beginnings and endings, but they do

mark significant differences in the qualitative dynamics
of the system. In a first stage, occurring over a relatively
short time scale, the mechanisms underlying the first

scaling of 0:5 become effective and a channelized
network that may be interpreted in terms of random
walks emerges. Hence in this stage, the foundation of

random channel network configurations are laid down.
This stage may be viewed as constituting the youthful
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stage of W.M. Davis’ grand model of landscape
evolution (Davis, 1902).

A second stage, occurring at a longer time scale,
involves a self-similar cascade towards decaying separ-
able solutions. We may view the separable solutions as a

transient attractor (see, for example, Smith et al., 1997a)
towards which the system is drawn. The mechanisms
underlying the second scaling become effective during
this stage, leading to a scaling of the width function of

0:75 as well as to various scaling laws, such as Hack’s
law and the law of exceedence probabilities. We may
view this as constituting the second, or mature, stage of

the Davisian model. A third and final stage involves a
short time scale over which the separable solutions
collapse as the potential energy in the system approaches

small values and the stable global attractor H ¼ 0 exerts
its influence. This stage may be viewed as the final, or old
age, stage in Davis’ model.

We realize that many elements are missing from this
model, including such processes as tectonic and isostatic
uplift, gravity-driven diffusion, weathering, subsurface
water movement, vegetation effects, and a host of lesser

processes. Nevertheless, we believe that our advective
model captures the essence of processes that lead to the
evolution of dendritic, fluvial structures and their most

important scaling properties.

7. Summary

The simple advective model of fluvial erosion provides

us with a compelling explanation for the fundamental
processes present in landscape evolution. This model is
capable of representing the process of channel initiation.
Instabilities in unstructured initial surfaces lead to a

channelization process which we are justified in viewing
as the Edward–Wilkinson transient of Brownian mo-
tion. This is a noisy process: small, initial, random

perturbations amplified by the nonlinear instabilities
lead to noise. More importantly, however, the model
(Eq. 9), (Eq. 10) incorporates mechanisms capable of

generating large noise. The relatively thin film of water
flowing over the ridges between channels ‘‘folds over’’ to
forms hydraulic jumps as it moves over initially convex

portions of the interfluvial ridges. The derivatives of
these shock waves constitute a white noise process that
seeds the divergences of sediment in Eq. (10). The
divergences in the sediment flow seeded by the white

noise in the water flow create a noise-driven gradient
flow for the sediment with a noise term that is white both
in space and time. The solution of this equation,

linearized about the initial surface, consists of Brownian
motion. Thus the projections of the channels onto the
plane execute a random walk and the locations on the

surface where the slope equals the average slope do a
random walk on top of the first one. This explains why

river networks are observed to possess the characteristics
of random networks and, in particular, are characterized

by relation (Eq. D.2) between the bifurcation and length
ratios in Horton’s laws.
This random walk is, however, not the only process

influencing the shape of river basins. As the channels
merge into rivers a mature landscape consisting of a
pattern of concave valleys and cusp-shaped ridges
emerges. These surfaces, represented by the separable

solutions of the evolution equations, are characterized
by another stochastic process that differs from a random
walk. The reason for this difference is that the

mechanism generating the noise is now different from
the mechanism generating noise in a channelizing
surface. First, the separable surfaces are characterized

by concavities whereas the ridges between the channels
initially involve upper convexities. This means that
shock waves in the water flow, originating from surface

singularities, propagate down the surface. Most impor-
tantly, the vanishing of the water depth, for example on
the ridge tops, on the separable surface, quenches the
noise. These fast-flowing water instabilities are then fed

into the sediment divergences evolving on a slower scale
resulting in another noise-driven gradient flow for the
sediment. However the noise is not white in space or

time anymore and the sediment flow over the separable
surfaces may be characterized as diffusion driven by
quenched noise. The properties of this process, typical

for a driven interface in a random media (Leschorn,
1993) and (Sneppen, 1998) are different from those of
Brownian motion.
Combining these two processes, the channelization

and the maturation processes, we obtain a strikingly
simple model of drainage basin evolution that is
analogous to directed percolation networks. The chan-

nels execute a random walk of length l in the long-
itudinal direction under the channelization process. In a
direction perpendicular to this random walk, however,

the maturation process is dominant in regions in which
separable solutions have emerged, giving us the width lw

of the basin, where w ¼ 0:75 is the spatial roughness

coefficient of the maturation process in Section 5.3. This
accounts for the oval shape of river basins (see
Rodriguez-Iturbe and Rinaldo, 1997), and leads to a
derivation of Hack’s law (see Section 6.3) as well as the

observed distribution of the exceedence probabilities, see
Section 6.4.
These investigations lead to interesting sets of

geomorphological and mathematical problems that we
intend to address in future publications. In particular we
intend to investigate whether the maturation process is

multi-fractal, see Lavall!eee et al. (1993). Whereas our
models capture two fundamental processes, they also
raise the question as the role and significance of

processes of landscape evolution that are not as yet
included in our models. In particular, it is of interest to
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conjecture whether different multifractal processes
characterize more complex models. We also note that

the analysis of the water flow in Section 2.4 and
Appendix A provides complete information only for
water flows of very small depth. If the rainfall rate, and

hence the water depth, is significantly greater then more
complex fluid equations are probably justified, and this
may change the noise-generating mechanism and the
stochastic driving of the erosion process. The two

processes work in tandem in the general situation
discussed in this paper but it is also desirable to find
special situations where each process can be studied in

isolation.
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Appendix A. The generation of shocks in the water flow

equation

Eq. (9) describes the water flow down a water surface
represented by H. We rewrite this equation in the form

Z2
qh
qt

�r � ½uh5=3jrHj1=2
 ¼ R; ðA:1Þ

where u ¼ rH=jrHj denotes the unit vector in the
direction of the gradient of the water surface. If we
expand the gradient term, then this equation can be

written in the form

qh
qt

�
5

3Z2
h2=3jrHj1=2u � rh ¼ Q

h5=3

Z2
þ

R

Z2
; ðA:2Þ

where

Q ¼
jrHj2DH � 1

2ðH
2
xHxx þ 2HxHyHxy þH2

yHyyÞ

jrHj5=2

" #

and using that u � rh ¼ qh=qs, where s parametrizes the
downstream direction given by u, we obtain a one-

dimensional PDE

qh
qt

�
5

3Z2
h2=3jrHj1=2

qh
qs

¼ Q
h5=3

Z2
þ

R

Z2
; ðA:3Þ

where Q is the function defined above. It is well-known
that such one-dimensional equations can either develop

shocks or their solutions may blow up in finite time. We
now show that for a small rainfall rate R the solutions

do indeed develop a shock, which is a singularity in the s
derivative, in finite time.

We first set R ¼ 0 and write down the characteristic
equations for Eq. (A.3)

dt

dt
¼ 1;

ds

dt
¼ �

5

3Z2
h2=3jrHj1=2;

dh

dt
¼ Q

h5=3

Z2
¼ �pðs; tÞh5=3: ðA:4Þ

The function p is positive

pðs; tÞ ¼ �Q > 0

if the quadratic form QðHxx;Hxy;HyyÞ is negative
definite and it is as long as H is convex (concave in
mathematical terms) and rH 6¼ 0. Now we solve the h
equation in (A.4) and obtain

hðs; tÞ ¼
h0ðsÞ

ð1þ 2
3h

2=3
0 ðsÞPðs; tÞÞ3=2

; ðA:5Þ

where

Pðs; tÞ ¼
Z t

0

pðsðtÞ þ s; tÞ dt;

increases along the characteristics because p > 0: Thus
hðs; tÞ does not blow up but decreases along the
characteristics. Next we compute the characteristics
making an approximation that simplifies the computa-

tion. The equation determining the characteristics is

ds

dt
¼ �

5

3Z2
h2=3jrHj1=2 ¼ �

5

3gðsÞZ2
h2=3; ðA:6Þ

if H evolves on a slower time scale than h. But this was
precisely the conclusion of the discussion in Section 2.1.
Thus we can separate the variables and solve the above

equation

GðsÞjss0 ¼
Z s

s0

gðsÞ ds ¼ �
1

Z2

Z t

0

h2=3ðsðtÞ; tÞ dt:

Next we expand the solution h in Eq. ð48Þ above in
powers of hðs0Þ,

hðs; tÞ ¼ hðs0Þ � h5=3ðs0Þ
Z t

0

pðsðtÞ; tÞ dtþOðh7=3ðs0ÞÞ;

and substitute the result into the equation for G, to get

GðsÞ � Gðs0Þ ¼ �
5

3

h2=3ðs0Þ
Z2

tþOðh5=3ðs0Þ=Z2Þ:

This implies that two characteristics emanating from

two distinct points s1 > s0 meet at the time

t ¼
3

5

Z2ðGðs1Þ � Gðs0ÞÞ
h2=3ðs1Þ � h2=3ðs0Þ

þOðhðs0Þ; hðs1ÞÞ: ðA:7Þ

Moreover, these characteristics carry different values of
h by Eq. (A.5) producing a shock at the location

s ¼ G�1 Gðs0Þ �
5

3

h2=3ðs0Þ
Z2

tþOðh5=3ðs0Þ=Z2Þ
� �
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at the time t: In one-dimensional models the water depth
is an increasing function of s so t is positive because G is

also increasing, see the example later. This shock is a
singularity in the derivative of h so we can think of it as a
travelling hydraulic jump.

The characteristics that we obtain are not straight
lines as for the nonlinear wave equation, due to the term
jrHj1=2. For example when gðsÞ ¼ jrHj�1=2 ¼ s1=4,
GðsÞ ¼ 4

5s
5=4; the characteristics are given by the formula

s5=4 ¼ s
5=4
0 �

25

12

h2=3ðs0Þ
Z2

tþOðh5=3ðs0Þ=Z2Þ

and the shock develops at the time

t ¼
12

25

Z2ðs5=41 � s
5=4
0 Þ

h2=3ðs1Þ � h2=3ðs0Þ
:

The analysis is similar for small values of R, that can be
treated perturbatively, but if the rainfall rate becomes
large, it dominates and prevents shocks from developing

as shown above. In summary, the water flow equation
possesses two mechanisms producing shocks in the water
surface, one caused by the nonlinearities in h the other

by the singularities in the water (or land) surface H. We
may interpret these latter shocks as rapids or knick
points, that cause shocks in the water depth and

these shocks propagate downstream, as illustrated in
Appendix B.

Appendix B. Surface singularities and shocks

We provide an illustrative example of how shocks are
generated, on concave separable surfaces with singula-

rities in their slopes. We note that these examples may be
generalized to non-separable surfaces. We consider the
one-dimensional hyperbolic equation for the evolution of

the variation of the water surface

Z2
qv
qt

þ
5

3

q
qs

ð�h
2=3
1 jrH1j1=2vÞ ¼ f ðx; y; tÞ; ðB:1Þ

where

1

gðsÞ
¼ �

5

3
h
2=3
1 jrH1j1=2 ¼ �Z2

qqw
qh

is either a strictly decreasing or a strictly increasing

function. We consider approximations to initial and
separable landscapes in which we assume that the
landscape is locally uniform in directions perpendicular
to the gradient of the water surface.

Close to a separable landscape uniform in the
direction, u?w , where uw ¼ �rH=jrHj,

gðsÞ ¼ �s�1=4 ðB:2Þ

is a reasonable model. The separable landscape is of

course not uniform in the direction of u? but this
example still gives the right information. We make the

change of variables

a ¼
5

3
h
2=3
1 jrH1j1=2v ¼ �

v

gðsÞ

then the equation can be written in the form

qa
qt

þ
1

gðsÞZ2
qa
qs

¼ f ðx; yÞ=Z2: ðB:3Þ

If we now let

ds

dt
¼

1

gðsÞZ2

define the characteristics and g ¼ qG=qs, then Eq. (B.3)

can be solved along characteristics

aðs; tÞ ¼ a0 G�1 GðsÞ �
t

Z2

� �� �

þ
1

Z2

Z t

0

f G�1 GðsÞ �
t� t
Z2

� �
; t

� �
dt:

The important equation is the equation for the

characteristics

ds

dt
¼

1

gðsÞZ2
¼ �

5

3Z2
h
2=3
1 jrH1j1=2: ðB:4Þ

It says that if the derivative of jrHj1=2 has a singularity
at the origin then the derivative of h will obtain a

singularity there and this singularity will propagate
downstream along the characteristics

s ¼ G�1 Gðs0Þ �
t

Z2

� �

(see Fig. 13). This constitutes the second type of shock

formation, the shocks that are caused by singularities,
rapids or knick points, in the surface, in distinction to
the first type of shock formation discussed in Section 2.4

and Appendix A.

Appendix C. The scaling of the gradient

In this appendix we explain how the presence of a
profile such as the initial uniform surface with constant

Fig. 13. Characteristics for shock caused by surface singula-

rities.
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slope, or the profile of the separable landscape, affects
the scaling of the gradient of the water surface jrHj.
Consider

jrHjðyþ xÞ ¼ ½H2
xðyþ xÞ þH2

y ðyþ xÞ
1=2

� ½ðexw þOðx2wÞ þ � � �Þ2

þ ðcþ dxw þ Oðx2wÞÞ2
1=2

¼ ðc2 þ 2cdxw þOðx2wÞÞ1=2

in a statistical sense where c; d ; e; are constants. By the
inequality

ðaþ bÞ1=24a1=2 þ b1=2

hðjrHjðyþ xÞ � jrHjðyÞÞ2i1=2

¼ ðc2 þ 2cdxw þOðx2wÞÞ1=2 � c

4ð2cdxw þOðx2wÞÞ1=2 ¼ xw=2ð2cd þOðxwÞÞ1=2:

Similarly

hðjrHjðyþ xÞ � jrHjðyÞÞ2i1=2

¼ ðc2 þ 2cdxw þOðx2wÞÞ1=2 � c

5ð2cdxw þOðx2wÞÞ1=2 ¼ �xw=2ð2cd þOðxwÞÞ1=2:

by the inequality

ðaþ bÞ1=25a1=2 � b1=2:

This shows that the statistical scaling of jrHj has the
exponent w=2, whenever w is the spatial roughness
exponent.

Appendix D. River basins and Horton’s laws

Consider the projection of the river network onto the
x–y plane. Whereas the roughening of the surface above
is controlled by the width function, the lateral location

of a channel is determined by a pure random walk in the
downridge directions. Since the flow is in the down-
stream direction, permissible motions at each step occur
in an arc subtending 1808. The corresponding exponents

for this random walk are

b ¼ 1
2; w ¼ 1; z ¼ 2;

where b is now just the Hurst exponent. Now the

tributary channels sit in the two-dimensional plane and
the fractal dimension of the river network is
Df ¼ 2� w ¼ 1. The corresponding (planar) avalanche

dimension is D ¼ 1þ w ¼ 2. If we take a one-dimen-
sional slice perpendicular to the direction of the channel,
then its position on this slice is that of a one-dimensional

random walker and the water surface above this one-
dimensional slice is determined by another random
walker in the vertical direction (see Section 2.5).

This analysis implies that many of the properties of
river networks may be derived from a random walk. For

example, the avalanche dimension for a pure random
walk also gives us a simple proof of a well-known link

between the Horton relations for streams. Consider the
Strahler–Horton ordering for streams [(1) Streams
without tributaries have order one; (2) when two streams

of order a join, they form a stream of order aþ 1;
(3) when two streams of different order join, the
resulting stream inherits the higher order of the two].
Horton (1945) discovered that if NðaÞ denotes the

number of streams of order a and LðaÞ is their mean
length then the ratios

Lðaþ 1Þ
LðaÞ

¼ RL;
NðaÞ

Nðaþ 1Þ
¼ RB ðD:1Þ

are approximately constant over the same river net-
works, where RL is called the length ratio and RB is
called the bifurcation ratio. In Barbera and Rosso

(1989), this was related to the avalanche (embedding)
dimension of a river network

D ¼
lnðRBÞ
lnðRLÞ

¼ 2

by the value of D computed above. Thus we obtain

RB ¼ R2
L: ðD:2Þ

This relationship is borne out by observations where
typically RB � 4 and RL � 2.
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