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Abstract. — Levy and Solomon have found that random multiplicative processes w; = A1 A2...\¢
(with A; > 0) lead, in the presence of a boundary constraint, to a distribution P(w;) in the form
of a power law wt_(l"'“). We provide a simple exact physically intuitive derivation of this result
based on a random walk analogy and show the following: 1) the result applies to the asymptotic
(t — oo) distribution of w: and should be distinguished from the central limit theorem which
is a statement on the asymptotic distribution of the reduced variable %(log we — (log wy)); 2)
the two necessary and sufficient conditions for P(w;:) to be a power law are that (log\;) < 0
(corresponding to a drift ws — 0) and that w: not be allowed to become too small. We discuss
several models, previously thought unrelated, showing the common underlying mechanism for
the generation of power laws by multiplicative processes: the variable log w; undergoes a random
walk repelled from —oo, which we describe by a Fokker-Planck equation. 3) For all these models,
we obtain the exact result that p is solution of (A\*) = 1 and thus depends on the distribution of
A. 4) For finite ¢, the power law is cut-off by a log-normal tail, reflecting the fact that the random
walk has not the time to scatter off the repulsive force to diffusively transport the information
far in the tail.

Résumé. — Levy et Solomon ont montré qu’un processus multiplicatif du type w: = A1 Aa... A\t
(avec A; > 0) conduit, en présence d’une contrainte de bord, & une distribution P(w;) en loi de
puissance w;(H”). Nous proposons une dérivation simple, intuitive et exacte de ce résultat basée
sur une analogie avec une marche aléatoire. Nous obtenons les résultats suivants: 1) le régime de
loi de puissance décrit la distribution asymptotique de w; aux grands temps et doit étre distingué
du théoreéme limite central décrivant la convergence de la variable réduite %(log we — (log we))
vers la loi Gaussienne; 2) les deux conditions nécessaires et suffisantes pour que P(w;) soit une
loi de puissance sont (log A;) < 0 (correspondant & une dérive vers zéro) et la contrainte que wy
soit empéchée de trop s’approcher de zéro. Cette contrainte peut étre mise en oeuvre de maniére
variée, généralisant a une grande classe de modeles le cas d’une barriere réfléchissante examiné
par Levy et Solomon. Nous donnons aussi un traitement approximatif, devenant exact dans
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la limite ou la distribution de A est étroite ou log-normale en terme d’équation de Fokker-
Planck. 3) Pour tous ces modeles, nous obtenons le résultat général exact que l'exposant p est
la solution de I’équation (A*) = 1. p est donc non-universel et dépend de la spécificité de la
distribution de A. 4) Pour des ¢ finis, la loi de puissance est tronquée par une queue log-normale
due a une exploration finie de la marche aléatoire.

1. Introduction

Many mechanisms can lead to power law distributions. Power laws have a special status due to
the absence of a characteristic scale and the implicit (to the physicist) relationship with critical
phenomena, a subtle many-body problem in which self-similarity and power laws emerge from
cooperative effects leading to non-analytic behavior of the partition or characteristic function.
Recently, Levy and Solomon [1] have presented a novel mechanism based on random multi-

plicative processes:
Wip1 = AWy, (1)

where ); is a stochastic variable with probability distribution II(\;) and we express w; in units
of a reference value w, which could be of the form e"!, with r constant. All our analysis below
then describes the distribution of w; normalized to wy, in other words in the “reference frame”
moving with w,. At the end, we can easily make reappear the scale w, by replacing everywhere
w by w/w,.

Taken literally with no other ingredient, expression (1) leads to the log-normal distribution
[2-4]. Indeed, taking the logarithm of (1), we can express the distribution of logw as the
convolution of ¢ distributions of log A. Using the cumulant expansion and going back to the
variable w; leads, for large times ¢, to

11 1
Plw;) = —— — E— —wt)?], 2
(wy) 57 w; &P 2Dt(ogwt vt)* |, (2)

where v = (logA) = [~ dA log AII(A) and D = ((logA\)?) — (log \)?. Expression (2) can be

rewritten
1 1

Plwy) = ——— erlwovt 3
( t) 271_tht1+u(wt) ( )
with
w
p(we) = Q—Dthg e—vtt- (4)

Since p(w;) is a slowly varying function of wy, this form shows that the log-normal distribution
can be mistaken for an apparent power law with an exponent p slowly varying with the range
w; which is measured. Indeed, it was pointed out [5] that for w; < e *2P)t y(w;) < 1 and
the log-normal is undistinguishable from the 1/w; distribution, providing a mechanism for 1/ f
noise. However, notice that p(wy) — oo far in the tail w; > e(*T2P)t and the log-normal
distribution is not a power law.

The ingredient added by Levy and Solomon [1] is to constrain w; to remain larger than a
minimum value wg > 0. This corresponds to put back w; to wg as soon as it would become
smaller. To understand intuitively what happens, it is simpler to think in terms of the variables
z; = logw; and | = logA, here following [1]. Then obviously, the equation (1) defines a
random walk in z-space with steps [ (positive and negative) distributed according to the density
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Fig. 1. — Steady-state exponential profile of the probability density of presence of the random walk
with a negative drift and a reflecting barrier.

distribution 7(I) = e/TI(e’). The distribution of the position of the random walk is similarly
defined: P(z,t) = e P(e™,1).

o If v = (I) = (log \) > 0, the random walk is biased and drifts to +00. As a consequence, the
presence of the barrier has no important consequence and we recover the log-normal distribution
(2) apart from minor and less and less important boundary effects at zo = logwg, as ¢ increases.
Thus, this regime is without surprise and does not lead to any power law. We can however
transform this case in the following one v = (I) < 0 with a suitable definition of the moving
reference scale w, ~ et such that, in this frame, the random random drifts to the left. But
the barrier has to stay fixed in the moving frame, corresponding to a moving barrier in the
unscaled variable w;.

o If v = (I) < 0, the random walk drifts towards the barrier. The qualitative picture is the
following (see Figs. 1 and 2): a steady-state (¢ — oc) establishes itself in which the net drift
to the left is balanced by the reflection on the reflecting barrier. The random walk becomes
trapped in an effective cavity of size of order D /v with an exponential tail (see below). Its
incessant motion back and forth and repeated reflections off the barrier and diffusion away
from it lead to the build-up of an exponential probability (concentration) profile (and no more
a Gaussian). The probability density function of the walker position z is then of the form e™#*
with p & |v|/D. As z is the logarithm of the random variable w, then one obtains a power law
distribution for w of the form ~ w—(+#),

We first present an intuitive approximate derivation of the power law distribution and its
exponent, using the Fokker-Planck formulation in a random walk analogy. In Section 2.2, the
problem is formulated rigorously and solved exactly in Section 2.5. Sections 2.3 and 2.4 are
generalization of the process (1). The explicit calculation of the exponent of the power law
distribution is done using a Wiener-Hopf integral equation, showing that it is controlled by
extreme values of the process.
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Fig. 2. — a) A typical trajectory of the random walker at large times showing the multiple reflections

off the barrier. b) The time evolution of the Kesten variable defined by the equation (19) with a;
uniformly taken in the interval [0.48;1.48] leading to u = 1.47 according to (17) and b; uniformly
taken in the interval [0; 1]. Notice the intermittent large excursions.
2. The Random Walk Analogy
In the z; = logw; and l; = log \; variables, expression (1) reads

Ti41 = Tt + lt, (5)

and describes a random walk with a drift {I) < 0 to the left. The barrier at xg = logwg
ensures that the random walk does not escape to —oo. This process is described by the Master
equation [1]

+o00
Pla,t+1) = / ()P (x — 1, )dl. (6)
2.1. PERTURBATIVE ANALYSIS. — To get a physical intuition of the underlying mechanism,

we now approximate this exact Master equation by its corresponding Fokker-Planck equation.
Usually, the Fokker-Planck equation becomes exact in the limit where the variance of 7 (1) and
the time interval between two steps go to zero while keeping a constant finite ratio defining the
diffusion coefficient [6]. In our case, this corresponds to taking the limit of very narrow m(l)
distributions. In this case, we can expand P(x — [,t) up to second order

oP 1.,0%P
P(l‘ - lvt) = P(Z‘,t) - l%kx,t) + 5 QW‘(w,t)

leading to the Fokker-Planck formulation

OP(z,t) _ ~0j(z,) UBP(:U,t) n DBQP(w,t)

ot ox ox Ox?

where v = (I) and D = (I2) — (I)? are the leading cumulants of II(log\). j(z,t) is the flux
defined by

(7)

jlz,t) = vP(z,t) — D%. (8)
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Expression (7) is nothing but the conservation of probability. It can be shown that this
description (7) is generic in the limit of very narrow m distributions: the details of 7 are
not important for the large ¢ behavior; only its first two cumulants control the results [6].

v and D introduce a characteristic “length” & = D/|v|. In the overdamped approxima-
tion, we can neglect the inertia of the random walker, and the general Langevin equation

m‘fTﬁ = —'y‘é—f + F + Fayet reduces to
dz
= = t 9
= v+l )
which is equivalent to the Fokker-Planck equation (7). 7 is a noise of zero mean and delta
correlation with variance D. This form exemplifies the competition between drift v = —|v| and
diffusion 7(t).
The stationary solution of (7), % = 0, is immediately found to be
B
Poola) = A= —e b7, (10)
I
with o]
v
= —. 11
L= G (11)

A and B are two constants of integration. Notice that, as expected in this approximation
scheme, p is the inverse of the characteristic length #. In absence of the barrier, the solution
is obviously A = B = 0 leading to the trivial solution Py (x) = 0, which is indeed the limit of
the log-normal form (2) when ¢ — oco. In the presence of the barrier, there are two equivalent
ways to deal with it. The most obvious one is to impose normalization

/OO Poo(z)dz =1, (12)

where z¢g = logwg. This leads to
Poo(z) = pe™(==0), (13)

Alternatively, we can express the condition that the barrier at zo is reflective, namely that
the flux j(zg) = 0. Let us stress that the correct boundary condition is indeed of this type
(and not absorbing for instance) as the rule of the multiplicative process is that we put back
wy to wy when it becomes smaller than wy, thus ensuring w; > wy. An absorbing boundary
condition would correspond to kill the process when w; < wy. Substituting (10) in (8) with
j(zo) = 0, we retrieve (13) which is automatically normalized. Reciprocally, (13) obtained
from (12) satisfies the condition j(z¢) = 0.

There is a faster way to get this result (13) using an analogy with a Brownian motion in
equilibrium with a thermal bath. The bias (I) < 0 corresponds to the existence of a constant
force —|v| in the —z direction. This force derives from the linearly increasing potential V' = |v|x.
In thermodynamic equilibrium, a Brownian particle is found at the position z with probability
given by the Boltzmann factor e #I¥1#, This is exactly (13) with D = 1/ as it should from
the definition of the random noise modelling the thermal fluctuations.

Translating in the initial variable w; = e®, we get the Paretian distribution

m
P (wy) = 1410 (14)

= .
w; +u
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with u given by (11):
p [{log )|
((log A)?) — (log A)*~

These two derivations should not give the impression that we have found the exact solution.
As we show below, it turns out that the exponential form is correct but the value of u given
by (15) is only an approximation. As already stressed, the Fokker-Planck is valid in the limit
of narrow distributions of step lengths. The Boltzmann analogy assumes thermal equilibrium,
i.e. that the noise is distributed according to a Gaussian distribution, corresponding to a
log-normal distribution for the A’s. These restrictive hypothesis are not obeyed in general for
arbitrary TI(\). The power law distribution (14) is sensitive to large deviations not captured
within the Fokker-Planck approximation.

(15)

2.2. ExacT ANALYSIS. — In the general case where these approximations do not hold, we
have to address the general problem defined by the equations (5, 6). Let us consider first the
case where the barrier is absent. As already stated, the random walk eventually escapes to
—oo with probability one. However, it will wander around its initial starting point, exploring
maybe to the right and left sides for a while before escaping to —oo. For a given realization,
we can thus measure the rightmost position x,x it ever reached over all times. What is
the distribution Ppax(Max(0, Zmax))? The question has been answered in the mathematical
literature using renewal theory ([7], p. 402) and the answer is

Pmax((Max (0, Tmax)) ~ e HFmax (16)
with u given by
+oo +o00
/ m(l)etdl :/ II(A)MdX = 1. (17)
—o0 0

The proof can be sketched in a few lines [7] and we summarize it because it will be useful
in the sequel. Consider the probability distribution function M (x) = ffoo Pmax (Tmax)dTmax,
that £max < x. Starting at the origin, this event xmax < x occurs if the first step of the random
walk verifies 1 = y < x together with the condition that the rightmost position of the random
walk starting from —z; is less or equal to z — y. Summing over all possible y, we get the
Wiener-Hopf integral equation

M@ = [ " M - y)r(y)dy. (1)

It is straightforward to check that M(xz) — e #* for large z with p given by (17). We refer
to [7] for the questions of uniqueness and to [9,10] for classical methods for handling Wiener-
Hopf integral equations. We shall encounter the same type of Wiener-Hopf integral equation
in Section 2.5 below which addresses the general case.

How is this result useful for our problem? Intuitively, the presence of the barrier, which
prevents the escape of the random walk, amounts to reinjecting the random walker and enabling
it to sample again and again the large positive deviations described by the distribution (16).
Indeed, for such a large deviation, the presence of the barrier is not felt and the presence of
the drift ensures the validity of (16) for large z. These intuitive arguments are shown to be
exact in Section 2.5 for a broad class of processes.

Let us briefly mention that there is another way to use this problem, on the rightmost
position zmax ever reached, to get an exponential distribution and therefore a power law dis-
tribution in the w; variable. Suppose that we have a constant input of random walkers, say at
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the origin. They establish a uniform flux directed towards —oc. The density (number per unit
length) of these walkers to the right is obviously decaying as given by (16) with (17). This
provides an alternative mechanism for generating power laws, based on the superposition of
many convergent multiplicative processes.

Let us now compare the two results (15, 17) for p. It is straightforward to check that (15)
is the solution of (17) when 7 (1) is a Gaussian i.e. II()) is a log-normal distribution. (15) can
also be obtained perturbatively from (17): expanding e*! as e*! = 1 + ul + 141> + ... up to
second order and re-exponentiating, we find that the solution of (17) is (15). This was expected
from our previous discussion of the approximation involved in the use of the Fokker-Planck
equation.

2.3. RELATION WITH KESTEN VARIABLES. — Consider the following mixture of multiplicative
and additive process defining a random affine map:

St+1 = by + A\ Sy, (19)

with A and b being positive independent random variables. The stochastic dynamical process
(19) has been introduced in various occasions, for instance in the physical modelling of 1D
disordered systems [11] and the statistical representation of financial time series [12]. The
variable S(t) is known in probability theory as a Kesten variable [13].

Consider as an example the number of fish S; in a lake in the ¢-th year. The population S
in the (¢ + 1)st year is related to the population S; through (19). The growth rate A; depends
on the rate of reproduction and the depletion rate due to fishing as well as environmental
conditions, and is therefore a variable quantity. The quantity b; describes the input due to
restocking from an external source such as a fish hatchery in artificial cases, or from migration
from adjoining reservoirs in natural cases. This model (19) can be applied to the problems of
population dynamics, epidemics, investment portfolio growth, and immigration across national
borders [8]. The justification of our interest in (19) relies on the fact that it is the simplest
linear stochastic equation that can provide an alternative modelling strategy for describing
complex time series to the nonlinear deterministic maps. Notice that the multiplicative process,
with a \; that can take values larger than 1, ensures an intermittent sensitive dependence on
initial conditions. The restocking term by, or more generally the repulsion from the origin,
corresponds to a reinjection of the dynamics. It is noteworthy that these two ingredients,
of sensitive dependence on initial conditions and reinjection, are also the two fundamental
properties of systems exhibiting chaotic behavior.

b = 0 recovers (1) (without the barrier). For b # 0, it is well-known that for (logA) < 0,
S(t) is distributed according to a power law

P(S) ~ S, ) (20)

with g determined by the condition (17) [13] already encountered above (A*) = 1. In fact, the
derivation of (20) with (17) uses the result (16) of the renewal theory of large positive excursions
of a random walk biased towards —oc [12]. Figure 3 shows the reconstructed probability density
of the Kesten variable S, for A; and b; uniformly sampled in the interval [0.48;1.48] and in [0, 1]
respectively. This corresponds to the theoretical value u ~ 1.47. We have also constructed
the probability density function of the variations Sy;1 —.S; of the Kesten variable for the same
values. We observe again a power law tail for the positive and negative variations, with the
same exponent.

This is not by chance and we now show that the multiplicative process with the reflective
barrier and the Kesten variable are deeply related. First, notice that for (log A\) < 0 in absence
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Fig. 3. — Reconstructed natural logarithm of the probability density of the Kesten variable S; as
a function of the logarithm of S;, for 0.48 < Ay < 1.48 and 0 < by < 1, uniformly sampled. The
theoretical prediction p ~ 1.47 from (17) is quantitatively verified.

of b(t), S; would shrink to zero. The term b(¢) can be thought of as an effective repulsion from
zero and thus acts similarly to the previous barrier wy. To see this more quantitatively, we

form

Sit1 =8¢ b
_ = — 1. 21
S, g5, T (21)

Si41=5t 59 d108S 1t aq the same

We make the approximation of writing the finite difference - 17
status as the one used to derive the Fokker-Planck equation and will lead to results correct up
to the second cumulant. Introducing again the variable z = log S, expression (21) gives the

overdamped Langevin equation:

dz o

S = b{t)e " ~ o] + (1) (22)
where we have written A(¢) — 1 as the sum of its mean and a purely fluctuating part. We thus
get v =(\) =1~ (log\) and D = (n?) = (A\2) — (\)2 ~ (log()\)?) — (log \)2. Compared to (9),
we see the additional term b(t)e™*, corresponding to a repulsion from the z < 0 region. This

repulsion replaces the reflective barrier, which can itself in turn be modelled by a concentrated
force. The corresponding Fokker-Planck equation is

OP(z,t)

2
. OP(x,t) +D8 P(a:,t).

ox 0x?

= b(t)e " P(z,t) — (v + b(t)e ™) (23)
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It also presents a well-defined stationary solution that we can easily obtain in the regions
x — +oo and © — —oo. In the first case, the terms b(¢)e™* can be neglected and we recover
the previous results (13) with xg now determined from asymptotic matching with the solution
at x - —oc. For z — —o00, we can drop all the terms except those in factor of the exponentials
which diverge and get P(z) — e”. Back in the w; variable, P (S;) is a constant for S; — 0
and decays algebraically as given by (14) with the exponent (11, 15) for S; — +oc. Beyond
these approximations, we can solve exactly expression (21) or equivalently (19) and we recover
(17). This is presented in Section 2.5 below. Again, notice that (11, 15) is equal to the solution
of (17) up to second order in the cumulant expansion of the distribution of log A.

It is interesting to note that the Kesten process (19) is a generalization of branching processes
[14]. Consider the simplest example of a branching process in which a branch can either die
with probability pg or give two branches with probability po = 1—py. Suppose in addition that,
at each time step, a new branch nucleates. Then, the number of branches S;;1 at generation
t + 1 is given by equation (19) with b = 1 and \; = 2’5”, where j;11 is the number of
branches out of the S; which give two branches. The distribution II(A) is simply deduced from
the binomial distribution of j;; 1, namely (.S‘ )pgt+1p6§t—]t+l = % %Hlpkggt_]t“. For

Jt+1
large S, TI()) is approximately a Gaussian with a standard deviation equal to w, i.e. it

goes to zero for large S;. We thus pinpoint here the key difference between standard branching
processes and the Kesten model: in branching models, large generations are self-averaging in
the sense that the number of children at a given generation fluctuates less and less as the size
of the generation increases, in contrast to equation (19) exhibiting the same relative fluctuation
amplitude. This is the fundamental reason for the robustness of the existence of a power law
distribution in contrast to branching models in which a power law is found only for the special
critical case pg = pa (for py > p2, the population dies off, while for py < p2 the population
prolifates exponentially). The same conclusion carries out directly for more general branching
models. Note finally that it can be shown that the branching model previously defined becomes
equivalent to a Kesten process if the number of branches formed from a single one is itself a
random variable distributed according to a power law with the special exponent u = 1, ensuring
the scaling of the fluctuations with the size of the generations.

2.4. GENERALIZATION TO A BROAD CLASS OF MULTIPLICATIVE PROCESS WITH REPULSION
AT THE ORIGIN. — The above considerations lead us to propose the following generalization

wyyr = ef (Wb B gy, (24)

where f(wy, {As, bt,...})) = 0 for wy — oo and f(wy, {\¢, by, ...})) = oo for wy — 0.
The model (1) is the special case f(wy, {A¢,bs,...}) = 0 for w; > wo and f(wy, {A¢, bs,...}) =
log(r2-) for wy < wp. The Kesten model (19) is the special case f(w¢, {A¢,bt,...}) = log(1 +

;’(—t)) More generally, we can consider a process in which at each time step ¢, after the variable
t Wt

At is generated, the new value A\;w; (or Ayw; + by in the case of Kesten variables) is readjusted
by a factor ef(we:-{Ae:be3) reflecting the constraints imposed on the dynamical process. It is
thus reasonable to consider the case where f(wy, {\¢,b:,...}) depends on ¢ only through the
dynamical variables A; (and in special cases b;), a condition which already holds for the two
examples above. In the following Fokker-Planck approximation, we shall consider the case
where f(w¢, {\:,bt,...}) is actually a function of the product A\;w;, which is the value generated
by the process at step ¢ and to which the constraint represented by f(A;w;) is applied. We
shall turn back to the general case (24) in Section 2.5.

In the Fokker-Planck approximation, f(A;w;) defines an effective repulsive stochastic force.
To illustrate the repulsive mechanism, it is enough to consider the restricted case where f(w;)
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V(x) = -lvl x

Fig. 4. — Generic form of the potential whose gradient gives the force felt by the random walker.
This leads to a steady-state exponential profile of its density probability, corresponding to a power law
distribution of the w¢-variable.

is only a function of w;. This corresponds to freezing the random part in the noise term \;
leading to the definition of the diffusion coefficient. In the random walk analogy, we thus
have the force F'(z;) = f(w;) acting on the random walker. The corresponding Fokker-Planck
equation is

ot ox Ox?

F(z) decays to zero at x — oo and establishes a repulsion of the diffusive process in the negative
x region: this is the translation in the random walk analogy of the condition f(w;) — oo for
w; — 0.

With these properties, the tail of P(z) for large x and large times is given by Poo () ~ e™H%,
and as a consequence w; is distributed according to a power law, with exponent p given again
approximately by (11, 15). The shape of the potential defined by v + F(z) = — a‘g;z)’ showing
the fundamental mechanism, is depicted in Figure 4. As we have already noted, the bound
wp leading to a reflecting barrier is a special case of this general situation, corresponding to a
concentrated repulsive force at xg.

The expression (24) for the general model can be “derived” from the overdamped Langevin
equation equivalent to the Fokker-Planck equation (25):

OP(x,t) (v + F(z))P(x,t) +D8273(a:,t)- (25)

dz

3 = F@) = ol +n(). (26)
Let us take the discrete version of (26) as x;+1 = x¢ + F(x¢) — |v| + n, replace with z; = logw;
and exponentiate to obtain

wip1 = eF 108w Ny, (27)

where \; = e "7, Since F(z) — 0 for large w;, we recover a pure multiplicative model
wit1 = AMwy for the tail. The condition that F'(z) becomes very large for negative = ensures
that w; cannot decrease to zero as it gets multiplied by a diverging number when it goes to
Zero.

2.5. EXACT DERIVATION OF THE TAIL OF THE POWER LAW DISTRIBUTION. — The existence
of a limiting distribution for w; obeying (24), for a large class of f(w,{\,b,...}) decaying to
zero for large w and going to infinity for w — 0, is ensured by the competition between
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the convergence of w to zero and the sharp repulsion from it. We shall also suppose in what
follows that df (w, {\,b,...})/0x — 0 for w — oo, which is satisfied for a large class of smooth
functions already satisfying the above conditions. It is an interesting mathematical problem
to establish this result rigorously, for instance by the method used in [1,10]. Assuming the
existence of the asymptotic distribution P(w), we can determine its shape, which must obey

v=we [0 b 1Y gy, (28)

where {\,b,...} represents the set of stochastic variables used to define the random process.
The expression (28) means that the Lh.s. and r.h.s. have the same distribution. We can thus
write

+o00 +oo +oo v
P,(v) :/0 d)\H(A)/O dw P, (w)d(v — Aw) :/0 %H(/\)Pw(x).

Introducing V =logv, x = logw and | = log A, we get

P(V) = /_+oo A1) P, (V = 1). (29)

Taking the logarithm of (28), we have V = z — f(z,{\,b,...}), showing that V — 2 for

Y

large z > 0, since we have assumed that f(z,{\b,...}) — 0 for large z. We can write

P(V)dV = Py(z)dx leading to P(V) = t5rfagy7gs — Pe(V) for 2 — co. We thus
recover the Wiener-Hopf integral equation (18) yielding the announced results (16) with (17)
and therefore the power law distribution (14) for w; with p given by (17).

This derivation explains the origin of the generality of these results to a large class of con-

vergent multiplicative processes repelled from the origin.

3. Discussion

3.1. NATURE OF THE SOLUTION. — To sum up, convergent multiplicative processes repelled
from the origin lead to power law distributions for the multiplicative variable w; itself. Ideally,
this holds true in the asymptotic regime, namely after an infinite number of stochastic products
have been taken. This addresses a different question than that answered by the log-normal
distribution for unconstrained processes which describes the convergence of the reduced variable
\/L{(log wy — (logwy)) to the Gaussian law. Notice that this reduced variable tends to zero for
our problem and thus does not contain any useful information.

We have presented an intuitive approximate derivation of the power law distribution and its
exponent, using the Fokker-Planck formulation in a random walk analogy. Our main result
is the explicit calculation of the exponent of the power law distribution, as a solution of a
Wiener-Hopf integral equation, showing that it is controlled by extreme values of the process.
We have also been able to extend the initial problem to a large class of systems where the
common feature is the existence of a mechanism repelling the variable away from zero. We
have in particular drawn a connection with the Kesten process well-known to produce power
law distributions. The results presented in this paper are of importance for the description of
many systems in Nature showing complex intermittent self-similar dynamics.

3.2. THE EXPONENT u. — In the Fokker-Planck approximation of the random walk analogy, i
is the inverse of the size of the effective cavity trapping the random walk. In this approximation,
1 is a function of, and only of, the first two cumulants of the distribution of log A. In particular,
if the drift |v| < 2D, u < 2 corresponding to variables with no variance and even no mean
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when 1 < 1 (Jv| < D). It is rather intuitive: large fluctuations in A lead to a large diffusion
coefficient D and thus to large fluctuations in w; quantified by a small u. Recall that the
smaller p is, the wilder are the fluctuations.

Within an exact formulation, we have shown that there is a rather subtle phenomenon
which identifies p as the inverse of the typical value of the largest excursion against the flow of
a particle in random motion with drift. This holds true for a large class of models characterized
by a negative drift and a sufficiently fast repulsion from the negative domain (in the z-variable),
i.e. from the origin (in the w-variable).

3.3. ADDITIONAL CONSTRAINT FIXING u. — We recover the relationship relating p to the
minimum value wy in the reflecting barrier problem by specifying [1] the value C of the average

(w). Calculating the average straightforwardly using (14), we get (w;) = wgﬁ, leading to
1

h = T /o)

Notice that this expression is a special case of (17) and should by no mean be interpreted as
implying that p is controlled by wg in general. This is only true with an additional constraint,
here of fixing the average. The general result is that u is given by (17), i.e. at a minimum by
the two first cumulants of the distribution of log A.

(30)

3.4. PoSITIVE DRIFT IN THE PRESENCE OF AN UPPER BOUND. — Consider a purely multi-
plicative process where the drift is reversed (log A) > 0, corresponding to an average exponen-
tial growth of w; in the presence of a barrier wy limiting w; to be smaller than it. The same
reasoning holds and a parallel derivation yields

Poc(wy) = Lzuf™, (31)
0

with p > 0 again given by (17). This distribution describes the values 0 < w; < wy. Notice
that, if u > 1, the distribution is increasing with w;. This is obviously no more a power law of
the tail, rather a power law for the values close to zero. For u < 1, Py (w;) decays as a power
law, however bounded by wq and diverging at zero (while remaining safely normalized). This
shows that, when speaking of general power law distribution for large values, this regime is not
relevant. Only the regime with negative drift and lower bound is relevant.

However, in the case of Kesten variables (21), if S; is growing exponentially with an average
rate (logA;) > 0, and if the input flow b; is also increasing with a larger rate r, we define
by = e’"(t“)f)t, where Z)t is a stochastic variable of order one. We also define \; = \e". If
r > (log as), then (log ;) < 0.

The equation (1) thus transforms into §t+1 = ;\tgt + IA)t, with S; = e"tS’t, and where S\t
and by obey exactly the conditions for our previous analysis to apply. The conclusion is that,
due to input growing exponentially fast, the growth rate of w; becomes that of the input,
its average (which exists for y > 1) grows exponentially as (S;) ~ e and its value exhibits

urt

large fluctuations governed by the power law probability density function P(S;) ~ S‘ﬂ—ﬂ with p
t

solution of (\}) = e, leading to pu = % in the second order cumulant approximation.
3.5. TRANSIENT BEHAVIOR. — For ¢ large but finite, the exponential (16) with (17) is trun-
cated and decays typically like a Gaussian for z > v/Dt. Translated in the w; variable, the
power law distribution (14) extends up to w; ~ e¥Pt and transforms into an approximately
log-normal law for large values. Refining these results for finite ¢ using the theory of renewal
processes is an interesting mathematical problem left for the future.
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3.6. NON-STATIONARY PROCESSES. — When the multiplicative process (1) is not stationary
in time, for instance if v(t), D(t) or x¢(t) become function of time, then their characteristic
time 7 of evolution must be compared with ¢*(z) = 2?/D. For “small” x such that t*(z) < 7,
the distribution P(z,t) keeps an exponential tail with an exponent adiabatically following
v(t), D(t) or zo(t). We thus predict a power law distribution for w; but with an exponent
varying with v and D according to equations (11, 15). For “large” x such that t*(z) > 7, the
diffusion process has not time to reach x and to bounce off the barrier that the parameters
have already changed. It is important to stress again the physical phenomenon at the origin of
the establishment of the exponential profile: the repeated encounters of the diffusing particle
with the barrier. For large z, the repeated encounters take a large time, the time to diffuse
from z to the barrier back and forth. In this regime ¢t*(z) > 7, the exponential profile for
P(z) has not time to establish itself since the parameters of the diffusion evolve faster that the
“scattering time” off the barrier. The analysis of the modification of the tail in the presence of
non-stationarity effects is left to a separate work. In particular, we would like to understand
what are the processes which lead to an exponential cut-off of the power law in the w; variable,
corresponding to an exponential of an exponential cut-off in the z-variable.

3.7. STATUS OF THE PROBLEM. — Levy and Solomon [1] propose that the power law (14)
is to multiplicative processes what the Boltzmann distribution is to additive processes. In the
latter case, the fluctuations can be described by a single parameter, the temperature (37!)
defined from the factor in the Boltzmann distribution e#F. In a nutshell, recall that the
exponential Boltzmann distribution stems from the fact that the number  of microstates
constituting a macro-state in an equilibrium system is multiplicative in the number of degrees
of freedom while the energy FE is additive. This holds true when a system can be partitionned
into weakly interactive sub-systems. The only solution of the resulting functional equation
Q(Ey + Ey) = Q(E,)Q(E>) is the exponential.

No such principle applies in the multiplicative case. Furthermore, the Boltzmann reasoning
that we have used in Section 2.1 is valid only under restrictive hypotheses and provides at best
an approximation for the general case. We have shown that the correct exponent p is in fact
controlled by extreme excursions of the drifting random walk against the main “flow” and not
by its average behavior. This rules out the analogy proposed by Levy and Solomon.
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