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Frame Representations for Texture Segmentation
Andrew Laine and Jian Fan

Abstract|We introduce a novel method of feature extraction for
texture segmentation that relies on multi-channel wavelet frames and
two-dimensional envelope detection. We describe and compare two
algorithms for envelope detection based on (1) the Hilbert transform
and (2) zero-crossings. We present criteria for �lter selection and
discuss quantitatively their e�ect on feature extraction. The perfor-
mance of our method is demonstrated experimentally on samples of
both natural and synthetic textures.

Keywords| Feature extraction, image segmentation,

wavelet analysis.

I. Introduction

Features for texture representation are of crucial impor-

tance for accomplishing segmentation[1]. Previous multi-

channel approaches for texture feature extraction utilized

the concept of spatial-frequency representation [2] [3], and

have been supported by studies of the human visual system

[4]. In these methods, both complex and real �lters were

used. Complex prolate spheroidal sequences were used as

channel �lters in [5], and channel envelopes were extracted

to form a feature vector. In another study [6], complex

Gabor �lters were applied, and envelope and phase infor-

mation were extracted from two quadratic components of

distinct output channels. Use of real Gabor �lters was

reported in [7], where feature extraction included a non-

linear transformation,  (t) = tanh(�t), and a statistical

measurement of average absolute derivation was performed

on overlapping windows. However, even this approach of

feature extraction had limitations [7].

Although Gabor �lters possess desirable properties for

this application, recent developments in wavelet theory

provide an alternative approach with several advantages:

(1) Wavelet �lters cover exactly the frequency domain (pro-

vide a mathematically complete representation), (2) Corre-

lations between features extracted from distinct �lter banks

can be greatly reduced by selecting appropriate �lters, (3)

Adaptive pruning of a decomposition tree makes possible

the reduction of computational complexity and the length

of feature vectors and, (4) Fast algorithms are readily avail-

able to facilitate implementation. In addition, recent stud-

ies have reported the success of applying wavelet theory to

problems in texture analysis [8][9][10][11][12].

In this correspondence, we adopt real wavelet packet

frames (tree structured �lter banks [13]) for channel �l-

ters, and introduce two envelope detection algorithms for

feature extraction. The performance of the two algorithms

are then analyzed and compared.

II. Multi-channel wavelet analysis

An overcomplete wavelet representation called a dis-

crete wavelet packet frame (DWPF) is similar to a discrete
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wavelet packet transform [14][15] except that no down sam-

pling occurs between levels of analysis. Figure 1 shows a

general DWPF as a binary tree for a three level decompo-

sition. Although a frame representation may be ine�cient,

we claim that it has several advantages: (1) less restric-

tions on �lter selection, (2) no aliasing, and (3) translation

invariance. The last two properties are especially desirable

for signal representation and analysis.

For the structure shown in Figure 1, �lters Hl(!) and

Gl(!) at level l were generated as described in [16] :

Hl(!) = H0(2
l!) ; Gl(!) = G0(2

l!). Let Slk(!) be the

Fourier transform of the frame coe�cients at channel k

for level l, then Sl+12k (!) = Gl(!)S
l
k(!) ; Sl+12k+1(!) =

Hl(!)S
l
k(!).

This is equivalent to a �lter bank with channel �lters

fF l
k(!)j0 � k � 2l � 1g, where F l

k(!) is de�ned recur-

sively by the formula F 0
0 (!) = G0(!), F

0
1 (!) = H0(!),

F l+1
2k (!) = Gl+1(!)F

l
k(!) = G0(2

l+1!)F l
k(!),

F l+1
2k+1(!) = Hl+1(!)F

l
k(!) = H0(2

l+1!)F l
k(!). It can be

shown that for �lters H0(!) and G0(!) satisfying

jH0(!)j
2
+ jG0(!)j

2
= 1; or, jH0(!)j+ jG0(!)j = 1; (1)

the �lter bank fF l
k(!)g covers exactly the frequency do-

main:
P2l�1

k=0

��F l
k(!)

��2 = 1, or
P2l�1

k=0

��F l
k(!)

�� = 1.

For images, we simply use a tensor product ex-

tension for which the channel �lters are written as

F l
i�j(!x; !y) = F l

i (!x)F
l
j (!y). Such 2-D �lters naturally

exhibit orientation selectivity. We classi�ed each node in

the decomposition tree into four possible categories taking

into account orientation:
� The root node is omni-directional.

� The node last �ltered by Gl(!x)Hl(!y) corresponds to

vertical-oriention. (High-pass �lter Gl is applied row-

wise and low-pass �lter Hl column-wise.)

� The node last �ltered by Hl(!x)Gl(!y) corresponds

to horizontal-oriention. (Low-pass �lter Hl is applied

row-wise and high-pass �lter Gl column-wise.)

� The node last �ltered by Gl(!x)Gl(!y) corresponds

to diagonal-oriention. (High-pass �lter Gl is applied

row-wise and high-pass �lter Gl column-wise)

� The node last �ltered by Hl(!x)Hl(!y) has the same

orientation as its parent. (Low-pass �lter Hl is applied

row-wise and low-pass �lter Hl column-wise)
However, outputs of channel �lters are band-pass signals

and cannot be used directly as texture features. Further

smoothing (grouping) is required, and is discussed next.

III. Envelop detection

In this section, we present two envelope detection algo-

rithms, and investigate their performance. For sake of clar-

ity, we �rst present each algorithm in the one-dimensional

case.
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1. Envelope detection by Hilbert transform.

The envelope of a narrowband bandpass signal can

be computed by a corresponding analytical sig-

nal [17]. For a signal x(t), the analytic signal

is de�ned by: ~x(t) = x(t) + jbx(t), where bx(t) is

the Hilbert transform of x(t): bx(t) = 1
�

R
1

�1

x(�)

t��
d�.

The envelope of the original signal x(t) is then

simply the modulus of the analytic signal ~x(t):

e(t) = j~x(t)j =
p
x2(t) + bx2(t). The Fourier transform

of the analytical signal ~x(t) is:

eX(!) =

�
2X(!) ; ! >= 0

0 ; otherwise:

Although such frequency characteristics cannot be ex-

actly realized in practice, an approximate FIR Hilbert

transformer may be designed by windowing the ideal

[18]. In our study, we used a type III FIR Hilbert

transformer designed in [18] with parametersM = 18,

and � = 2:629. This Hilbert transformer is anti-

symmetric, of length 19 and has 10 nonzero coe�cients

at odd indices.

2. Envelope detection by zero crossings. In this

method, the maximum absolute value between two ad-

jacent zero-crossings was �rst found, and then assigned

to each point within an interval. The algorithm is pre-

sented in pseudocode below:

Envelope ZC(x[1 : N ])

begin

i := 1;

while ( i < N )

begin

max = jx[i]j; k := i+ 1;

Advance index k while keeping the max-

imum absolute value encountered until next

zero-crossing or zero-valued point is found;

Assign value max to all indexes from i to k;

Update i := k;

end

end Envelope ZC;

Next, we compare the performance of each algorithm.

Figure 2 shows examples for input sinusoids spaning a wide

range of frequency (0:01� � 0:45�). This clearly demon-

strates that the Hilbert transformer performed poorly in

very low frequency channels, and was more sensitive to

noise perturbations. The noise sensitivity is due to its high-

pass nature. In comparison, envelopes detected by zero

crossings were less sensitive to noise, and computationally

more e�cient.

Next we extended the 1-D envelope detection algorithms

for the analysis of two-dimensional image signals. In the

frequency domain, a two-dimensional analytic signal can

be obtained by setting an appropriate half plane to zero,

based on its orientation. That is, for a 2-D signal f(x; y),

the Fourier transform of an analytic signal ~f(x; y) is either

eF (!x; !y) = � 2F (!x; !y) ; !x >= 0

0 ; otherwise

�
or, eF (!x; !y) = � 2F (!x; !y) ; !y >= 0

0 ; otherwise:

�

For the 2-D �lters used in our study, the equivalent complex

quadrature �lters exhibited the frequency response shown

in Figure 3 (Diagonal components can have an alternate

arrangement by zeroing out the left half plane).

This seperable property allowed us to compute the en-

velope of a 2-D signal using the 1-D algorithms described

earlier in a straightforward manner, described below:

Envelope 2D(W ,Orientation)

fW : a 2-D array g
begin

case ( Orientation )

Horizontal: apply Envelope 1D column-wise;

Vertical: apply Envelope 1D row-wise;

Diagonal: apply Envelope 1D column-wise;

end case;

end Envelope 2D;

Note that no operation was applied to the omni-

directional component due to its low frequency content.

At the end of the feature extraction process, we con-

structed feature vectors for each pixel:
~Vi;j = feLk;i;j

��
0�k�(2L�1) g, where e

L
k;i;j denotes the enve-

lope value of pixel (i; j) for the kth component at level L in

a DWPF tree. This same 2-D envelope detection method

is also applicable to �lter banks using real Gabor �lters [7].

IV. Filter selection and feature extraction

Symmetry, frequency response, and boundary accuracy

are important factors in the selection of �lters for feature

extraction. Below we discuss these constraints in terms of

overall performance.
� Symmetry. For this application, �lters with symme-

try or antisymmetry are clearly favored. Such �lters

have a linear phase response, where the delay (shift) is

predictable. Alternatively, �lters with nonlinear phase

may introduce complex distortion. Moreover, sym-

metric or anti-symmetric �lters are also advantageous

in alleviating boundary e�ects through simple meth-

ods of mirror extension.

� Optimal frequency response. In order to derive an

ideal �lter frequency response, we considered a two-

band �lter bank with input signals of in�nite length

consisting of two segments with distinct pure tones.

The input signals can be written as

s(n) =

�
A1 cos(!1n+ �1) ; n < 0;

A2 cos(!2n+ �2) ; n � 0;
(2)

where A1 > 0 and A2 > 0. Except for the boundary

(n = 0), we derived the feature vectors (envelopes of

channel outputs) as,

~T = (eH ; eG) =�
~Tleft = (A1 jH0(!1)j ; A1 jG0(!1)j) ; n < 0;
~Tright = (A2 jH0(!2)j ; A2 jG0(!2)j) ; n � 0:

The angle � between vectors ~Tleft and ~Tright is

cos�1

 
jH0(!1)H0(!2)j+ jG0(!1)G0(!2)jp

jH0(!1)j
2 + jG0(!1)j

2

p
jH0(!2)j

2 + jG0(!2)j
2

!
;
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and is bound by 0 � � � �
2
. The distance between

the two classes in the feature space is then

D =

r���~Tleft���2 + ���~Tright���2 � 2
���~Tleft��� ���~Tright��� cos(�) :

For � = �
2
, vectors ~Tleft and ~Tright are orthogonal,

and the distance D reaches its maximum. Clearly, the

maximum distance in feature space between any two

classes is optimal for segmentation and classi�cation

applications, in the sense that the classes are better

seperated and more robust to noise perturbations. No-

tice that for H0(!1) 6= 0 and G0(!2) 6= 0, cos(�) = 0 if

and only if G0(!1) = 0 and H0(!2) = 0. This means

that optimal �lter banks should have no overlap in the

frequency domain, and thus �lter H0(!) with optimal

frequency response must be a perfect half-band �lter.

Indeed, [19] derived a similar optimal �lter for image

coding applications. Thus, we can connect orthogonal-

ity of the feature set to the property of a �lter bank.

For any pair of signal segments as de�ned in Equa-

tion (2) with pure tones (!1; !2) and H0(!1) 6= 0 and

G0(!2) 6= 0, if the feature vector set corresponding to

the two signal segments are orthogonal, we de�ne the

two �lter bands to be orthogonal. Of course, this con-

cept can be extended to multi-band �lter banks. For a

tree-structured �lter bank shown in Figure 1, any two

bands at the same level are orthogonal if and only if

the two bands at level 0 are orthogonal. However, such

ideal �lters cannot be realized in practice. Based on

the discussion above, �lter bands overlaping in the fre-

quency domain tend to reduce class distance in feature

space. Therefore, a �lter H0(!) with a large stop-band

attenuation and 
at pass-band frequency response is

desirable.

� Spatial localization. There are two types of bound-

aries for signals of �nite length: (1) boundaries of

regions exhibiting distinct characteristics and (2) the

physical boundaries of a data segment. Feature vec-

tors close to the boundaries will be e�ected. The size of

the e�ected region depends on the length of the chan-

nel �lters, and the distribution of �lter coe�cients.

Therefore, �lters of short length and fast decay shall

be better suited for boundary detection.

Unfortunately, the above three criteria cannot be sat-

is�ed simultaneously. Quadrature Mirror Filters (QMF)

satify the exact coverage constraint (Equation (1)), but,

real QMF's with compact support cannot be symmetric

or anti-symmetric [20]. Moreover, large attenuation in the

stop band requires a longer �lter, which in turn degrades

the �lter's spatial localization. Therefore, the best �lter

selection is a trade-o� among these criteria and the char-

acteristics of an input signal. That is, if classes in a signal

di�er mainly in frequency characteristics, a �lter bank ex-

hibiting good frequency seperation should be used. How-

ever, if classes in a signal di�er mainly in spatial charac-

teristics, a �lter bank with good spatial localization should

be employed.

An uncertainty factor was previously used as an opti-

mal criterion for �lter selection [6]. For discrete �lters, the

uncertainty factor U can be de�ned as follows [21]:

U = �2n�
2
!; (3)

where �2n = 1
E

P
n(n� n)2jh(n)j2,

�2! = 1
2�E

R �
��

(! � !)2jH(ej!)j2d!,

E =
P

n jh(n)j
2 = 1

2�

R �
��

jH(ej!)j2d!,

n = 1
E

P
n njh(n)j

2, ! = 1
2�E

R �
��

!jH(ej!)j2d!. For the

discrete case, Liu et al [21] proved that U � 0:25. This

lower bound is achived only by Gaussian functions.

However, we were cautious in applying the uncertainty

factor as a criterion to evaluate �lters for the following

reasons: (1) The uncertainty factor is a product. Even

if two �lters have the same factor, their behavior in the

spatial and frequency domains may be quite distinct. (2)

Channel �lters in a �lter bank may have di�erent values of

U . (3) Prototype �lter H0(!) must respect the constraint

of Equation (1). As discussed above, the ideal �lter for

H0(!) is a perfect half-band low-pass �lter. Therefore, we

used the maximum value of Umax in each �lter bank for

comparison. In addition, rather than evaluating a �lter

bank at the top level alone, we evaluated each �lter bank

at several levels close to the bottom of each tree.

Finally, we compared �lters which satis�ed the linear

phase constraint and Equation (1):
(1) Lemari�e-Battle �lters [22]. This is a class of

symmetric quadrature mirror �lters (QMF) with in-

�nite length. The high-pass �lter g0(n) was obtained

by g0(n) = (�1)nh0(n), or, G0(!) = H0(!+�). Thus,

both low-pass and high-pass �lters were symmetric. In

practice, we truncate each to �nite length.

(2) Autocorrelation shell [23]. For a quadrature

mirror �lter Q(!) satisfying jQ(!)j
2
+jQ(� + !)j

2
= 1,

we may de�ne discrete �lters H0(!) and G0(!) from

Q(!) as H0(!) = jQ(!)j
2
and G0(!) = jQ(� + !)j

2
.

Filters H0(!) and G0(!) are both symmetric. For FIR

Q(!), H0(!) and G0(!) are both FIRs. In our study,

both Lemari�e-Battle �lters and FIR Daubechies �lters

were applied.
The results of the comparison are presented in Figure 4.

Figures 4 (a) and (b) show the maximum uncertainty factor

Umax at levels 4, 5 and 6 vs. �lter order for Lemari�e-Battle

�lters and an autocorrelation shell of Lemari�e-Battle �lters,

repectively. 1-D �lter banks were evaluated using a 512-

point FFT. We observed that �lter orders corresponding to

minimum Umax were not the same at distinct levels. Also

deep in the tree, the higher order �lters (longer length)

corresponded to minimum Umax. Figure 4 (c) shows Umax

at levels 4, 5 and 6 vs. �lter length for the autocorrelation

shell of Daubechies wavelet �lters. Note that for longer

�lters in the range of 4� 20 taps, we observed a consistant

decreasing of Umax values.

V. Experimental results for multi-channel

texture segmentation

We tested our representation using an ISODATA cluster-

ing algorithm [24]. The number of distinct classes in each
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textured image was a required parameter for the program.

Our test images included samples of two distinct families

of texture:

� Natural textures. Here we used textures obtained

from the Brodatz album [25] and public archive. Each

testing sample was �rst histogram equalized so that a

segmentation result based only on �rst order statistics

was not possible. Experimental results are displayed

in Figure 6. Experimentally we observed that a lower

order Lemari�e-Battle �lter (order 1) performed well in

boundary detection (Figure 6 (b)), while the higher

order Lemari�e-Battle �lter (order 5) did a better job

within non-boundary (internal) regions.

� Synthetic textures. We also tested the performance

of our algorithm on several synthetic (computer gen-

erated) images of texture. Figure 7 shows a segmen-

tation result on a Gaussian low-pass texture image

[1], and Figure 8 shows a segmentation result on a �l-

tered impulse noise (FIN) texture image [1]. For this

di�cult test image, the algorithm achieved \super-

human" performance. Figure 9 demonstrates an accu-

rate segmentation result for a texture image containing

regular and sparse elements.

A quantitative comparison, presenting the accuracy of

our segmentation results is summarized in Table II. This

performance is consistent with the di�culty of segmen-

tation perceived by human observers. We observed that

boundary errors were dependent on shape i.e, complex

boundaries yielded more variance.

VI. Conclusions

We have described a feature extraction method for tex-

ture segmentation that relied upon (overcomplete) wavelet

packet frame representations. Two approaches for accom-

plishing one-dimensional envelope detection were presented

and formulated for two-dimensional analysis. In addition,

performance measures for reliable texture segmentation

were evaluated. We then discussed criteria for �lter selec-

tion and presented some quatitative comparisons. Finally,

we presented convincing experimental results for several

distinct texture types including macro-texture and micro-

textures.

Future research shall focus on exploiting the multiresolu-

tion nature of this representation to increase the accuracy

of class boundaries, and �nding an adaptive and robust

criterion to prune the decomposition tree.
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TABLE I

Boundary accuracy for multi-channel segmentation.

Test image Maximum ABE Average ABE ��

T1 10.0 2.9 2.6

T2 14.0 2.6 2.1

T3 12.0 2.7 2.3

ABE: Absolute Boundary Error (in pixels).
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TABLE II

Boundary accuracy for multi-channel segmentation.

Test image Maximum ABE Average ABE ��

T1 10.0 2.9 2.6

T2 14.0 2.6 2.1

T3 12.0 2.7 2.3

ABE: Absolute Boundary Error (in pixels).
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Fig. 1. Tree structure for wavelet packet frames and associated indexes.
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Fig. 2. Comparison of envelope detectors. Colomn 1: Input signals (sinusoids with frequency perturbation). Colomn 2: Envelopes detected
via a 19-tap Hilbert transformer. Colomn 3: Envelopes detected via a zero-crossing based method.
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Fig. 3. Frequency response of equivalent complex quadrature �lters (level 1) for (a) vertical, (b) horizontal, (c) diagonal components,
respectively. The diagonal shadowed areas identify zeroed half planes.
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Fig. 4. Comparisons using maximum uncertainty factor Umax at levels 4, 5 and 6. (a) Umax (vertical axis) vs. �lter order (horizontal axis)
for Lemari�e-Battle �lters. (b) Umax (vertical axis) vs. �lter order (horizontal axis) for autocorrelation shell of Lemari�e-Battle �lters. (c)
Umax (vertical axis) vs. �lter length (horizontal axis) for autocorrelation shell of Daubechies �lters.
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Fig. 5. Filter banks at level 4 generated by (a) Lemari�e-Battle �lter of order 1. (b) autocorrelation shell of Lemari�e-Battle �lter of order 1.
(c) Lemari�e-Battle �lter of order 5.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparison of feature extraction using di�erent �lters. Top row: Test image T1 (256 � 256, 8-bit) consists of D17, herringborn
weave and bark (true boundary overlayed for display only). Middle row: Clustering results using features extracted from a level 4 �lter
bank generated by (a) Lemari�e-Battle �lter of order 1, �lter bank Umax = 3:72. (b) autocorrelation shell of Lemari�e-Battle �lter of order
1, �lter bank Umax = 1:48. (c) Lemari�e-Battle �lter of order 5, �lter bank Umax = 1:02. Corresponding 1-D �lter banks are shown
on Figure 5. The zero-crossing algorithm for envelope detection were used for (a), (b) and (c). Bottom row: Final segmentations after
postprocessing.
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(a) (b)

Fig. 7. Segmentation result No.2: (a) Test image T2 (256 � 256, 8-bit): Gaussian LP, left: isotropic Fc = 0; Sr = 60; right: non-isotropic
Fc = 0; Sr = 60; �0 = 0; B0 = 0:175. (b) Final segmentation (Lemari�e-Battle �lter of order 1, level 4 and zero-crossing envelope detection).

(a) (b)

Fig. 8. Segmentation result No.3: (a) Test image T3 (256�256, 8-bit): Filtered impulse noise, left: non-isotropic T = 0:15; Sx = 1:0; Sy = 1:5;
right: non-isotropic T = 0:15; Sx = 2:0; Sy = 1:0. (b) Final segmentation (Lemari�e-Battle �lter of order 1, level 4 and zero-crossing
envelope detection).
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(a) (b) (c)

Fig. 9. Segmentation result No.4: (a) Test image T4 (256� 256, 8-bit). (b) Final segmentation (Lemari�e-Battle �lter of order 1, level 3 and
zero-crossing based envelope detection). (c) Detected boundary overlayed with the original image.


