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432 JOURNAL DE PHYSIQUE I N�3la limite o�u la distribution de � est �etroite ou log-normale en terme d'�equation de Fokker-Planck. 3) Pour tous ces mod�eles, nous obtenons le r�esultat g�en�eral exact que l'exposant � estla solution de l'�equation h��i = 1. � est donc non-universel et d�epend de la sp�eci�cit�e de ladistribution de �. 4) Pour des t �nis, la loi de puissance est tronqu�ee par une queue log-normaledue �a une exploration �nie de la marche al�eatoire.1. IntroductionMany mechanisms can lead to power law distributions. Power laws have a special status due tothe absence of a characteristic scale and the implicit (to the physicist) relationship with criticalphenomena, a subtle many-body problem in which self-similarity and power laws emerge fromcooperative e�ects leading to non-analytic behavior of the partition or characteristic function.Recently, Levy and Solomon [1] have presented a novel mechanism based on random multi-plicative processes: wt+1 = �twt; (1)where �t is a stochastic variable with probability distribution �(�t) and we express wt in unitsof a reference value wu which could be of the form ert, with r constant. All our analysis belowthen describes the distribution of wt normalized to wu, in other words in the \reference frame"moving with wu. At the end, we can easily make reappear the scale wu by replacing everywherew by w=wu.Taken literally with no other ingredient, expression (1) leads to the log-normal distribution[2{4]. Indeed, taking the logarithm of (1), we can express the distribution of logw as theconvolution of t distributions of log�. Using the cumulant expansion and going back to thevariable wt leads, for large times t, toP (wt) = 1p2�Dt 1wt exp�� 12Dt(logwt � vt)2�; (2)where v = hlog�i � R10 d� log��(�) and D = h(log�)2i � hlog �i2. Expression (2) can berewritten P (wt) = 1p2�Dt 1w1+�(wt)t e�(wt)vt (3)with �(wt) = 12Dt log wtevt : (4)Since �(wt) is a slowly varying function of wt, this form shows that the log-normal distributioncan be mistaken for an apparent power law with an exponent � slowly varying with the rangewt which is measured. Indeed, it was pointed out [5] that for wt � e(v+2D)t, �(wt) � 1 andthe log-normal is undistinguishable from the 1=wt distribution, providing a mechanism for 1=fnoise. However, notice that �(wt) ! 1 far in the tail wt � e(v+2D)t and the log-normaldistribution is not a power law.The ingredient added by Levy and Solomon [1] is to constrain wt to remain larger than aminimum value w0 > 0. This corresponds to put back wt to w0 as soon as it would becomesmaller. To understand intuitively what happens, it is simpler to think in terms of the variablesxt = logwt and l = log�, here following [1]. Then obviously, the equation (1) de�nes arandom walk in x-space with steps l (positive and negative) distributed according to the density
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Fig. 1. | Steady-state exponential pro�le of the probability density of presence of the random walkwith a negative drift and a re
ecting barrier.distribution �(l) = el�(el). The distribution of the position of the random walk is similarlyde�ned: P(xt; t) = extP (ext ; t).� If v � hli = hlog �i > 0, the random walk is biased and drifts to +1. As a consequence, thepresence of the barrier has no important consequence and we recover the log-normal distribution(2) apart from minor and less and less important boundary e�ects at x0 = logw0, as t increases.Thus, this regime is without surprise and does not lead to any power law. We can howevertransform this case in the following one v � hli < 0 with a suitable de�nition of the movingreference scale wu � ert such that, in this frame, the random random drifts to the left. Butthe barrier has to stay �xed in the moving frame, corresponding to a moving barrier in theunscaled variable wt.� If v � hli < 0, the random walk drifts towards the barrier. The qualitative picture is thefollowing (see Figs. 1 and 2): a steady-state (t ! 1) establishes itself in which the net driftto the left is balanced by the re
ection on the re
ecting barrier. The random walk becomestrapped in an e�ective cavity of size of order D=v with an exponential tail (see below). Itsincessant motion back and forth and repeated re
ections o� the barrier and di�usion awayfrom it lead to the build-up of an exponential probability (concentration) pro�le (and no morea Gaussian). The probability density function of the walker position x is then of the form e��xwith � � jvj=D. As x is the logarithm of the random variable w, then one obtains a power lawdistribution for w of the form � w�(1+�).We �rst present an intuitive approximate derivation of the power law distribution and itsexponent, using the Fokker-Planck formulation in a random walk analogy. In Section 2.2, theproblem is formulated rigorously and solved exactly in Section 2.5. Sections 2.3 and 2.4 aregeneralization of the process (1). The explicit calculation of the exponent of the power lawdistribution is done using a Wiener-Hopf integral equation, showing that it is controlled byextreme values of the process.
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a) b)Fig. 2. | a) A typical trajectory of the random walker at large times showing the multiple re
ectionso� the barrier. b) The time evolution of the Kesten variable de�ned by the equation (19) with atuniformly taken in the interval [0:48; 1:48] leading to � � 1:47 according to (17) and bt uniformlytaken in the interval [0; 1]. Notice the intermittent large excursions.2. The Random Walk AnalogyIn the xt = logwt and lt = log�t variables, expression (1) readsxt+1 = xt + lt; (5)and describes a random walk with a drift hli < 0 to the left. The barrier at x0 = logw0ensures that the random walk does not escape to �1. This process is described by the Masterequation [1] P(x; t+ 1) = Z +1�1 �(l)P(x� l; t)dl: (6)2.1. Perturbative Analysis. | To get a physical intuition of the underlying mechanism,we now approximate this exact Master equation by its corresponding Fokker-Planck equation.Usually, the Fokker-Planck equation becomes exact in the limit where the variance of �(l) andthe time interval between two steps go to zero while keeping a constant �nite ratio de�ning thedi�usion coe�cient [6]. In our case, this corresponds to taking the limit of very narrow �(l)distributions. In this case, we can expand P(x� l; t) up to second orderP(x� l; t) = P(x; t)� l @P@x j(x;t) + 12 l2@2P@x2 j(x;t)leading to the Fokker-Planck formulation@P(x; t)@t = �@j(x; t)@x = �v @P(x; t)@x +D@2P(x; t)@x2 ; (7)where v = hli and D = hl2i � hli2 are the leading cumulants of �(log�). j(x; t) is the 
uxde�ned by j(x; t) = vP(x; t)�D@P(x; t)@x : (8)



N�3 CONSTRAINED CONVERGENT MULTIPLICATIVE PROCESSES 435Expression (7) is nothing but the conservation of probability. It can be shown that thisdescription (7) is generic in the limit of very narrow � distributions: the details of � arenot important for the large t behavior; only its �rst two cumulants control the results [6].v and D introduce a characteristic \length" x̂ = D=jvj. In the overdamped approxima-tion, we can neglect the inertia of the random walker, and the general Langevin equationmd2xdt2 = �
 dxdt + F + F
uct reduces to dxdt = v + �(t); (9)which is equivalent to the Fokker-Planck equation (7). � is a noise of zero mean and deltacorrelation with variance D. This form exempli�es the competition between drift v = �jvj anddi�usion �(t).The stationary solution of (7), @P(x;t)@t = 0, is immediately found to beP1(x) = A� B� e��x; (10)with � � jvjD : (11)A and B are two constants of integration. Notice that, as expected in this approximationscheme, � is the inverse of the characteristic length x̂. In absence of the barrier, the solutionis obviously A = B = 0 leading to the trivial solution P1(x) = 0, which is indeed the limit ofthe log-normal form (2) when t!1. In the presence of the barrier, there are two equivalentways to deal with it. The most obvious one is to impose normalizationZ 1x0 P1(x)dx = 1; (12)where x0 � logw0. This leads to P1(x) = �e��(x�x0): (13)Alternatively, we can express the condition that the barrier at x0 is re
ective, namely thatthe 
ux j(x0) = 0. Let us stress that the correct boundary condition is indeed of this type(and not absorbing for instance) as the rule of the multiplicative process is that we put backwt to w0 when it becomes smaller than w0, thus ensuring wt � w0. An absorbing boundarycondition would correspond to kill the process when wt � w0. Substituting (10) in (8) withj(x0) = 0, we retrieve (13) which is automatically normalized. Reciprocally, (13) obtainedfrom (12) satis�es the condition j(x0) = 0.There is a faster way to get this result (13) using an analogy with a Brownian motion inequilibrium with a thermal bath. The bias hli < 0 corresponds to the existence of a constantforce�jvj in the�x direction. This force derives from the linearly increasing potential V = jvjx.In thermodynamic equilibrium, a Brownian particle is found at the position x with probabilitygiven by the Boltzmann factor e��jvjx. This is exactly (13) with D = 1=� as it should fromthe de�nition of the random noise modelling the thermal 
uctuations.Translating in the initial variable wt = ex, we get the Paretian distributionP1(wt) = �w�0w1+�t ; (14)



436 JOURNAL DE PHYSIQUE I N�3with � given by (11): � � jhlog�ijh(log �)2i � hlog�i2 : (15)These two derivations should not give the impression that we have found the exact solution.As we show below, it turns out that the exponential form is correct but the value of � givenby (15) is only an approximation. As already stressed, the Fokker-Planck is valid in the limitof narrow distributions of step lengths. The Boltzmann analogy assumes thermal equilibrium,i.e. that the noise is distributed according to a Gaussian distribution, corresponding to alog-normal distribution for the �'s. These restrictive hypothesis are not obeyed in general forarbitrary �(�). The power law distribution (14) is sensitive to large deviations not capturedwithin the Fokker-Planck approximation.2.2. Exact Analysis. | In the general case where these approximations do not hold, wehave to address the general problem de�ned by the equations (5, 6). Let us consider �rst thecase where the barrier is absent. As already stated, the random walk eventually escapes to�1 with probability one. However, it will wander around its initial starting point, exploringmaybe to the right and left sides for a while before escaping to �1. For a given realization,we can thus measure the rightmost position xmax it ever reached over all times. What isthe distribution Pmax(Max(0; xmax))? The question has been answered in the mathematicalliterature using renewal theory ( [7], p. 402) and the answer isPmax((Max(0; xmax)) � e��xmax ; (16)with � given by Z +1�1 �(l)e�ldl = Z +10 �(�)��d� = 1: (17)The proof can be sketched in a few lines [7] and we summarize it because it will be usefulin the sequel. Consider the probability distribution function M(x) � R x�1 Pmax(xmax)dxmax,that xmax � x. Starting at the origin, this event xmax � x occurs if the �rst step of the randomwalk veri�es x1 = y � x together with the condition that the rightmost position of the randomwalk starting from �x1 is less or equal to x � y. Summing over all possible y, we get theWiener-Hopf integral equation M(x) = Z x�1M(x� y)�(y)dy: (18)It is straightforward to check that M(x) ! e��x for large x with � given by (17). We referto [7] for the questions of uniqueness and to [9, 10] for classical methods for handling Wiener-Hopf integral equations. We shall encounter the same type of Wiener-Hopf integral equationin Section 2.5 below which addresses the general case.How is this result useful for our problem? Intuitively, the presence of the barrier, whichprevents the escape of the random walk, amounts to reinjecting the random walker and enablingit to sample again and again the large positive deviations described by the distribution (16).Indeed, for such a large deviation, the presence of the barrier is not felt and the presence ofthe drift ensures the validity of (16) for large x. These intuitive arguments are shown to beexact in Section 2.5 for a broad class of processes.Let us brie
y mention that there is another way to use this problem, on the rightmostposition xmax ever reached, to get an exponential distribution and therefore a power law dis-tribution in the wt variable. Suppose that we have a constant input of random walkers, say at



N�3 CONSTRAINED CONVERGENT MULTIPLICATIVE PROCESSES 437the origin. They establish a uniform 
ux directed towards �1. The density (number per unitlength) of these walkers to the right is obviously decaying as given by (16) with (17). Thisprovides an alternative mechanism for generating power laws, based on the superposition ofmany convergent multiplicative processes.Let us now compare the two results (15, 17) for �. It is straightforward to check that (15)is the solution of (17) when �(l) is a Gaussian i.e. �(�) is a log-normal distribution. (15) canalso be obtained perturbatively from (17): expanding e�l as e�l = 1 + �l + 12�2l2 + ::: up tosecond order and re-exponentiating, we �nd that the solution of (17) is (15). This was expectedfrom our previous discussion of the approximation involved in the use of the Fokker-Planckequation.2.3. Relation with Kesten Variables. | Consider the following mixture of multiplicativeand additive process de�ning a random a�ne map:St+1 = bt + �tSt; (19)with � and b being positive independent random variables. The stochastic dynamical process(19) has been introduced in various occasions, for instance in the physical modelling of 1Ddisordered systems [11] and the statistical representation of �nancial time series [12]. Thevariable S(t) is known in probability theory as a Kesten variable [13].Consider as an example the number of �sh St in a lake in the t-th year. The population St+1in the (t+1)st year is related to the population St through (19). The growth rate �t dependson the rate of reproduction and the depletion rate due to �shing as well as environmentalconditions, and is therefore a variable quantity. The quantity bt describes the input due torestocking from an external source such as a �sh hatchery in arti�cial cases, or from migrationfrom adjoining reservoirs in natural cases. This model (19) can be applied to the problems ofpopulation dynamics, epidemics, investment portfolio growth, and immigration across nationalborders [8]. The justi�cation of our interest in (19) relies on the fact that it is the simplestlinear stochastic equation that can provide an alternative modelling strategy for describingcomplex time series to the nonlinear deterministic maps. Notice that the multiplicative process,with a �t that can take values larger than 1, ensures an intermittent sensitive dependence oninitial conditions. The restocking term bt, or more generally the repulsion from the origin,corresponds to a reinjection of the dynamics. It is noteworthy that these two ingredients,of sensitive dependence on initial conditions and reinjection, are also the two fundamentalproperties of systems exhibiting chaotic behavior.b = 0 recovers (1) (without the barrier). For b 6= 0, it is well-known that for hlog �i < 0,S(t) is distributed according to a power lawP (St) � S�(1+�)t ; (20)with � determined by the condition (17) [13] already encountered above h��i = 1. In fact, thederivation of (20) with (17) uses the result (16) of the renewal theory of large positive excursionsof a random walk biased towards�1 [12]. Figure 3 shows the reconstructed probability densityof the Kesten variable St for �t and bt uniformly sampled in the interval [0:48; 1:48] and in [0; 1]respectively. This corresponds to the theoretical value � � 1:47. We have also constructedthe probability density function of the variations St+1�St of the Kesten variable for the samevalues. We observe again a power law tail for the positive and negative variations, with thesame exponent.This is not by chance and we now show that the multiplicative process with the re
ectivebarrier and the Kesten variable are deeply related. First, notice that for hlog �i < 0 in absence



438 JOURNAL DE PHYSIQUE I N�3

Fig. 3. | Reconstructed natural logarithm of the probability density of the Kesten variable St asa function of the logarithm of St, for 0:48 � �t � 1:48 and 0 � bt � 1, uniformly sampled. Thetheoretical prediction � � 1:47 from (17) is quantitatively veri�ed.of b(t), St would shrink to zero. The term b(t) can be thought of as an e�ective repulsion fromzero and thus acts similarly to the previous barrier w0. To see this more quantitatively, weform St+1 � StSt = btSt + �t � 1: (21)We make the approximation of writing the �nite di�erence St+1�StSt as d logSdt . It has the samestatus as the one used to derive the Fokker-Planck equation and will lead to results correct upto the second cumulant. Introducing again the variable x � logS, expression (21) gives theoverdamped Langevin equation: dxdt = b(t)e�x � jvj+ �(t); (22)where we have written �(t)� 1 as the sum of its mean and a purely 
uctuating part. We thusget v = h�i � 1 ' hlog�i and D � h�2i = h�2i � h�i2 ' hlog(�)2i � hlog�i2. Compared to (9),we see the additional term b(t)e�x, corresponding to a repulsion from the x < 0 region. Thisrepulsion replaces the re
ective barrier, which can itself in turn be modelled by a concentratedforce. The corresponding Fokker-Planck equation is@P (x; t)@t = b(t)e�xP (x; t) � (v + b(t)e�x)@P (x; t)@x +D@2P (x; t)@x2 : (23)



N�3 CONSTRAINED CONVERGENT MULTIPLICATIVE PROCESSES 439It also presents a well-de�ned stationary solution that we can easily obtain in the regionsx ! +1 and x ! �1. In the �rst case, the terms b(t)e�x can be neglected and we recoverthe previous results (13) with x0 now determined from asymptotic matching with the solutionat x! �1. For x! �1, we can drop all the terms except those in factor of the exponentialswhich diverge and get P (x) ! ex. Back in the wt variable, P1(St) is a constant for St ! 0and decays algebraically as given by (14) with the exponent (11, 15) for St ! +1. Beyondthese approximations, we can solve exactly expression (21) or equivalently (19) and we recover(17). This is presented in Section 2.5 below. Again, notice that (11, 15) is equal to the solutionof (17) up to second order in the cumulant expansion of the distribution of log�.It is interesting to note that the Kesten process (19) is a generalization of branching processes[14]. Consider the simplest example of a branching process in which a branch can either diewith probability p0 or give two branches with probability p2 = 1�p0. Suppose in addition that,at each time step, a new branch nucleates. Then, the number of branches St+1 at generationt + 1 is given by equation (19) with bt = 1 and �t = 2jt+1St , where jt+1 is the number ofbranches out of the St which give two branches. The distribution �(�) is simply deduced fromthe binomial distribution of jt+1, namely � Stjt+1�pjt+12 pSt�jt+10 � [St]![St�jt+1]![jt+1]!pjt+12 pSt�jt+10 . Forlarge St, �(�) is approximately a Gaussian with a standard deviation equal to 4p0(1�p0)St , i.e. itgoes to zero for large St. We thus pinpoint here the key di�erence between standard branchingprocesses and the Kesten model: in branching models, large generations are self-averaging inthe sense that the number of children at a given generation 
uctuates less and less as the sizeof the generation increases, in contrast to equation (19) exhibiting the same relative 
uctuationamplitude. This is the fundamental reason for the robustness of the existence of a power lawdistribution in contrast to branching models in which a power law is found only for the specialcritical case p0 = p2 (for p0 > p2, the population dies o�, while for p0 < p2 the populationprolifates exponentially). The same conclusion carries out directly for more general branchingmodels. Note �nally that it can be shown that the branching model previously de�ned becomesequivalent to a Kesten process if the number of branches formed from a single one is itself arandom variable distributed according to a power law with the special exponent � = 1, ensuringthe scaling of the 
uctuations with the size of the generations.2.4. Generalization to a Broad Class of Multiplicative Process with Repulsionat the Origin. | The above considerations lead us to propose the following generalizationwt+1 = ef(wt;f�t;bt;:::g)�twt; (24)where f(wt; f�t; bt; :::g))! 0 for wt !1 and f(wt; f�t; bt; :::g))!1 for wt ! 0.The model (1) is the special case f(wt; f�t; bt; :::g) = 0 for wt > w0 and f(wt; f�t; bt; :::g) =log( w0�twt ) for wt � w0. The Kesten model (19) is the special case f(wt; f�t; bt; :::g) = log(1 +b(t)�twt ). More generally, we can consider a process in which at each time step t, after the variable�t is generated, the new value �twt (or �twt + bt in the case of Kesten variables) is readjustedby a factor ef(wt;f�t;bt;:::g) re
ecting the constraints imposed on the dynamical process. It isthus reasonable to consider the case where f(wt; f�t; bt; :::g) depends on t only through thedynamical variables �t (and in special cases bt), a condition which already holds for the twoexamples above. In the following Fokker-Planck approximation, we shall consider the casewhere f(wt; f�t; bt; :::g) is actually a function of the product �twt, which is the value generatedby the process at step t and to which the constraint represented by f(�twt) is applied. Weshall turn back to the general case (24) in Section 2.5.In the Fokker-Planck approximation, f(�twt) de�nes an e�ective repulsive stochastic force.To illustrate the repulsive mechanism, it is enough to consider the restricted case where f(wt)
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Fig. 4. | Generic form of the potential whose gradient gives the force felt by the random walker.This leads to a steady-state exponential pro�le of its density probability, corresponding to a power lawdistribution of the wt-variable.is only a function of wt. This corresponds to freezing the random part in the noise term �tleading to the de�nition of the di�usion coe�cient. In the random walk analogy, we thushave the force F (xt) = f(wt) acting on the random walker. The corresponding Fokker-Planckequation is @P(x; t)@t = �@(v + F (x))P(x; t)@x +D@2P(x; t)@x2 : (25)F (x) decays to zero at x!1 and establishes a repulsion of the di�usive process in the negativex region: this is the translation in the random walk analogy of the condition f(wt) ! 1 forwt ! 0.With these properties, the tail of P(x) for large x and large times is given by P1(x) � e��x,and as a consequence wt is distributed according to a power law, with exponent � given againapproximately by (11, 15). The shape of the potential de�ned by v+F (x) = �@V (x)@x , showingthe fundamental mechanism, is depicted in Figure 4. As we have already noted, the boundw0 leading to a re
ecting barrier is a special case of this general situation, corresponding to aconcentrated repulsive force at x0.The expression (24) for the general model can be \derived" from the overdamped Langevinequation equivalent to the Fokker-Planck equation (25):dxdt = F (x) � jvj+ �(t): (26)Let us take the discrete version of (26) as xt+1 = xt+F (xt)�jvj+�t, replace with xt = logwtand exponentiate to obtain wt+1 = eF (logwt)�twt; (27)where �t � e�jvj+�t . Since F (x) ! 0 for large wt, we recover a pure multiplicative modelwt+1 = �twt for the tail. The condition that F (x) becomes very large for negative x ensuresthat wt cannot decrease to zero as it gets multiplied by a diverging number when it goes tozero.2.5. Exact Derivation of the Tail of the Power Law Distribution. | The existenceof a limiting distribution for wt obeying (24), for a large class of f(w; f�; b; :::g) decaying tozero for large w and going to in�nity for w ! 0, is ensured by the competition between



N�3 CONSTRAINED CONVERGENT MULTIPLICATIVE PROCESSES 441the convergence of w to zero and the sharp repulsion from it. We shall also suppose in whatfollows that @f(w; f�; b; :::g)=@x! 0 for w !1, which is satis�ed for a large class of smoothfunctions already satisfying the above conditions. It is an interesting mathematical problemto establish this result rigorously, for instance by the method used in [1, 10]. Assuming theexistence of the asymptotic distribution P (w), we can determine its shape, which must obeyv � w e�f(w;f�;b;:::g) law= �w; (28)where f�; b; :::g represents the set of stochastic variables used to de�ne the random process.The expression (28) means that the l.h.s. and r.h.s. have the same distribution. We can thuswrite Pv(v) = Z +10 d��(�) Z +10 dw Pw(w)�(v � �w) = Z +10 d�� �(�)Pw( v� ):Introducing V = log v, x � logw and l � log�, we getP (V ) = Z +1�1 dl�(l)Px(V � l): (29)Taking the logarithm of (28), we have V = x � f(x; f�; b; :::g), showing that V ! x forlarge x > 0, since we have assumed that f(x; f�; b; :::g) ! 0 for large x. We can writeP (V )dV = Px(x)dx leading to P (V ) = Px(x(V ))1�@f(x;f�;b;:::g)=@x ! Px(V ) for x ! 1. We thusrecover the Wiener-Hopf integral equation (18) yielding the announced results (16) with (17)and therefore the power law distribution (14) for wt with � given by (17).This derivation explains the origin of the generality of these results to a large class of con-vergent multiplicative processes repelled from the origin.3. Discussion3.1. Nature of the Solution. | To sum up, convergent multiplicative processes repelledfrom the origin lead to power law distributions for the multiplicative variable wt itself. Ideally,this holds true in the asymptotic regime, namely after an in�nite number of stochastic productshave been taken. This addresses a di�erent question than that answered by the log-normaldistribution for unconstrained processes which describes the convergence of the reduced variable1pt (logwt � hlogwti) to the Gaussian law. Notice that this reduced variable tends to zero forour problem and thus does not contain any useful information.We have presented an intuitive approximate derivation of the power law distribution and itsexponent, using the Fokker-Planck formulation in a random walk analogy. Our main resultis the explicit calculation of the exponent of the power law distribution, as a solution of aWiener-Hopf integral equation, showing that it is controlled by extreme values of the process.We have also been able to extend the initial problem to a large class of systems where thecommon feature is the existence of a mechanism repelling the variable away from zero. Wehave in particular drawn a connection with the Kesten process well-known to produce powerlaw distributions. The results presented in this paper are of importance for the description ofmany systems in Nature showing complex intermittent self-similar dynamics.3.2. The Exponent �. | In the Fokker-Planck approximation of the random walk analogy, �is the inverse of the size of the e�ective cavity trapping the random walk. In this approximation,� is a function of, and only of, the �rst two cumulants of the distribution of log�. In particular,if the drift jvj < 2D, � < 2 corresponding to variables with no variance and even no mean



442 JOURNAL DE PHYSIQUE I N�3when � < 1 (jvj < D). It is rather intuitive: large 
uctuations in � lead to a large di�usioncoe�cient D and thus to large 
uctuations in wt quanti�ed by a small �. Recall that thesmaller � is, the wilder are the 
uctuations.Within an exact formulation, we have shown that there is a rather subtle phenomenonwhich identi�es � as the inverse of the typical value of the largest excursion against the 
ow ofa particle in random motion with drift. This holds true for a large class of models characterizedby a negative drift and a su�ciently fast repulsion from the negative domain (in the x-variable),i.e. from the origin (in the w-variable).3.3. Additional Constraint Fixing �. | We recover the relationship relating � to theminimum value w0 in the re
ecting barrier problem by specifying [1] the value C of the averagehwti. Calculating the average straightforwardly using (14), we get hwti = w0 ���1 , leading to� = 11� (w0=C) : (30)Notice that this expression is a special case of (17) and should by no mean be interpreted asimplying that � is controlled by w0 in general. This is only true with an additional constraint,here of �xing the average. The general result is that � is given by (17), i.e. at a minimum bythe two �rst cumulants of the distribution of log�.3.4. Positive Drift in the Presence of an Upper Bound. | Consider a purely multi-plicative process where the drift is reversed hlog�i > 0, corresponding to an average exponen-tial growth of wt in the presence of a barrier w0 limiting wt to be smaller than it. The samereasoning holds and a parallel derivation yieldsP1(wt) = �w�0 w��1t ; (31)with � � 0 again given by (17). This distribution describes the values 0 < wt < w0. Noticethat, if � > 1, the distribution is increasing with wt. This is obviously no more a power law ofthe tail, rather a power law for the values close to zero. For � < 1, P1(wt) decays as a powerlaw, however bounded by w0 and diverging at zero (while remaining safely normalized). Thisshows that, when speaking of general power law distribution for large values, this regime is notrelevant. Only the regime with negative drift and lower bound is relevant.However, in the case of Kesten variables (21), if St is growing exponentially with an averagerate hlog �ti > 0, and if the input 
ow bt is also increasing with a larger rate r, we de�nebt = er(t+1)b̂t, where b̂t is a stochastic variable of order one. We also de�ne �t = �̂ter. Ifr > hlog ati, then hlog �̂ti < 0.The equation (1) thus transforms into Ŝt+1 = �̂tŜt + b̂t, with St = ertŜt, and where �̂tand b̂t obey exactly the conditions for our previous analysis to apply. The conclusion is that,due to input growing exponentially fast, the growth rate of wt becomes that of the input,its average (which exists for � > 1) grows exponentially as hSti � ert and its value exhibitslarge 
uctuations governed by the power law probability density function P (St) � e�rtS1+�t with �solution of h��t i = er�, leading to � = hbti�h�tih�2t i�h�ti2 in the second order cumulant approximation.3.5. Transient Behavior. | For t large but �nite, the exponential (16) with (17) is trun-cated and decays typically like a Gaussian for x > pDt. Translated in the wt variable, thepower law distribution (14) extends up to wt � epDt and transforms into an approximatelylog-normal law for large values. Re�ning these results for �nite t using the theory of renewalprocesses is an interesting mathematical problem left for the future.



N�3 CONSTRAINED CONVERGENT MULTIPLICATIVE PROCESSES 4433.6. Non-Stationary Processes. | When the multiplicative process (1) is not stationaryin time, for instance if v(t); D(t) or x0(t) become function of time, then their characteristictime � of evolution must be compared with t�(x) = x2=D. For \small" x such that t�(x)� � ,the distribution P (x; t) keeps an exponential tail with an exponent adiabatically followingv(t); D(t) or x0(t). We thus predict a power law distribution for wt but with an exponentvarying with v and D according to equations (11, 15). For \large" x such that t�(x) � � , thedi�usion process has not time to reach x and to bounce o� the barrier that the parametershave already changed. It is important to stress again the physical phenomenon at the origin ofthe establishment of the exponential pro�le: the repeated encounters of the di�using particlewith the barrier. For large x, the repeated encounters take a large time, the time to di�usefrom x to the barrier back and forth. In this regime t�(x) � � , the exponential pro�le forP (x) has not time to establish itself since the parameters of the di�usion evolve faster that the\scattering time" o� the barrier. The analysis of the modi�cation of the tail in the presence ofnon-stationarity e�ects is left to a separate work. In particular, we would like to understandwhat are the processes which lead to an exponential cut-o� of the power law in the wt variable,corresponding to an exponential of an exponential cut-o� in the x-variable.3.7. Status of the Problem. | Levy and Solomon [1] propose that the power law (14)is to multiplicative processes what the Boltzmann distribution is to additive processes. In thelatter case, the 
uctuations can be described by a single parameter, the temperature (��1)de�ned from the factor in the Boltzmann distribution e��E. In a nutshell, recall that theexponential Boltzmann distribution stems from the fact that the number 
 of microstatesconstituting a macro-state in an equilibrium system is multiplicative in the number of degreesof freedom while the energy E is additive. This holds true when a system can be partitionnedinto weakly interactive sub-systems. The only solution of the resulting functional equation
(E1 +E2) = 
(E1)
(E2) is the exponential.No such principle applies in the multiplicative case. Furthermore, the Boltzmann reasoningthat we have used in Section 2.1 is valid only under restrictive hypotheses and provides at bestan approximation for the general case. We have shown that the correct exponent � is in factcontrolled by extreme excursions of the drifting random walk against the main \
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